
HAL Id: hal-01359465
https://minesparis-psl.hal.science/hal-01359465v1

Submitted on 7 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effects Dependence Graph: A Key Data Concept for C
Source-to-Source Compilers

Nelson Lossing, Pierre Guillou, François Irigoin

To cite this version:
Nelson Lossing, Pierre Guillou, François Irigoin. Effects Dependence Graph: A Key Data Concept
for C Source-to-Source Compilers. 16th IEEE International Working Conference on Source Code
Analysis and Manipulation , Oct 2016, Raleigh, United States. pp.167-176, �10.1109/SCAM.2016.20�.
�hal-01359465�

https://minesparis-psl.hal.science/hal-01359465v1
https://hal.archives-ouvertes.fr

Effects Dependence Graph:
A Key Data Concept for C Source-to-Source Compilers

Nelson Lossing
MINES ParisTech,

PSL Research University
nelson.lossing@mines-paristech.fr

Pierre Guillou
MINES ParisTech,

PSL Research University
pierre.guillou@mines-paristech.fr

Francois Irigoin
MINES ParisTech,

PSL Research University
francois.irigoin@mines-paristech.fr

Abstract—Optimizations, transformations and anal-
yses are applied to programs by compilers at the inter-
mediate representation level, which usually does not
include explicit variable declarations. This description
level is fine for middle-ends and for source-to-source
optimizers of simple languages. Meanwhile, the C lan-
guage has become much more flexible since the C99
standard, and let variable and type declarations appear
almost anywhere in source code.
We present in this paper a new concept to manage

C99 declarations in a source-to-source compiler: the
Effects Dependence Graph, which is an extension of
the classical Data Dependence Graph. It deals partic-
ularly efficiently with user-defined type declarations or
dependent types like Variable-Length Array. It is also
interesting because no legal scheduling transformation
is hindered and because existing algorithms are either
not or slightly modified. Finally it reduces the need for
variable, struct and array privatization or live range
analyses in automatic parallelizers.
To the best of our knowledge, the declaration issue

is ignored in the literature: existing C source-to-source
compilers either do not support C99, or accept only re-
stricted portions of code, and production compilers use
low-level intermediate representations, possibly with
annotations. In this way our solution addresses a wider
range of compiler analysis issues.

I. Introduction

Program optimizations, transformations and analyses
are applied to intermediate representations (IR), tradition-
ally built with basic blocks of three-address code and a
control flow graph. These representations usually do not
include explicit variable declarations, because these have
been processed by a previous pass and have generated
constant addresses in the static area or offsets for stack
allocations. Typing information is lost or preserved in
annotations. This description level is used, for instance,
in the Optimization chapter of the Dragon Book [1].
Although it is fine for middle-ends and for source-to-
source optimizers of simple languages, such as Fortran 77,
which separate declarations from executable statements,
parallelizers must revisit variable allocations using a pri-
vatization phase or a live-range analysis.

Meanwhile, the C language, especially its C99 stan-
dard [2], is now much more flexible than in the K&R era.
Variable and type declarations, which include expressions

int foo () {
int i, result =0;
for(i=1; i <10; i++) {

int a[i];
result += bar(a, i);

}
return result ;

}

Listing 1: C99 VLA Example 1

to define initial values and dependent types, can appear
almost anywhere in the source code to improve readability
and locality at no stack space expense. Listing 1 shows
an example of Variable-Length Array declaration that
we want to address at the source level in this article.
After transformation, the output source code has to be
as close as possible to the input code and easy to read
by a programmer. Thus source-to-source compiler passes
that schedule statements, such as loop parallelization,
distribution, interchange or polyhedral optimization, have
necessarily to deal with type and variable declarations.
However, these statements have no or little impact in

terms of the classical def-use chains or data dependence
graphs [1][3][4], which deal only with store memory ac-
cesses. As a consequence, C declarations would be (incor-
rectly) moved away from the statements that use the de-
clared variables, with no respect for the scope information.
We propose in this paper a method to fix this problem
without modifying the classically-used compilation algo-
rithms.
We have explored three main techniques applicable for

a source-to-source framework. The first one is to move the
declarations at the main scope level. The second one is
to mimic a conventional binary compiler and to trans-
form typedef and declaration statements into memory
operations, which is, for instance, what is performed in
Clang. The third one is to extend def-use chains and
data dependence graphs to encompass effects [5] on the
environment and on the mapping defining named types.
Our contributions consist in this extended dependence

graph, a discussion about its implementation, and its
impact on traditional source-to-source transformations.

nelson.lossing@mines-paristech.fr
pierre.guillou@mines-paristech.fr
francois.irigoin@mines-paristech.fr

In Section II, we motivate the use of C source-to-source
compilation and the differences between source-to-source
and classical compilers. We then provide in Section III
some background information about the semantics of a
programming language. We review in Section IV the stan-
dard use-def chains and Data Dependence Graph, and
discuss some solutions for source-to-source compiler to
manage declarations. We introduce in Section V our pro-
posed extension, the Effects Dependence Graph (FXDG),
to replace the Data Dependence Graph (DDG) as argu-
ment to existing scheduling compilation passes. We look
at its impact on passes in Section VI and observe that the
new effect arcs are sometimes detrimental, and must be
filtered out, or insufficient. The related work is discussed
in Section VII. The paper contributions are recalled and
future work is presented in Section VIII.

II. Motivation
We motivate below the use of source-to-source compi-

lation for C programs. First, we describe a list of non-
exhaustive compilation schemes where using a source-to-
source compiler is relevant. We present then the advan-
tages of source-to-source compilation and finally, we show
how the C99 standard interferes with traditional source-
to-source code transformations.

A. When To Use Source-to-Source Compilers or High-
Level Intermediate Representations?

Source-to-source C compilers are useful to postprocess
C code generated by DSL compilers because these com-
pilers may generate very peculiar C codes, unexpected
by C production compilers. The postprocessing is thus
factored out of DSL compilers, without impacting pro-
duction compilers. Since the common user of a DSL is not
forcefully its implementer and may not have the knowledge
to tinker with the DSL compiler, using source-to-source
compilers may be a good choice to apply new analyses and
transformations not implemented in the DSL compiler.
For instance, the PGAS compiler of Chapel [6] uses C as
output language.

Source-to-source C compilers are also useful to prepro-
cess application C code and to isolate automatically or
semi-automatically specific parts that require a special
treatment, for instance to offload them to a hardware
accelerator, be it GPU- or FPGA-based [7][8]. Only one
version of the source code can be used for application
development on a homogeneous machine.

High-level IR could also be used in a compiler to deal
with the same issues and to provide more information
about types and memory management to some optimiza-
tion passes, especially when IR support explicitly parallel
constructs. Currently, the IR used by GCC and LLVM
are too low-level for direct loop parallelization. Loops are
not preserved in their CFG-based representation. Neither
are multidimensional array accesses, nor local variable
declarations. All this information must be either carried

by annotations or rebuilt. It might be better to use two
IR, a high- and a low-level one.
Finally source-to-source compilers are useful to develop

complex passes, because their high-level IR can be con-
verted back to C and be executed at any step. For the same
reason, they have a pedagogical interest both for students
and for the feedback provided to users.

B. Why Use C Source-to-Source Compilers?
DSLs often are niche projects which concentrate on a

narrow set of applications. Hence it can be difficult for
anyone but the maintainers to implement new optimiza-
tions in a DSL compiler. Using a source-to-source compiler
as a backend to a DSL compiler can lead to optimized code
without the need of the DSL developers. This solution is
also resilient to a suspension of the DSL project.
The output code of a source-to-source compiler is more

readable than a classical compiler. For a developer’s point
of view, it is more convenient to have source and output
code in the same language when the output code has to
be reused, contrary to assembly code or low-level interme-
diate representation such as LLVM-IR, especially in the
case of tricky declarations such as Variable Length Arrays
(VLA).
void foo(int n) {

int a[n];
/* ... */

}

Listing 2: VLA Example 2

Listing 2 shows a simplified example of VLA used in a
declaration written in C, typical of scientific or signal
processing programs, where a temporary array can be
allocated on the stack although its size is unknown at
compile time and possibly varying during the execution.
;int a[n];

mov -0x24 (% rbp),% eax
movslq %eax ,% rdx
sub $0x1 ,% rdx
mov %rdx ,-0 x18 (% rbp)
movslq %eax ,% rdx
mov %rdx ,% r10
mov $0x0 ,% r11d
movslq %eax ,% rdx
mov %rdx ,% r8
mov $0x0 ,% r9d
cltq
shl $0x2 ,% rax
lea 0x3 (% rax),% rdx
mov $0x10 ,% eax
sub $0x1 ,% rax
add %rdx ,% rax
mov $0x10 ,% esi
mov $0x0 ,% edx
div %rsi
imul $0x10 ,%rax ,% rax
sub %rax ,% rsp
mov %rsp ,% rax
add $0x3 ,% rax
shr $0x2 ,% rax
shl $0x2 ,% rax
mov %rax ,-0 x10 (% rbp)

Listing 3: VLA Example 2 – Assembly version
(obtained with gcc -O0 -g and objdump -d -S)

Listing 3 is the corresponding x86 assembly output gener-
ated by the GCC compiler. The resulting assembly code is
very complex, even with optimizations turned off, and it
is difficult to guess that this is a VLA declaration without
knowing it, for instance thanks to some annotation. We
can find out that -0x24(%rbp) represents variable n, and
-0x18(%rbp) represents Array a. But it is hard to inter-
pret the other instructions as implementing a declaration.
; ModuleID = ’vla.c’

; Function Attrs : nounwind uwtable
define void @foo(i32 %n) #0 {

%1 = alloca i32 , align 4
%2 = alloca i8*
store i32 %n , i32* %1 , align 4
%3 = load i32* %1 , align 4
%4 = zext i32 %3 to i64
%5 = call i8* @llvm . stacksave ()
store i8* %5 , i8 ** %2
%6 = alloca i32 , i64 %4 , align 16
%7 = load i8 ** %2
/* ... */
call void @llvm . stackrestore (i8* %7)
ret void

}

; Function Attrs : nounwind
declare i8* @llvm . stacksave () #1

; Function Attrs : nounwind
declare void @llvm . stackrestore (i8 *) #1

Listing 4: VLA Example 2 – LLVM-IR version
(obtained with clang -O0 -S -emit-llvm)

/* ... */
#if __GNUC__ < 4 /* Old GCC ’s, or compilers not GCC */
define __builtin_stack_save () 0 /* not implemented */
define __builtin_stack_restore (X) /* noop */
endif

void foo(unsigned int llvm_cbe_n) {
unsigned int llvm_cbe_tmp__1 ;
unsigned char * llvm_cbe_tmp__2 ;
unsigned int llvm_cbe_tmp__3 ;
unsigned char * llvm_cbe_tmp__4 ;
unsigned int * llvm_cbe_tmp__5 ;
unsigned char * llvm_cbe_tmp__6 ;

*(& llvm_cbe_tmp__1) = llvm_cbe_n ;
llvm_cbe_tmp__3 = *(& llvm_cbe_tmp__1);
llvm_cbe_tmp__4 = 0;
*((void **)& llvm_cbe_tmp__4) = __builtin_stack_save ();
*(& llvm_cbe_tmp__2) = llvm_cbe_tmp__4 ;
llvm_cbe_tmp__5 = (unsigned int *)

alloca (sizeof (unsigned int)
* (((unsigned long long)(unsigned int)
llvm_cbe_tmp__3)));

llvm_cbe_tmp__6 = *(& llvm_cbe_tmp__2);
/* ... */
__builtin_stack_restore (llvm_cbe_tmp__6);
return ;

}

Listing 5: VLA Example 2 – LLVM-IR to C conversion
(obtained with llc -march=c (version 3.0))

Listing 4 is a printout of the internal representation of
our initial VLA example in LLVM. It is more readable
that in assembly code. But due to its three-address code
representation, many temporary variables are created.
Moreover, internal built-ins have to be used to save the

stack and reload it. Listing 5 is the translation of the
LLVM-IR to C, performed by LLVM version 3.0, because
more recent versions of LLVM do not support anymore
the regeneration of C code. The resulting generated code
is quite different from the initial code and its simple VLA.
It has been translated into a stack allocation, supported
by many variables. Additional built-ins are used to save
and restore the stack as the generation of LLVM-IR does.
Using good C source-to-source compilers, the program-

mer can easily compare the initial code and the resulting
code after transformation. He/she can also execute the
transformed code. Therefore the validation of changes, an
essential stage in a production environment for critical
codes, is facilitated. Moreover, the new code can be rean-
alyzed and new transformations can be applied as many
times as necessary. Specific binary compilers, targeting
particular architectures, can still be used in a second
phase, if necessary.
The choice to make a source-to-source compiler for C is

justified because C code is stable and portable; therefore
maintenance is easier. Some other compilers for C++ and
Objective-C, for PGAS or DSL languages even choose the
C language as target or as intermediate language [9]. In
this way, developing a C source-to-source compiler may
even help to improve the results of these other compilers
targeting C.

C. A Pedagogical Example

void example () {
int i;
int a[10] , b[10];
for(i=0; i <10; i++) {

a[i] = i;
typedef int mytype ;
mytype x;
x = i;
b[i] = x;

}
return ;

}

Listing 6: C99 for loop with a typedef statement and a
variable declaration inside the loop body

void example () {
int i;
int a[10] , b[10];
for(i=0; i <10; i++)

a[i] = i;
for(i=0; i <10; i++)

typedef int mytype ;
for(i=0; i <10; i++)

mytype x;
for(i=0; i <10; i++) {

x = i;
b[i] = x;

}
return ;

}

Listing 7: After (incorrect) loop distribution of List-
ing 6

Figure 1: Data Dependence Graph for Listing 6

Consider the C99 for loop example in Listing 6. It has
been designed to highlight all issues linked to type and
variables declarations. This code contains in its loop body
declarations for a type and a variable at Lines 6-7. When
loop fission/distribution [1][4] is applied blindly onto this
loop, the typedef and the variable declaration are also
distributed, as shown in Listing 7.

The loop distribution algorithm relies on the Data
Dependence Graph (see Section IV) to detect cyclic de-
pendencies between the loop body statements. Yet the
type and variable declarations carry no data dependencies
towards the following statements or the next iteration,
thus causing an incorrect loop distribution.

The Data Dependence Graph (DDG) of Listing 6 is
represented in Figure 1. W → R arcs represent flow de-
pendences, R→W are anti-dependences andW →W are
output dependences. According to this traditional DDG,
no data dependence exists between the type declaration
(typedef int mytype;), the variable declaration (mytype
x;) and the two statements referencing Variable x (x = i;
b[i] = x;).
This example is contrived but it highlights the inad-

equacy of the Data Dependence Graph for some clas-
sic transformations when applied to C99 source codes
containing declarations anywhere. The dependence arcs
required by type and declaration are missing. A similar
example with VLA is presented in Listing 10. Somewhat
extreme examples could combine declarations of new types
and VLA as in int size = x; struct mystruct { int
member1[size]; };.
One can objects that a compiler should not take decla-

rations into account in the first place, but a source-to-
source compiler has to regenerate declarations at some
point. Moreover, a VLA declaration always depends on
a computation statement and thus has to be treated
separately by the compiler.

III. Background and Notations
We have based our work on some code transformation

passes of the PIPS compiler [10][11] and on its high-
level intermediate representation. Aiming at automatic

interprocedural code parallelization, optimization and of-
floading, it features a wide range of analyses and trans-
formations over Fortran and C code. It is also interfaced
with polyhedral compilers.
To carry out its analyses, PIPS relies on the notion

of memory effects, which reflect how a code statement
interacts with the computer memory.
To explain how we deal with declaration statements, we

have to introduce several basic concepts used to define the
semantics of imperative programming languages.
In Fortran and C, variables are linked to three different

concepts: an Identifier is the name given to a specific
variable; a Memory Location is the underlying memory
address, usually used to evaluate Identifier ; and a Value is
the piece of data effectively stored at that memory address.
For instance, a C variable declaration such as int a; maps
an Identifier to aMemory Location, represented by &a, and
usually allocated in the stack.
To link these concepts, two functions are also de-

fined [12]: the Environment function ρ takes an Identifier
and yields some corresponding Memory Locations; and the
Memory State or Store function σ gives the Value stored
in a Memory Location. With the above, a Statement S can
be seen as transforming a Store and/or an Environment,
in case of additional declarations, into another. We call
memory effects of a Statement S the set of Memory
Locations whose Values have been used or modified during
the execution of S. Effects E are formally defined as a
function taking a Statement and returning a mapping
between a pre-existing Memory State and a set of Memory
Locations.
Equation 1 to 4 provide the formal representation of the

concepts defined above.
ρ ∈ Env = Identifier → Loc (1)
σ ∈ Store = Loc→ V alue (2)

S : Store× Env → Store× Env (3)
E : Statement→ (Store× Env → P(Loc)) (4)

Note that named types are not modeled here to simplify
the presentation; their declaration and uses are equivalent
to variable declarations and references.
Memory effects are divided into two categories: READ

effects represent a set of Memory Locations whose Val-
ues are used, but not modified, whereas WRITE effects
represent Memory Locations whose Values are defined
during the execution of S on a given Memory State.
A statement’s READ and WRITE effects, usually over-
approximated for safety by static analyses, satisfy specific
properties [13], which can be used to show that Bernstein’s
conditions [14] are sufficient to exchange two statements
without modifying their combined semantics.
Many analysis and transformation passes in PIPS are

based on these memory effects, called effects for simple
scalar variables or array regions for convex set of array
elements. In particular, effects are used to build use-def

chains and the Data Dependence Graph between state-
ments. More information about effects and regions can be
found in [15].

IV. Data Dependence Graph

The Data Dependence Graph is used by compilers to
schedule statements and loops. A standard Data Depen-
dence Graph [1][4] exposes essential constraints that have
to be met to prevent incorrect reordering of operations,
statements, or loop iterations. A Data Dependence Graph
is composed of three different types of constraint arcs: flow,
anti- and output dependencies.

Note that the Data Dependence Graph is based on
store memory read and write operations, a.k.a. uses and
definitions. C declaration statements may perform reads
and writes when variables are initialized by expressions
and allocated in the stack. However initializations of static
variables should not generate such effects. Furthermore,
the declaration of dependent types with a typedef state-
ment also requires memory read effects. Finally, accesses to
variables with dependent types may require implicit read
accesses to the definition of their types, either to check
that an array access is within bounds, or to generate the
element address computation.

So, to take into account the mechanisms used by the
compiler, implicit memory accesses have to be added to
obtain sufficient READ and WRITE effects. We want to
keep these new accesses implicit to make further analyses
and transformations easier, and to be able to regenerate a
source code as close as possible to the original. Standard
high-level use-def chains and DDG are unaware of these
implicit dependencies. However, these are key features
when distributed loops [4] or when performing a statement
isolation [16].

A. Limitations
The problem with the standard Data Dependence

Graph is that the ordering constraints are only linked to
memory accesses. A conventional Data Dependence Graph
does not take into account the addresses of the variables,
and even less the declaration of new types, even when
they are necessary to compute a location. More precisely,
a Data Dependence Graph only considers constraints on
the Store function, and not on the Environment function.
In fact, when the C language, especially the C99 stan-
dard, is considered, many features imply new scheduling
constraints for passes using the Data Dependence Graph.

• Declarations anywhere is a new feature of C99,
also available in C++. This feature implies for a
source-to-source compiler to consider these declara-
tions and to regenerate the source code with the
declarations at the right place within the proper
scope.

• Dependent types especially variable-length arrays
(VLA), are a new way to declare dynamic variables

void example () {
int i;
int a[10] , b [10];
typedef int mytype ;
mytype x;
for(i=0; i <10; i++) {

a[i] = i;
x = i;
b[i] = x;

}
return ;

}

Listing 8: After applying
flatten code to Listing 6

void example () {
int i;
int a[10] , b [10];
typedef int mytype ;
mytype x;
for(i=0; i <10; i++)

a[i] = i;
for(i=0; i <10; i++) {

x = i;
b[i] = x;

}
return ;

}

Listing 9: After loop
distribution of Listing 8

in C99. Declarations cannot in general be grouped at
the same place, regardless of precedence constraints.

• User-defined types such as struct, union, enum
or typedef can also be defined anywhere inside the
source code, creating dependences with the following
uses of this type to declare new variables or new types.

B. Workarounds
A possible approach for solving these issues in a source-

to-source compiler is to mimic the behavior of a stan-
dard compiler that generates machine code with no type
definitions or memory allocations. In this case, we can
distinguish two solutions.
The first one works only on simple code, without de-

pendent types. The declarations can be grouped, at the
expense of stack size and name obfuscation, at the begin-
ning of the enclosing function scope.
The second one is more general. The memory allocations

inserted by the conventional binary compiler can be repro-
duced. Analyses and code transformations are performed
on this low-level IR. Then the source code is regenerated
without the low-level information.
1) Flattening Code: Code flattening is designed to move

all declarations at the beginning of functions in order to
remove as many environment extensions, introduced by
braces in C, as possible, to have only one scope and to
make basic blocks as large as possible. As a consequence,
all the variables end up in the function main scope, and
declaration statements can be ignored when scheduling
executable statements.
Some alpha-renaming may have to be performed during

this scope modification: if two variables share the same
name but have been declared in different scopes, new
names are generated, considering the scope, to replace the
old names while making sure that two variables never have
the same name.
This solution is easy to implement and can suit a simple

compiler.
The result of Listing 6 after calling flatten code is

visible on Listing 81. Listing 9 is the result of a loop

1Generated variables are really new variables because they have
different scopes.

distribution performed on Listing 8. Note that the
second loop is no longer parallel and that a privatization
or symbolic evaluation pass is necessary to reverse the
hoisting of the declaration of x.
However, this solution only works on simple programs

without dependent types, because dependent types imply
a flow dependence between some computation statements
and the declaration statement. For instance, a VLA using
a previously computed quantity as size. As a consequence,
the declarations cannot be moved up systematically any-
more.

Besides, even in simple programs, the operational se-
mantic of the code can be changed. In our above example,
flatten code implies losing the locality of the variable x.
As a consequence, the second loop cannot be parallelized,
because of the dependence to the shared variable x. With-
out flatten code, the variable x is kept in the second
loop, which remains parallel.

Furthermore, code flattening can produce an increase
in stack usage. For instance, if a function has s successive
scopes that declare and use an array a of size n, the same
memory space can be used by each scope. Instead, with
code flattening, s declarations of different variables a1, a2,
a3. . . are performed, so s×n memory space is used.
Code flattening also reduces the readability of the code,

which is unwanted in a source-to-source compiler. The final
code should be as close as possible to the original code.
2) Frame Pointer and Low Level Representation: An-

other solution is to reproduce the assembly code generated
by a standard compiler, e.g. GCC. A hidden variable,
called the current frame pointer (fp), corresponds to the
location where the next declared variable will be allocated.
At each variable declaration, the value of this hidden vari-
able is updated according to the size of the variable type.
In x86 assembly code, the stack base pointer ([e|r]bp)
with an offset is used. Moreover, for all user-defined types,
hidden variables are also added to hold the sizes of the new
types. In this way, the source-to-source compiler performs
like a binary compiler.

However, this method would lead to the addition of
many hidden variables. All of these hidden variables must
have a special status into the internal representation of
the source-to-source compiler. Moreover, this solution adds
constraint arcs that do not exist. Since all declarations
depend on the frame pointer, which is modified after each
declaration, no reordering between declarations is legal, for
instance. With the special status of these new variables,
the generation of the new source code is also modified and
can be much harder to perform.

Instead of reproducing the assembly code, a low level
representation like the LLVM-IR introduces built-ins and
makes use of the low-level alloca instruction. Using a
low-level intermediate representation has the advantages
of being easier to implement and to understand than the
frame pointer solution discussed above. However, apply-
ing some source-to-source transformations such as loop

distribution onto this kind of intermediate representa-
tion is much harder, and the handling of the custom types
is lost.
For instance, the loop distribution of Listing 10 may

result in Listing 11. With an LLVM-IR as Listing 12, this
transformation implies to successfully add a new stack save
and stack restore built-ins for the two different loops. That
will be difficult.
Nevertheless, the regeneration of a high-level source

code from these new internal representations has to be
redesigned completely so as to ignore the hidden variables
or to manage the new built-ins while considering the type
and program variable declarations. Thus this solution is
not attractive for a source-to-source compiler.

V. Effects Dependence Graph
Instead of modifying the source code or adding hidden

variables, we propose to use the code variables, including
the type variables, to model the transformations of the en-
vironment and type functions. For this purpose, we extend
the memory effects analysis presented in Section III by
adding an environment function for read/write on variable
memory locations, and a type declaration function for
read/write on user-defined types. By extending the effects
analysis with two new kinds of reads and writes, we define
a new dependence graph that extends the standard Data
Dependence Graph. We name it the Effects Dependence
Graph (FXDG).

Definition (Effects Dependence Graph). The Effects De-
pendence Graph is an extension of the Data Dependence
Graph taking into account the environment and the type
declaration functions.

A. Environment function ρ
The effects on the environment function ρ, read and

write, are strictly equivalent to the effects on the store
function σ, a.k.a. the memory. A read environment (RE)
effect is an application of ρ, which returns the location
of an identifier. A write environment (WE) effect updates
the function ρ and maps a newly declared identifier to
a new location or removes it from the function domain.
Thus when a variable is declared, a new memory location
is allocated, which implies a WE effect on the function ρ.
Its set of bindings is extended by the new pair (identifier,
location) in the same way that an affectation statement
binds a pair (location, value). Similarly, when a variable
is accessed within a statement or an expression, be it for
a read or a write, the environment function ρ is used to
obtain the corresponding location resulting in a RE effect.
As a consequence, effects on the environment function ρ

track all applications and modifications of ρ without ever
taking into account the value that σ maps to a location.
Effects on the environment function correspond to the

use of the symbol table. When a new entry in the symbol
table is made, i.e. a declaration statement, a WE effect
is attached to this statement. When the symbol table is

void example () {
int i, j, x, y;
for(i=1; i <10; i++) {

int a[i];
int b[i];
for(j=0; j<i; j++) {

a[j] = j+i;
b[j] = j*i;
x+=a[j];
y+=b[j];

}
}

}

Listing 10: Two VLA declared inside a loop

void example () {
int i, j, x, y;
for(i=1; i <10; i++) {

int b[i];
for(j=0; j<i; j++)

b[j] = j*i;
for(j=0; j<i; j++)

y += b[j];
}
for(i=1; i <10; i++) {

int a[i];
for(j=0; j<i; j++)

a[j] = j+i;
for(j=0; j<i; j++)

x += a[j];
}

}

Listing 11: After loop distribution of Listing 10

define void @example () #0 {
%i = alloca i32 , align 4
; [alloca others variables ...]
%1 = alloca i8*

;for(i=1; i <10; i++) {
store i32 1, i32* %i , align 4
br label %2

; <label >:2
%3 = load i32* %i , align 4
%4 = icmp slt i32 %3 , 10
br i1 %4 , label %5 , label %50

; <label >:5
;save the stack

%8 = call i8* @llvm . stacksave ()
store i8* %8 , i8 ** %1

;int a[i];
%6 = load i32* %i , align 4
%7 = zext i32 %6 to i64
%9 = alloca i32 , i64 %7 , align 16

;int b[i];
%10 = load i32* %i , align 4
%11 = zext i32 %10 to i64
%12 = alloca i32 , i64 %11 , align 16

;for(j=0; j<i; j++) {
store i32 0, i32* %j , align 4
br label %13

; <label >:13
; [computation ...]
;}
; restore the stack

%46 = load i8 ** %1
call void @llvm . stackrestore (i8* %46)

;}
; <label >:50

ret void
}

Listing 12: LLVM-IR of Listing 10

accessed to retrieve a location, a RE effect is attached to
the statement causing that access.

B. Type function τ

To support memory allocation, the type function τ maps
a type identifier to the number of bytes required to store
its values. It is used for all user-defined types, be they
typedef, struct, union or enum. The effects on τ , read
type (RT) and write type (WT), correspond to apply
and update operations. When a new user-defined type is
declared, τ is updated with a new pair (identifier, size).
This is modeled by a WT effect on τ . When a new variable
is declared with a user-defined type, the type function τ
is applied to the type identifier, i.e., a RT effect occurs.

C. Representation

The traditional read and write effects on the store
function, a.k.a. memory, are thus extended in a natural
way to two other semantic functions, the environment
and the type functions. The common domain of these two
new functions is the identifier set, for variables and user-
defined types. The traditional memory effects are more
difficult to implement because they map locations and not
identifiers to values. However, a subset of the location
domain is mapped one-to-one to identifiers. Thus, the
three different kind of effects can be considered as related
to maps from locations to some ranges, which unify their
implementation.

D. Implementations
The new effects can be implemented in two different

ways, with different impacts on the classical transforma-
tions based on the Data Dependence Graph.
The first possibility is to consider separately the effects

on stores, environments and types, and to generate use-
def chains and dependence graphs for each of them, and
possibly fusing them when it is necessary.
The second possibility is to label the effects and then

use a unique Effects Dependence Graph to represent the
arcs due to each kind of functions. Passes based purely on
the Data Dependence Graph have to filter out arcs not
related to the store function.
1) Merging different dependence graphs: The first ap-

proach creates a specific dependence graph for each kind
of effects, a Data Dependence Graph, an Environment
Dependence Graph and a Type Dependence Graph. To
obtain the global Effects Dependence Graph required as
input by passes such as loop distribution, these three
graphs could be fused via a new pass.
As an example, PIPS manages resources for effects on

variable values and could manage two new resources for
effects on environment and for effects on types. With
three effect resources, it is now possible to generate three
different dependence graphs, one for each of our effect
resources: a Data Dependence Graph, an Environment
Dependence Graph and a Type Dependence Graph. The
union of the three different dependence graphs of the
example in Listing 6, the total Effects Dependence Graph,

is presented in Figure 2. The traditional data dependences
(W, R) are represented with full arcs, when environment
dependences (WE, RE) are in dashed arcs and type de-
pendences (WT, RT) in dotted arcs.
void example () {

int i;
int a[10] , b[10];
for(i=0; i <10; i++)

a[i] = i;
for(i=0; i <10; i++) {

typedef int mytype ;
mytype x;
x = i;
b[i] = x;

}
return ;

}

Listing 13: After loop distribution of Listing 6 using
its Effects Dependence Graph

With these new dependence graphs, the loop dis-
tribution algorithm produces the expected Listing 13.
The loops can then be properly parallelized. Since we
have a dependence graph for each kind of effects, we can
independently select which dependence graph we need to
compute or use.

Figure 2: Effects Dependence Graph for Listing 6

Still, at the implementation level, these independent de-
pendence graphs also imply to launch three different anal-
yses and to fuse their results with a fourth pass to obtain
the Effects Dependence Graph for loop distribution.
2) A unique dependence graph: The second approach

consists in extending the current use-def chains and data
dependence graph with the different kinds of effects. On
this Effects Dependence Graph, some labeling is used to
distinguish between the different kinds of effects: data
values, memory locations and types.
Since the change is applied at the lowest level of the

data structure definition, the existing passes dealing with
reads and writes are left totally unchanged. The Effects

Dependence Graph for Listing 6 is identical to the result
of the first approach (Figure 2).
This implementation leads to the same output of loop

distribution and loop parallelization as the three
graph approach (see Listing 13). Besides, only one depen-
dence graph is generated; so we do not need to manage
three different ones, plus their union.
However, since the Data Dependence Graph is replaced

by an unique Effects Dependence Graph, the source-to-
source transformations that now use the Effects Depen-
dence Graph must take into account new constraints.
Sometimes, the Effects Dependence Graph implies too
many constraints which can be detrimental for some
source-to-source transformations. These issues are studied
in the next section.

VI. Transformations and Analyses
The introduction of the Effects Dependence Graph al-

lows source-to-source compilers to better support the C99
specification. However, not all classical code transforma-
tions and analyses benefit from this new data structure. In
this section, we discuss the impact of substituting the Data
Dependence Graph by the Effects Dependence Graph in
source-to-source compilers.

A. Effects Dependence Graph Compatibility
Some transformations require the new environment ef-

fects and the corresponding dependencies. In fact, in
some passes, we cannot move or remove the declaration
statements.
The first example is the Allen & Kennedy [17] algorithm

on for loop parallelization and distribution that we used
in Subsection II-C. These algorithms were designed for the
Fortran language initially, without taking declarations into
account since they are grouped before the first executable
statement. When proposing solutions to extend them for
the C language, Allen & Kennedy [3] only focused on
pointer issues and not on declaration ones.
Another typical algorithm that requires our Effects

Dependence Graph is Dead Code Elimination [1]. Without
our Effects Dependence Graph, the traditional dead code
elimination pass either does not take declarations into
count, i.e., never eliminates a type or variable declaration
statement, or always eliminates them since no dependence
arcs link them to useful statements. So, if applied to
the high-level internal representation of a source-to-source
compiler and not to a three-address code one, the dead
code elimination pass either performs half of its job, or
generates illegal code when the classical use-def chains is
the underlying graph.

B. Filtering the Effects Dependence Graph
When the legality of a pass is linked to the values

reaching a statement, the new arcs, which embody address
or type information, are not relevant. For instance, a
forward substitution pass uses the use-def chains, also

known as reaching definitions, to determine if a variable
value is computed at one place or not. Additional arcs
due to the environment are not relevant and should not
be taken into account.

When applying Forward Substitution [1] to the loop
body of Listing 13, the Read after Write Environment
dependence arc between the statements mytype x; and
b[i] = x; prevents the compiler from substituting x by
i. Filtering out the Environment and Type Declaration
effects or arcs is, in this pass, necessary to retrieve its
expected behavior.

C. Adapting the Effects Dependence Graph
Some transformations do not use scheduling informa-

tion, but their standard implementations may not be
compatible with type declarations or dependent types.

For instance, the pass that moves declaration statements
at the beginning of a function in PIPS (flatten code)
does not use data dependence arcs. When dependent
types or simply variable-length arrays are used in typedef
or variable declaration statements, scheduling constraints
exist and must be taken into account. A new algorithm is
required for this pass, and the legality of the existing pass
can be temporarily enforced by not dealing with codes
containing dependent types.

In the same way, loop unrolling, full or partial, does
not modify the order of statements and does not take any
scheduling constraint into consideration. However, its cur-
rent implementation in PIPS is based on alpha-renaming
and declaration hoisting to avoid multiple scopes within
the unrolled loop or the resulting basic block. This is
not compatible with dependent types, and non-dependent
types are uselessly renamed like ordinary variables.

Polyhedral scheduling as performed in Pluto [18] or
PPCG [19] should be compatible with Effects Dependence
Graph. However, the code generation phase based on a
multidimensional affine schedule, Cloog [20], is unlikely
to generate valid C99 code as input statements can be
repeated without paying attention to scoping issues. For
instance, an affine schedule corresponding to a loop peeling
requires a copy of the loop body as preamble or postlude.

VII. Related Work
We did not find any directly related work deal either

with restricted input, e.g. polyhedral compilers and static
control parts (SCoPs [21]), or are using robust parsers and
low-level intermediate representations [19][22].

Pluto [18] and PPCG [19], for instance, only work on
restricted parts of the input code defined by pragma
directives. In these parts of the code, Pluto cannot deal
with declarations. However, PPCG is able to deal with
basic variable declarations in loop nests by flattening
them outside the loops, though it does not handle VLA
depending on a loop variable or typedefs. Other tools
using multidimensional affine schedules such as XFOR
tools [23] cannot handle variable and type declarations

either. As multidimensional schedules are usually linked
to unreadable codes, this is not too much of an issue for
such source-to-source compilers, or for high-level IR.
The popular and robust parser Clang with its low-

level intermediate representation LLVM-IR [24] also has
problem to generate a simple readable representation of
variable length arrays, like Listing 4 and Listing 5 il-
lustrate it. It is partially due to its three-address code
representation.
The source-to-source compiler from and to LLVM-IR

can be used, but not to regenerate a C source code,
since Version 3.1 of LLVM removed this option. Even in
version 3.0, the regenerated C source code is quite different
from the original input source code due to the low level
representation that was passed by.
Other source-to-source research compilers such as Os-

car [25] and Cetus [26] simply do not support the C99
standard.
Among work that is indirectly related, the memory

allocation issue can be dealt with in different ways by
optimizers operating on low-level representations. The
stack allocation of local variables could be performed
first without reusing stack space so as not to create
spurious conflicts preventing parallelization and statement
scheduling, and a second pass could reallocate variables
in a more compact way once the schedule is known.
A usual approach performs variable and possibly array
privatization to remove related dependencies, but this may
involve a new memory allocation pass. A third approach
involves a live-range analysis to filter out dependencies
created by stack reuse when scheduling and to preserve
the front-end stack allocation.

VIII. Conclusion
C99 is a challenge for source-to-source compilers that

intend to respect the different scopes of the input code
and generate a better and more readable output code.
We show that some traditional algorithms fail when ap-

plied to a high-level intermediate representation, because
the use-def chains and the data dependence graph do not
carry enough scheduling constraints. We have explored
three different ways to solve this problem. We showed that
adding effects and arcs for transformations and using the
current type mapping and environment function solution
best respect the original source code and existing passes.
We also showed that the new kinds of read and write
effects fit easily in the traditional use-def chains and
data dependence graph structures. Passes that need the
new constraints are working right away when the data
dependence graph is replaced by the effects dependence
graph. Some passes are hindered by these new constraints
and must filter them out, which is very easy to implement.
Finally, some other passes are invalid for C99 declarations,
but are not fixed by using the Effects Dependence Graph
because they do not use scheduling constraints that have
to be met. This extension has been used for several years

in our PIPS source-to-source framework and has remained
compatible with its new developments such as offloading
compilers for GPUs [7] and coprocessors [8].

The newer C11 standard [27], released in 2011 by the
ISO/IEC as a revision of C99, is more conservative in
terms of disruptive features. Some mandatory C99 fea-
tures even have become optional in C11. Indeed, due to
implementation difficulties in compilers, Variable-Length
Array support is no longer required by the C11 stan-
dard. These difficulties could dwell in traditional compilers
separating declarations from computation statements al-
though Variable-Length Array mixes them. Without VLA,
declarations can more easily be moved around without
modifying the code semantic. Nevertheless, the solution
introduced and discussed in this article is still valid and
useful for C11 codes, as well as codes written in previous
versions of C.

Some transformations, such as code flattening, do not
take into account the scheduling constraints and additional
research should be carried out to tackle declarations. Code
replication, as in loop unrolling, also requires special at-
tention to preserve scopes and/or flatten them. Additional
work is needed.

The high-level intermediate representation described
here for source-to-source compilers could also have an im-
pact on the architecture of production compilers. Two IR
could be used to offer the best level of information to two
different sets of passes and to avoid recomputing missing
information in CFG such as loops, multidimensional arrays
and local variables.

Acknowledgment
We are grateful to Mehdi Amini who implemented the

Effects Dependence Graph technique in PIPS during his
PhD work. We also thank Corinne Ancourt, Albert Cohen
and Pierre Jouvelot for their careful reading of preliminary
versions of this paper and their many suggestions.

References
[1] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman, Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison-
Wesley, 2006.

[2] ISO, “ISO/IEC 9899:1999 - Programming Languages - C,”
ISO/IEC, Tech. Rep., 1999, Informally known as C99.

[3] K. Kennedy and R. Allen, Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2001.

[4] M. J. Wolfe, High Performance Compilers for Parallel Comput-
ing, 1st ed. Redwood City, CA, USA: Benjamin/Cummings,
1996.

[5] J. M. Lucassen and D. K. Gifford, “Polymorphic effect systems,”
in Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’88. New
York, NY, USA: ACM, 1988, pp. 47–57.

[6] B. L. Chamberlain, “Chapel (Cray Inc. HPCS Language),” in
Encyclopedia of Parallel Computing. Springer, 2011, pp. 249–
256.

[7] M. Amini, F. Coelho, F. Irigoin, and R. Keryell, “Static compila-
tion analysis for host-accelerator communication optimization,”
in International Workshop on Languages and Compilers for
Parallel Computing (LCPC), Fort Collins, Colorado, May 2011.

[8] S. Guelton, “Building source-to-source compilers for heteroge-
nous targets,” Ph.D. dissertation, Télécom Bretagne, 2011.

[9] Y. Kreinin, “C as an intermediate language.” [Online]. Available:
http://yosefk.com/blog/c-as-an-intermediate-language.html

[10] F. Irigoin, P. Jouvelot, and R. Triolet, “Semantical interproce-
dural parallelization: an overview of the PIPS project,” in Pro-
ceedings of the 5th international conference on Supercomputing,
ser. ICS ’91. New York, NY, USA: ACM, 1991, pp. 244–251.

[11] MINES ParisTech, PSL Research University, “PIPS,” http://
pips4u.org, 1989–2016, open source, under GPLv3.

[12] M. J. C. Gordon, The denotational description of programming
languages - an introduction. Springer, 1979.

[13] F. Irigoin, M. Amini, C. Ancourt, F. Coelho, B. Creusillet, and
R. Keryell, “Polyèdres et Compilation,” in Rencontres franco-
phones du Parallélisme (RenPar’20), Saint-Malo, France, May
2011, 22 pages.

[14] A. Bernstein, “Analysis of Programs for Parallel Processing,”
Electronic Computers, IEEE Transactions on, vol. EC-15, no. 5,
pp. 757–763, Oct 1966.

[15] B. Creusillet, “Array region analyses and applications,” Ph.D.
dissertation, École des Mines de Paris, Dec. 1996.

[16] S. Guelton, M. Amini, and B. Creusillet, “Beyond Do Loops:
Data Transfer Generation with Convex Array Regions,” in 25th
International Workshop on Languages and Compilers for Paral-
lel Computing (LCPC 2012), vol. 7760. Tokyo, Japan: Springer
Berlin Heidelberg, Sep. 2012, pp. pp. 249–263, 15 pages.

[17] R. Allen and K. Kennedy, “Automatic Translation of FOR-
TRAN Programs to Vector Form,” TOPLAS, vol. 9, pp. 491–
542, Oct. 1987.

[18] A. Acharya and U. Bondhugula, “Pluto+: Near-complete mod-
eling of affine transformations for parallelism and locality,” in
Proceedings of the 20th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, ser. PPoPP 2015.
New York, NY, USA: ACM, 2015, pp. 54–64.

[19] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez,
C. Tenllado, and F. Catthoor, “Polyhedral parallel code gener-
ation for cuda,” ACM Trans. Archit. Code Optim., vol. 9, no. 4,
pp. 54:1–54:23, Jan. 2013.

[20] C. Bastoul, “Code generation in the polyhedral model is easier
than you think,” in PACT’13 IEEE International Conference
on Parallel Architecture and Compilation Techniques, Juan-les-
Pins, France, Sep. 2004, pp. 7–16.

[21] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bas-
toul, “The Polyhedral Model is More Widely Applicable Than
You Think,” in Proceedings of the 19th Joint European Confer-
ence on Theory and Practice of Software, International Confer-
ence on Compiler Construction, ser. CC’10/ETAPS’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 283–303.

[22] T. Grosser, A. Größlinger, and C. Lengauer, “Polly - performing
polyhedral optimizations on a low-level intermediate represen-
tation,” Parallel Processing Letters, vol. 22, no. 4, 2012.

[23] I. Fassi and P. Clauss, “XFOR: filling the gap between automatic
loop optimization and peak performance,” in 14th International
Symposium on Parallel and Distributed Computing, ISPDC
2015, Limassol, Cyprus, June 29 - July 2, 2015, 2015, pp. 100–
109.

[24] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings
of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, Mar 2004.

[25] M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, and H. Kasa-
hara, “Hierarchical Parallelism Control for Multigrain Parallel
Processing,” in Languages and Compilers for Parallel Comput-
ing, ser. Lecture Notes in Computer Science, B. Pugh and C.-W.
Tseng, Eds. Springer Berlin Heidelberg, 2005, vol. 2481, pp.
31–44.

[26] S.-I. Lee, T. Johnson, and R. Eigenmann, “Cetus – An Ex-
tensible Compiler Infrastructure for Source-to-Source Transfor-
mation,” in Languages and Compilers for Parallel Computing,
16th Intl. Workshop, College Station, TX, USA, Revised Papers,
volume 2958 of LNCS, 2003, pp. 539–553.

[27] ISO, “ISO/IEC 9899:2011 - Programming Languages - C,”
ISO/IEC, Tech. Rep., 2011, Informally known as C11.

http://yosefk.com/blog/c-as-an-intermediate-language.html
http://pips4u.org
http://pips4u.org

	Introduction
	Motivation
	When To Use Source-to-Source Compilers or High-Level Intermediate Representations?
	Why Use C Source-to-Source Compilers?
	A Pedagogical Example

	Background and Notations
	Data Dependence Graph
	Limitations
	Workarounds
	Flattening Code
	Frame Pointer and Low Level Representation

	Effects Dependence Graph
	Environment function
	Type function
	Representation
	Implementations
	Merging different dependence graphs
	A unique dependence graph

	Transformations and Analyses
	Effects Dependence Graph Compatibility
	Filtering the Effects Dependence Graph
	Adapting the Effects Dependence Graph

	Related Work
	Conclusion
	References

