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Abstract

Potential assessment has served various objectives in the development of renewable energies. How-
ever, the prospective nature of this type of assessment sometimes makes it difficult to evaluate and
compare estimation results based on different data and modeling. To facilitate this comparison, un-
certainty estimates need to be systematically provided. Since potential assessment sometimes relies
on numerous parameters, this may first require determining the most important inputs to focus on.
In this paper, we propose a sensitivity analysis methodology based on Sobol indices so as to identify
the main inputs from a nonlinear assessment model. We illustrate the proposed methodology through
analyzing sensitivity in an onshore wind and ground solar photovoltaic (PV) potential assessment
covering two French regions. As a result, we show that, when estimating the potential of these renew-
able energy sources, parameters defining surface availability are more prevalent than those related to
technology.
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Nomenclature

Parameters involved in wind power production simulation
hwpn capacity factor increase ratio from the use of new wind turbine technol-

ogy,
wwpn proportion of new wind turbine technology installed capacity.

Parameters involved in solar PV production simulation
hpv capacity factor increase ratio from improving polycristallin, thin film

(i.e. amorphous silicon) and monocristallin PV module technologies,
(wp, wa) installed capacity proportions of polycristallin and thin film technologies

among those with fixed orientation (1−wp−wa being the proportion of
monocristallin technology),

(α, β) tilt and orientation of PV power plants with fixed orientation,
(wt1 , wt2) installed capacity proportions of PV power plants with single-axis or

dual-axis tracking systems (1−wt1 −wt2 being the proportion of power
plants with fixed orientation).
Parameters involved in power plants’ implantation strategy

P.a. binary parameter indicating whether or not protected natural areas are
constraints to wind and solar power capacity implantation that can be
alleviated,

R.A.t.l. binary parameter indicating whether or not radars and military air traffic
lanes are constraints to wind power capacity implantation that can be
alleviated,

altmax maximum altitude suitable for plants’ installation,
∇altmax maximum altitude gradient suitable for plants’ installation,
(∇altnorth

max , βnorth) critical relief conditions in north orientation for ground PV plants’ in-
stallation,

(rlc)lc acceptability ratios defined by type of surface lc,
cmin minimum capacity factor suitable for plants’ installation,
cu installed capacity by surface unit at power plant scale.
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1 Introduction

Potential assessment has served various objectives in the development of renewable energies. Designed to
cover a large geographical scale (e.g. global or continental), it provides broad estimates of the technical
feasibility of satisfying global consumption with sufficient production [1, 2, 3, 4], its cost [5, 6], and
the associated climate change mitigation potential [7]. Potential assessment has been devised to guide
energy policies for decades to come and should therefore integrate any anticipated (e.g. societal) changes
likely to affect the development of power source alternatives at global level [5]. On the other hand, at
a local (e.g. city or plant) scale, potential assessment supports estimations of the expected returns on
investment of prospective-phase industrial projects. It can rely on highly detailed modeling thanks to
on-site measurements employing the most recent instrumentation technology, such as LIDAR [8, 9].

The increasing availability of numerical data has resulted in considerable research to develop potential
assessment methodologies based on GIS1 tools [10, 11, 12, 8, 13]. Despite consensus on the definition of
power source potential and the generalized use of GIS-tools, it is difficult to evaluate and compare the
results established by various studies. This is because, modeling is highly dependent on geographical scale
and may vary significantly depending on the data available, their resolution or numerical representation.
Moreover, the prospective nature of these studies makes it impossible to evaluate and compare ex-post
their respective methodologies2.

Another major limitation often observed in potential assessment studies is the low number of results
regarding uncertainty estimation3. Some exceptions are noteworthy. In [14], a methodology is developed
to estimate the technical4 potential of rooftop solar photovoltaic (PV) at regional scale (exemplified
through the autonomous Spanish regions). The available roof surface is estimated for different urban
area typologies. For each typology, this estimation is made from a minimum sample of municipalities
ensuring a predefined confidence level5. Uncertainty about available roof surface is then translated into
solar potential uncertainty estimations. In [6], analytic density functions are proposed to characterize the
distribution of renewable power source sites’ productivity. Such analytic functions are then used to derive
closed-forms of cost-supply curves6 in the global economic potential evaluation of various renewable energy
sources. The analytical form of cost-supply curves leads to a straightforward deduction of associated
uncertainty estimates.

The methodology introduced in [6] allows to derive economic potential uncertainty estimates from
technical potential uncertainty estimates. Thus, the reliability of the former is closely related to, while
not relying on, assumptions made in deriving the latter. To that matter, assuming such an uncertainty
is driven by a single parameter (such as available rooftop surface in [14]), may seem insufficient7. Indeed,
potential assessment generally depends on numerous parameters whose influence on resource estimation
relies on complex nonlinear relationships. On the other hand, systematically deriving uncertainty esti-
mates from either parametric modeling or Monte-Carlo simulations may require to focus on one or just
a few prevailing parameters. Therefore, such parameters need to be first rigorously identified using an
appropriate and reproducible methodology.

In this paper, we propose a methodology to rank the influence of parameters in potential assessment.
More precisely, we propose a sensitivity analysis to evaluate the relative influence of each input parameter
on output estimation variability. We use Sobol indices whose computation is derived from Monte-Carlo
simulations. Using such indices has the great advantage of keeping model assumptions to a minimum. In

1Geographic Information System.
2Unless the considered case study areas end up fully exploiting a given power source in the future.
3Of course part of this uncertainty is intrinsic to the methodology employed and, as we point out, cannot be rigorously

evaluated.
4Based on estimations of primary energy sources in a given area, it generally integrates geographical constraints into

installing power plants and the technological characteristics of energy-conversion devices. Integrating economic or social
constraints into further estimations leads to evaluating the so-called economic potential.

5Associated with some parametric assumptions unfortunately not discussed in the paper.
6A cost-supply curve (more precisely its inverse function) gives the energy potential as a function of the maximum

acceptable marginal extraction cost.
7For some renewable power sources, such as PV or wind power, available surface is generally accepted as one of the key

parameter driving potential uncertainty [6, 15].
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particular, their computation requires no (e.g. linear) assumption on the resource estimation modeling
function. Monte-Carlo simulations and Bayesian approaches have already been proposed in the literature
to evaluate (wind) power potential at local scale [16, 17]. To our knowledge, this is the first time it
has been used to conduct a proper sensitivity analysis in potential estimation.We illustrate the proposed
approach through evaluating the technical potential of both onshore wind and ground solar PV in two
French regions.

The paper is organized as follows: in Section 2, we describe the data and modeling used in wind and
solar PV power production simulation. We also describe the geographical constraints and implantation
strategies of power plants that are used to evaluate wind and solar power potential. In Section 3, we give
a brief description of the Sobol indices and the sensitivity analysis methodology. In Section 4, we describe
the case study used to illustrate our approach. In particular, we describe the parametric assumption used
for parameter sampling. The results of our simulations are presented and discussed in Section 5. Some
conclusions and perspectives of our work are given in Section 6.

2 Data and modeling for wind and solar power potential assess-
ment

In this section, we describe the data and modeling used to estimate renewable energy potential. The
methodology used can be summarized by three steps:

1. First, sites’ normalized productivity (i.e. capacity factor) is estimated at any given location. The
estimation relies on renewable production simulations derived from meteorological data. Models
involved in such simulations are described in 2.1 and 2.2.

2. Next, geographical constraints are gathered to define zones in which power plants’ implantation is
considered impossible. These constraints are detailed in Section 2.3.1.

3. Finally, power capacities are assumed to be installed in the remaining areas based on (highest)
capacity factors, and the potential is estimated. This final step is described in 2.3.2.

2.1 Data and modeling for wind power production simulation

2.1.1 Wind speed data and extrapolation to turbine’s hub height

In our work, wind power simulations rely on wind speed estimates derived by combining two meteoro-
logical reanalysis datasets. We used ECMWF8 wind speed reanalysis data (time resolution: 6h, spatial
resolution: 10km x 14km) to spatially interpolate MERRA9 data (time resolution: 1h, spatial resolution:
50km x 55km). To do so, we employed a time-adaptive statistical linear model (see [18], Section 1.1.1,
for more details). Initially provided at a 10m altitude, wind speed data was then extrapolated to an
80m altitude using a logarithmic profile (see [1], Equation (1)), with a fixed surface roughness value10

of 0.05. Such a simplification associated with an approximate choice of the turbine’s hub height would
normally be highly detrimental to estimating power accurately. However, in our approach, wind speed
data is automatically recalibrated later on, during the power conversion process11.

2.1.2 Statistical regional power curve model

To convert wind speed into power, we used a statistical model. For calibration purposes, we disposed
of regional production data covering one year of production (2013) provided by the French TSO12. The

8European Center for Medium Range Weather Forecasts, http://www.ecmwf.int.
9Modern Era-Retrospective analysis for Research and Applications, from NASA, http://gmao.gsfc.nasa.gov.

10Somewhat intermediate value corresponding to arable land, see http://www.dataforwind.com for more details.
11We use a statistical power curve model, which allowed us to terminate wind speed recalibration before power conversion.

This is common practice, for instance, in short-term wind power forecasting [19].
12Transmission System Operator: Reseau de Transport d’Electricite, http://www.rte-france.com.
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proposed model is a piecewise model inferring regional production from average wind speed estimates
throughout the region, weighted by the installed capacity at each (meteorological) pixel. First, power
linearly increases with wind speed for low wind speed values (i.e. v ≤ 3 m.s−1), then according to a
smoothing spline model (3 m.s−1 ≤ v ≤ 10.5 m.s−1), and then power plateaus, before linearly decreasing
with very high wind speeds (20 m.s−1 ≤ v ≤ 24 m.s−1) until complete shutdown (see [18], Section 1.1.2,
for more details).

2.1.3 Improvements in wind turbine technology

A site’s productivity is defined by its long-term average production-to-nominal-capacity ratio, the so-
called capacity factor cwp = E[pt] (pt being the production expressed in % of the nominal capacity Pn).
It was computed from hourly simulations covering a 9-year period13 (2005-2013). In the near future, the
evolution of wind turbine technology should result in sites with higher capacity factors despite relatively
low winds [21, 22]. Taking such improvement into account, we chose to model the average capacity factor
over a given area (i.e. a meteorological pixel), based on initial estimations, as follows:

cwp =

{
(1 + wwpnhwpn)cwp if cwp ≥ cmin

(1 + (wwpn + 0.5)hwpn)cwp otherwise
(1)

where hwpn is the assumed capacity factor increase ratio attained thanks to new turbine technology
and wwpn the proportion of installed capacity. We assume that this proportion depends on the average
productivity of the usual technology over a pixel. If the latter is high, i.e. higher than a minimum
acceptable capacity factor cmin, then wwpn ∈ [0, 0.5]. Otherwise, the proportion of new turbine technology
capacity is increased to wwpn + 0.5. This modeling reflects the fact that new turbine technology is
dedicated to sites with low winds, i.e. characterized by low capacity factors of current technology.

2.2 Data and modeling for solar power production simulation

2.2.1 Global horizontal irradiance data and projection on a tilted plane

Global horizontal irradiance data was taken from the Helioclim 3 database [23], provided every 15min
(then hourly averaged) at a spatial resolution of 5km x 7km. To estimate the level of irradiance on a
tilted plane (i.e. the PV panels’ orientation), we used the Muneer model [24]. This requires decomposing
global irradiance into direct and diffuse components. To achieve this, we used the model proposed in
[25]. Solar angles, TOA14 irradiance and optical air mass estimates used throughout this process were
computed using the ”solar geometry” C library15. For more information on the parameterization of these
models, refer to [18] (Section 1.2.1).

2.2.2 Power conversion modeling

Converting solar irradiance into electrical power requires PV modules and inverter modeling. PV modules’
efficiency depends on the irradiance level and is based on performance measurements from technologies
available on the market. We also introduced a thermal modeling of the modules’ efficiency depending
on the cells’ temperature. This allows us to distinguish between various technologies (monocristallin,
polycristallin, thin film and concentrated PV, i.e. CPV), taking their installation set-up into account. We
also used a performance assessment of market technologies to derive the efficiency of inverters depending
on the load factor. Other losses, before (i.e. DC losses) and after (i.e. AC losses) the inverters, were also
taken into account. For more information, refer to [18] (Section 1.2.2 and 1.2.3).

13 Long-term climatic variations, such as NAO (North Atlantic Oscillations), make it difficult to rely on capacity factors
estimated from such a short time period [20]. Considering such an uncertainty in potential assessment is nevertheless beyond
the scope of this study.

14Top-of-atmosphere.
15Developed at the Observation Impact Energy Center of MINES ParisTech, http://www.oie.mines-paristech.fr.
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2.2.3 Technology mix and improvements

We introduced a technology mix and improvements by modeling the capacity factor. Let cm, cp, ca, ct1 and
ct2 denote the capacity factors associated with monocristallin, polycristallin, thin film, single-axis CPV
and dual-axis CPV technologies respectively. Similarly, we introduced the installed capacity proportions
wp, wa, wt1 , wt2 . Then, we modeled the average ground PV capacity factor as:

cpv = wt1ct1 + wt2ct2 + (1− wt1 − wt2)(1 + hpv)(wpcp + waca + (1− wp − wa)cm), (2)

where hpv is the assumed capacity factor increase ratio that can be expected in the future thanks
technology improvements in PV modules[26]. In the absence of additional information, we chose not to
extend such improvements to CPV technology.

2.3 Geographical constraints and potential assessment methodology

2.3.1 Geographical constraints

Once capacity factors had been estimated, the next step was to exclude locations unavailable for power
plant installation. In our study, four constraints prohibiting power plant deployment were identified and
taken into account. Land may be judged unavailable due to:

• Unsuitable soil type or conflicting land usage

• Unsuitable landscape

• Protected natural areas

• Proximity to radars or military air traffic lanes (for wind only)

Surface types and land uses were determined using the Corine Land Cover 2006 database (CLC 2006,
resolution: 100m). Urban and submerged territories were discarded16. The land types finally retained
were technology-specific and are fully described in [18] (Section 1.3.1). Unsuitable landscapes are defined
as locations that are at high altitudes (higher than altmax), or too steep (altitude gradient higher than
∇altmax), or with presumed inappropriate sun-exposure (for ground PV only: north-oriented +/- βnorth◦

altitude gradient higher than ∇altmax/2). The altitude data was taken from the IGN17 institute and
has a 25m spatial resolution. Protected natural areas were determined by the DREAL18. The locations
of radars and military air traffic lanes were established using data from the French meteorological office
MeteoFrance and Altech respectively.

2.3.2 Potential assessment methodology

To estimate the technical potential, we first estimated the surface S that can be allocated to production
capacities based on the available (i.e. not constrained) surface S̃. The estimation of S̃ can be refined so
as to only incorporate sites achieving minimum productivity19, i.e. a minimum capacity factor cmin. We
may then specify the notations: S̃ = S̃(c ≥ cmin), c denoting the capacity factor (i.e. cwp or cpv, resp. in

Equations (1) and (2)). Finally, S is defined as the minimum between S̃(c ≥ cmin) and some maximum
usable (acceptable) proportion r of the available surface regardless of productivity, i.e.:

S = min{rS̃(c ≥ 0), S̃(c ≥ cmin)}. (3)

16As in [27], a 500m-wide area around urban territories was systematically discarded in line with French legislation.
17Institut de l’Information Géographique et Forestière, http://www.ign.fr.
18Direction Régionale de l’Environnement, de l’Aménagement et du Logement, see for instance:

http://www.paca.developpement-durable.gouv.fr.
19This can be regarded as the consideration of economic limitations since the profitability of renewable power plants is

mostly determined from the capacity factor (see [28] for instance).
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The role of r is to incorporate potential constraints that could not be explicitly modeled and integrated
otherwise (such as population acceptance). The ”acceptable” surface it defines (i.e. rS̃(c ≥ 0)) cannot
be located a priori. Thus, one important hypothesis assumed in Equation (3) is that productive surfaces
and those judged as ”acceptable” come into the same geographical area (thus resulting in optimistically
high surface estimations).

The potential in terms of installed capacity can be straightforwardly derived from (3) by multiplying S
with the capacity that can be installed per surface unit at power plant scale20 cu. The energy potential E
is computed assuming that capacities can be installed in the area Λ of surface S with the most productive
sites:

E = cu ×
∑
s∈Λ

c(s)× 8760.

The estimation algorithm described above is applied to each land cover type after splitting the con-
sidered area into several subareas21, and the results are then added together. This brings two benefits.
First, it allows us to discriminate acceptability ratio values depending on the surface type (thus changing
the notation from r to rlc, lc denoting the surface type. See [18], Section 1.3.1). Second, applying the
algorithm to subdivisions of a (large) area avoids concentrating too much capacity in a single subarea
with productive sites22.

3 Methodology for the sensitivity analysis

3.1 Sobol indices definition

To quantify the sensitivity of the resource estimation with respect to the various inputs considered in
our model, we chose to use Sobol indices [29]. These are global23 sensitivity indices designed to estimate
the relative share of ouput variance determined by the considered inputs or their interactions. Sobol
indices are highly popular because their computation does not rely on any (e.g. linear) hypothesis about
the underlying model function f that links inputs Xi, i ∈ I := {1, . . . , p} to the output Y = f(XI).
However, it assumes that inputs Xi are uncorrelated. Therefore, the following generic decomposition also
has uncorrelated terms:

Y = E(Y ) +
∑
I⊆I

fI(XI), with fI(XI) = E[Y |XI ]−
∑
I′(I

fI′(XI′), (4)

which allows us to decompose the variance V of Y the same way. Normalizing by V finally reveals
the Sobol indices SI :

1 =
∑
I⊆I

SI , with SI = VI/V and VI = var(fI(XI)).

Various summary statistics based on Sobol indices may then be proposed. In [30], the total sensitivity
of a system STi to a given parameter Xi was defined by adding up all indices involving parameter Xi, i.e.
STi =

∑
I,i∈I SI . Extending that idea, it could be interesting to evaluate the total sensitivity of a system

STL to some general aspect (e.g. technological characteristics, relief constraints, etc) whose definition
potentially involves several parameters L ⊆ I, i.e.

STL =
∑

I,I∩L6=∅

SI . (5)

20See [18], Section 1.3.2, for more details on its estimation from the technology mix.
21In our study, French regions are subdivided into smaller administrative entities called départements.
22This would be unrealistic. Indeed, to benefit from smoothing that lowers renewable production variability and increases

its predictability, in general the intention is to spatially distribute production capacities.
23Unlike using local methods, here the interest is to evaluate the global output variability considering that inputs vary

in the entire inputs’ space value and not just close to some particular value.
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3.2 Sobol indices computation

First, note that the definition of fI(XI) in Equation (4) allows a recursive estimate of the Sobol indices,
i.e.

SI =
var(E[Y |XI ])

V
−
∑
I′(I

SI′ .

Thus, to estimate SI considering that estimations of lower order indices are available, we simply esti-
mate var(E[Y |XI ]) (and V ). This can be done through Monte Carlo simulations using two independent,
equally sized, random samples of inputs: (Xj,1

I ) and (Xj,2
I ), where j = 1, . . . , n [30]:

f̂0 = Ê(Y ) =
1

n

n∑
j=1

f(Xj,1
I ), V̂ =

1

n

n∑
j=1

f2(Xj,1
I )− f̂2

0 ,

and v̂ar(E[Y |XI ]) =
1

n

n∑
j=1

f(Xj,1
I )f(Xj,1

I , Xj,2

I
)− f̂2

0 ,

where I = I\I. Estimating Sobol indices this way thus requires (K + 1)n evaluations of f , K
being the number of considered indices. Even when restricted to first order indices, this may still be
too computationally demanding (especially when p and n are high and given that each evaluation of f
takes time). Thus, in our study, we used a single sample and the following heuristic to estimate partial
variances based on cross products of f :

v̂ar(E[Y |XI ]) =
1

n

n∑
j=1

f(Xj
I)f(Xj′

I )− f̂2
0 ,

where j′ is uniformly sampled from {k 6= j;Xk
I , X

j
I ∈ BI(j)} and BI(j) has been defined a priori from

observation binning (see [18], Section 2.1 for more details).
Using the proposed approach, the estimation of Sobol indices only requires n evaluations of f . On the

other hand, because dealing with high order indices would involve high dimensional bins, most likely with
too few observations, it is preferable here to keep low (e.g. first) order indices. Moreover, we decided
to repeat the estimation scheme so as to be able to derive average results and uncertainty estimates
(different index estimates can be obtained through independent samplings of j′ as defined above).

4 Case Study

4.1 The considered areas

The considered case-study areas are the French regions of Brittany and Provence-Alpes-Cote d’Azur
(PACA). Respectively located in the north-west and south-east of France, these are distant regions char-
acterized by very different climatic conditions, vegetation and landscapes. Britany is a flat region swept
by strong winds and thus with high wind power potential a priori. In contrast, PACA is mountainous
because of the Alps massif and enjoys from the highest sun exposure in France. Graphs detailing the
considered case study areas are represented in Figure 1.

4.2 Distribution hypothesis for parameter sampling

Here we describe the distribution hypothesis from which the various parameters were sampled. Unless
specified, all parameters are assumed to be independent. The characteristics of the distribution hypoth-
esis, along with comments justifying our choice, are given in Table 1. In our study, the computation of
Sobol indices relies on 10000 simulations of each parameter (and thus, on 10000 power resource estima-
tions). Because of the computational burden, the simulation of some parameters relies on a bootstrap
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technique (see [31] for an introduction to bootstrap). We initially considered a smaller sample for these
parameters. The final 10000 simulation sample was derived from a uniform sampling of the initial sampled
values. We used this approach to limit to 500 the number of simulations associated with relief constraints
computation. We also used it to limit to 200 the number of simulations of PV production time series
considering the orientation of fixed panels.
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Figure 1: French region case study – Top: wind power (current technology) and PV (monocristallin,
α = 35◦, β = 180◦) capacity factors (in %Pn) for the whole of France. The considered regions’ boundaries
are represented by polygons. Middle: surface type represented following the CLC 2006 database code
(see [18], Section 1.3.1) for Brittany (left graph) and PACA (right graph). Bottom: altitude data (in m)
from the IGN database.
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Table 1: Description of the distribution hypothesis from which power potential assessment parameters
have been sampled. WP and PV are acronyms for Wind Power and Photovoltaic.
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5 Results

5.1 Onshore wind

Histograms representing the distribution of onshore wind resource estimation results are shown in Figure
2. Results are given in terms of the expected annual energy production density, for both Brittany (left
graph) and PACA (right graph). In terms of energy production, the estimated resource mean value
(about 30 TWh/y for Brittany and 5 TWh/y for PACA) is of the same order of magnitude24 as the
results presented in [27]. Brittany has a higher potential than PACA basically because of higher capacity
factors and larger surface areas available for capacity deployment. The uncertainty associated with such
an estimation is also lower in the case of Brittany. The standard deviation alone is not sufficient to
make a fair comparison here and must be analyzed with respect to the order of magnitude of expected
potential. For instance, the standard-deviation-to-mean ratio (namely the coefficient of variation) equals
0.32 for Brittany and is nearly twice as high (i.e. 0.57) for PACA.
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Figure 2: Distribution of the resource estimation results – Histograms representing the distribution
of onshore wind energy resource estimation results. Results are given for both Brittany (left graph) and
PACA (right graph). Mean estimation result µ and standard deviation σ are also shown in the graphs.

First order Sobol indices are shown in Figure 3, for both the Brittany and PACA regions. In this
figure, mean estimation results with error bars (+/- 2 standard deviation) were computed based on 250
estimation replicates. As an initial remark, note that based on the proposed model and for the considered
case study, all (in the case of Brittany) or most of the estimated resource variance is determined by input
parameters alone.

In PACA, most of the resource sensitivity is determined by whether or not protected or forbidden
areas are considered: SP.a. ' 41% and SR.A.t.l. ' 14%. On the other hand, in Brittany the resource is
particularly sensitive to acceptability ratios (especially on farming land: Srlca ' 41%, preponderant in
that region, see Figure 1), defining available surfaces among those not discarded a priori.

Among other aspects related to surface availability, it is noteworthy that the resource in both regions
is sensitive to discarded surfaces with steep relief: S∇altmax ' 10% for Brittany and S∇altmax ' 13% for
PACA. This is surprising considering that the lanbdscape in Brittany is relatively flat. This result may
be due to the relatively harsh selection of suitable relief when ∇altmax is close to the chosen low limit

24Especially for Brittany. For PACA, mean estimation results are about twice as high here, both for onshore wind and
ground PV power sources. This must be due to hypothesis variations in hypothesis associated with parameters defining
surface availability. In particular, altmax and ∇altmax (rlc also for PV) have been set higher in average here and resources
in PACA must be particularly sensitive to it.
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Figure 3: First order Sobol Indices – Barplots showing the relative share of wind energy resource
estimation variance determined by input parameters alone (first order Sobol indices). The total relative
share of output variance explained by the considered indices is also shown. Results are given for both
the regions Brittany and PACA. Mean estimation results and error bars (+/- 2 standard deviation) were
computed based on 250 estimation replicates.

value (i.e. ∇altmax = 5%). In future studies, efforts should be made to narrow the uncertainty range in
which such a parameter lies in order to better appreciate output sensitivity.

In terms of technology, the results of our study show that the resource estimation may be highly
sensitive to the installed capacity per surface unit at a power plant scale cu. Indeed, the relative share
of output variance explained by this parameter alone Scu is about 38% for the Brittany case study,
and about 12% for PACA. Beyond this parameter, we can determine the impact that turbines’ nominal
capacity and wind farm design may have on the resource. Considering the PACA case study, there may be
interactions involving how sensitive the resource estimation is to parameter cu (Total =

∑
i S{i} < 100%,

see Figure 3). An association with the new turbine technology installed capacity ratio wwpn (allowing us
to estimate the average value of cu for the technology mix, see [18], Section 1.3.2), may be considered as
a natural candidate. However, further estimations showed that on average Swwpn ,cu

' 0.
Focusing on new turbine technology, its influence on resource estimation may be difficult to assess

here. Indeed, in our model, the characterization of such a technology involves the parameter cu which
is not exclusively related to it25. Moreover, it is probable that any influence such a technology may
have on resource estimation actually comes through this parameter alone. Indeed, both parameters hwpn
and wwpn that also participate in new turbine technology characterization seem to have no influence
on their own, i.e. Shwpn

' Swwpn
' 0. For the PACA case study, further investigations showed no

contribution from interactions as obvious candidates, i.e. Swwpn ,cu
' 0 (as already explained above),

and Shwpn ,wwpn
' 0 (the latter interaction being involved in estimating the capacity factor from the

technology mix, see Equation (1) Section 2.1.3).

5.2 Ground PV

Histograms representing the distribution of ground PV resource estimation results are shown in Figure 4.
Results are given in terms of expected annual energy production density, for both the Brittany (left graph)
and PACA (right graph) regions. The same asymmetric nature of the estimation results distribution can
be observed here, as it was for wind power. While results tend to show higher potential for PACA
this time, the uncertainty associated with such an estimation is still lower in the case of Brittany (the
coefficient of variation being equal to 0.45 compared to 0.76 for PACA).

First order Sobol indices are shown in Figure 5 for both Brittany and PACA. While the wind energy

25Installed capacity by surface unit at power plant scale for new turbine technology has been defined as a fixed ratio, i.e.
2/3, of that associated to standard technology (see also [18], Section 1.3.2).
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Figure 4: Distribution of the resource estimation results – Histograms representing the distribution
of ground solar photovoltaic energy resource estimation results. Results are given for both Brittany (left
graph) and PACA (right graph). The mean estimation result µ and standard deviation σ are also shown
in the graphs.

resource only appears to be slighlty sensitive to some parameter interactions for PACA, here the estimated
resource variability seems to be systematically determined by input parameters alone.

Resource sensitivity to surface availability related aspects is stronger here than it was for onshore
wind. About 85% and 95% of output variance is determined by the associated parameters L :=
{P.a., altmax,∇altmax, ∇altnorth

max , βnorth, rlc}26, for Brittany and PACA respectively. As for onshore wind,
the PV resource in PACA is more sensitive to the consideration of protected areas and unsuitable land-
scapes (i.e. STL\{rlc} ' 73%), while in Brittany the resource is more sensitive to acceptability ratios

defining the remaining available surfaces (i.e. Srlc ' 57%).
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Figure 5: First order Sobol Indices – Barplots showing the relative share of ground PV resource
estimation variance determined by input parameters alone (first order Sobol indices). The total relative
share of output variance explained by the considered indices is also shown. Results are given for both
the regions Brittany and PACA. Mean estimation results and error bars (+/- 2 standard deviation) were
computed based on 250 estimation replicates.

26For PV, to keep the number of parameters reasonable, we decided not to distinguish between the different land types
when setting the acceptability ratio value.
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Focusing on the technological aspect, the main parameter to which the resource estimation is sensitive
is the installed capacity per surface unit at power plant scale cu. This sensitivity is nevertheless about
four times lower than it was for onshore wind (Scu ' 10% for Brittany and Scu ' 3% for PACA). The only
other technological parameter that may have some influence on the resource estimation is the proportion
of installed capacity with dual-axis tracking systems in the technology mix wt2 (Swt2 ' 5% for Brittany,
only about 1% for PACA).

6 Conclusion

Potential assessment generally depends on numerous parameters whose influence on resource estimation
relies on complex nonlinear relationships. Conducting a sensitivity analysis may help identify the param-
eters whose variation has the greatest impact on power potential estimation. In this paper, we proposed
a sensitivity analysis methodology based on Sobol indices. We demonstrated the usefulness of our ap-
proach through analyzing sensitivity in the technical potential assessment of onshore wind and ground
PV resources at regional scale. We took the example of two French regions.

In general, the absence of parameter interaction revealed from the considered model analysis made it
easier to identify the most important aspects in determining wind and solar power resource variability.
In particular, our results showed that parameters involved in defining surface availability were more
prevalent than parameters characterizing technology. We estimated between 65% and 95% the relative
influence of the former on output estimation variability (65-75% for onshore wind power and 85-95%
for solar PV). These results bring measurable evidence about which parameters technical potential of
onshore wind power and solar PV most depend on, in general.

Furthermore, on a particular case study, the proposed methodology allows to determine precisely which
parameters have to be considered, so that efforts prioretization in alleviating associated constraints may
result in most increasing the exploitable potential. For instance, results of the present study showed that
careful attention should be paid to production capacity density at power plant scale to ensure satisfying
onshore wind power potential in Brittany.

To extend this work, a similar analysis could be carried out using additional parameters (e.g. the
minimum distance between wind farms and dwellings, foreseen growth of urban territories, or other
changes in land use, etc.). It could also include updated analysis as more accurate estimations of input
parameters become available, resulting in improved parametric assumptions of associated uncertainty.
Finally, the high level of uncertainty associated with potential assessment that this study demonstrates
should encourage its systematic investigation in future research.
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