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Abstract. Dendritic growth is computed with automatic adaptation of an anisotropic and 

unstructured finite element mesh. The energy conservation equation is formulated for solid and 

liquid phases considering an interface balance that includes the Gibbs-Thomson effect. An 

equation for a diffuse interface is also developed by considering a phase field function with 

constant negative value in the liquid and constant positive value in the solid. Unknowns are the 

phase field function and a dimensionless temperature, as proposed by [1]. Linear finite element 

interpolation is used for both variables, and discretization stabilization techniques ensure 

convergence towards a correct non-oscillating solution. In order to perform quantitative 

computations of dendritic growth on a large domain, two additional numerical ingredients are 

necessary: automatic anisotropic unstructured adaptive meshing [2,[3] and parallel 

implementations [4], both made available with the numerical platform used (CimLib) based on 

C++ developments. Mesh adaptation is found to greatly reduce the number of degrees of 

freedom. Results of phase field simulations for dendritic solidification of a pure material in two 

and three dimensions are shown and compared with reference work [1]. Discussion on 

algorithm details and the CPU time will be outlined. 

1.  Introduction 

The phase field approach is a method of choice for simulating interfacial pattern formation phenomena 

in solidification. The widely recognized appeal of this approach is to avoid the explicit tracking of 

macroscopically sharp phase boundaries. This makes it better suited than more conventional front 

tracking methods to simulate time-dependent free boundary problems in three dimensions (3D) or 

when complex geometries are involved. Tracking is avoided by introducing an order parameter, or 

phase field , which varies smoothly from one value in the liquid to another value in the solid across a 

spatially diffuse interface region related with a thickness W. This field naturally distinguishes the solid 

and liquid phases and converts the problem of simulating the advance of a sharp boundary to that of 

solving a stiff system of partial differential equations that govern the evolution of the phase and 

diffusion fields.  

The main difficulty when solving numerically phase field models is due to the very rapid change of 

the phase field across the diffuse interface, which thickness has to be taken small enough to correctly 

capture the physics of the phase transformation. A high spatial resolution is therefore needed to 

describe the smooth transition. In order to reduce the computational time and the number of grid 

points, adaptive anisotropic and unstructured finite elements have been used. In the past, other authors 

have performed numerical simulations in 2D and 3D using the finite element method and the phase 
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field model with an adaptive isotropic mesh based on an error estimator [5,[6]. Others used the phase 

field model with an adaptive structured isotropic mesh using finite difference method [7[10] and finite 

element method [9-[11]. And some of them used the level set model with an adaptive structured 

isotropic mesh and finite element method [12]. 

A first numerical goal of this paper is to present the influence of using an adaptive mesh [2, [3] on 

the computational cost adding the time adaptation and the element adaptation with parallel 

computations [4]. The second goal of this paper is to demonstrate that accurate quantitative solutions 

of the free-boundary problem given by the thin-interface limit are recovered by the finite element 

method. We present the results of simulations of dendritic growth in 2D and 3D. We take advantage of 

the crystal symmetries to reduce computation time. 

2.  Modeling 

In solidification of a pure system, thermal dendritic growth is generally described by stating 

conservation of energy and using the Gibbs-Thomson relation to establish the normal velocity of 

propagation of the solid-liquid interface [13-15], providing a sharp interface formulation of our 

solidification problem. In a diffuse interface context, instead of solving the equations on each 

solid/liquid domain with the given interface conditions, we may obtain a set of equations valid in the 

whole domain by using a free energy approach. 

2.1.  Energy diffusion 

We will use the symmetric model (= const, cp = const). Let us consider the dimensionless 

temperature, q = cp 



 

T - TM

L
  , with T the temperature, cp the heat capacity, L the latent heat and TM the 

melting temperature. We thus solve the energy diffusion equation: 

 

 

 

 

q

t
 - a Dq =   

1

2
 
.
 
f

t
 

 

(1) 

with  the dimensionless thermal diffusion. The Gibbs-Thomson equation allows us to establish the 

relation at the solid/liquid interface   
=  d0(n)   (n)n with d0 = cp /L and = cp /k L, n being 

the normal vector, n the normal velocity at the interface (n = . n),  = 
s/l

TM /L, the 

Gibbs-Thomson coefficient, 
s/l

 being the interfacial energy and  the density, k the interface 

mobility. Thus, d0 is the capillary length and  is the kinetic coefficient. 

2.2.  Phase field formulation 

Let us consider the solidification of a pure material. We define as a function which describes the 

presence of the liquid and the solid phases in the computational domain, Ω. This function varies 

between 1 in the liquid and 1 in the solid. Let us suppose that the solution of our phase field problem 

is tanh (/ 2 ). In the expression,  is the signed distance to the solid/liquid interface. The 

variational derivative of the free energy functional provides the evolution equation for  which, after 

manipulation and taking into account the solution form to use in our solver, is 
 

 

1


 


t
 WnWnWn = [  ]   

i
   


i
 








| |
2W(n) 

W(n)

i
  

 

(2) 
 

In this expression 
1


 = n = as(n)

2
 , M being the molecular mobility, W(n) = W0 as(n) being the 

interface anisotropy and we write  = 


W

a

 . i = 


i
 with i = x, y in 2D and i = x, y, z in 3D. We take 

a1 = 0.8839, a2 = 0.6267, 0 = 1 and W0 = 1. 
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In 2D, several authors have proposed the form [16]: 

 
 

as(n) = 








1  4 cos 








4 arctan 
y
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(2) 
 

The following derivative terms for the phase field formulation are thus computed 

 



x







| |
2W(n)

W(n)

x
 =  



x
( )W(n) (W(n)' y ) and 



y







| |
2W(n)

W(n)

y
 = 



y
( )W(n) (W(n)' x )  



 indicates the strength for the anisotropic arms that we have. A more general form in 2D and 3D is 

given by [17]: 

 
Wn = W0(1  34) 








1 + 
44

1  34
 
(x)

4
+ (y)

4 
+ (z)

4


  

 

(3) 

2.3.  Numerical resolution 

In following section, we will discuss the numerical parameters and the mesh grid, computed from a 

metric, needed for the simulation, followed by the numerical resolution, using the phase field method, 

showing the propagation of the solid-liquid interface. 

2.3.1.  Phase field and energy solver. In what concerns the resolution of these equations, we have used 

the finite element method with a continuous approximation for both phase field and temperature 

functions in the mesh and stabilized resolution to take into account very small diffusion coefficients. 

In fact, numerical solution of convection-diffusion-reaction equations such as the ones we are treating, 

using a classical Galerkin formulation, normally exhibits global oscillations in convection-dominated 

problems, especially in the vicinity of sharp gradients. We use the SUPG (Streamline Upwind Petrov 

Galerkin) stabilization method to solve this problem by adding a perturbation term to the weighting 

functions with the aim to get an oscillation-free solution. The linear system of equations issuing from 

the discretization is solved implicitly using the conjugate bi gradient-least squares method (BCGSL). 

There is also preconditioning to the resolution using the Jacobi method with incomplete factorization 

LU per block of size 2. 

Advantages of solving the phase field equation as a convection-diffusion problem concern mainly 

the diffusion term, . In fact, this term, treated implicitly, will naturally smooth singularities in the 

interface shape. However, convergence towards the sharp interface solution is conditioned by the fact 

that there is a diffusion layer related with W0, the thickness that is directly involved in such an 

equation.  

2.3.2.  Mesh adaptation. The mesh is initially (and throughout time) adapted using a topological 

mesher [2][3] that is incorporated to our library and that is based on a metric field, given at the nodes 

of the mesh. M is a unit metric field associated with any unstructured mesh. The metric is built using 

the affine transformation to a reference element which has to be equilateral of edge length equal to 

unity. It provides both the size and the stretching of elements. In our case, this field can be computed 

using the edge vectors of the mesh, Xij = Xj – Xi, i and j being the extreme nodes of the edge. Starting 

from an existing mesh, the new nodal metrics field Mi we provide to the mesher is 

 

 
Mi = 







 

1

q
 S
j∈G(i)

sij
2
 X ij

 
 X ij 

-1

  

 

(5) 

 

q being the space dimension,  (i) being the set of nodes connected to node i. s  the stretching factor 

applied to obtain the new edge size. The edge stretching factor, sij, is obtained from the a posteriori 

estimated error, and is given by 

4th International Conference on Advances in Solidification Processes (ICASP-4) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 117 (2016) 012008 doi:10.1088/1757-899X/117/1/012008

3



 

 

 

 

 

 

 
sij = ( )L/eij

1/p

  

 

(6) 

 

where e represents the edge error and p a stretching exponent, 1 < p < q, q being the dimension. 

Starting from a given element, we examine what information we can construct from the set of edges. 

Since more than only two edges can be encountered for a node, it is necessary then to find an 

approximation or an averaging process of the information. For this reason, we first state that the length 

size of the edges sharing a given node is exactly the interpolation of the continuous length distribution 

function defined in the space at the considered point. In this technique we computed the error along 

and in the direction of each edge.  

 

 

L = 








 S
i
    S

j∈G(i)
eij

p

p+2/A 

p+2

p

   

 
(7) 

 

The error is computed using the recovered gradient of the solution on which we wish to adapt 

(phase field, temperature, or both). We construct a solution vector that contains the two fields and we 

compute its gradient, U = (,). 

In fact, eij = max(|U . Xij|; emin|Xij|
2
)  and U = (Xi)

-1
.Ui, where Xi = 

1

|G(i)|
 S
j∈G(i)

 XijXij  is the 

distribution function and Ui =  S
j∈G(i)

 Uij Xij. emin is a chosen constant. A is the number of element given.  

In what concerns the referred parameters, when we increase the total number of elements, the mesh 

is enriched around the interface and we decrease the error. If we want a small error, we should 

decrease the mesh size, but we also need to increase the number of nodes at the same time. If not, we 

will increase the error because we do not have enough elements to perform the simulation.  

 

                 
Figure 1. (a) Isotropic mesh, (b) Anisotropic adaptive mesh (2D), c) Anisotropic adaptive mesh (3D).

 

 

Figure 1 illustrates the difference between the mesh size inside the interface and outside the interface. 

We have smaller sizes at the interface and larger outside. The mesh is adapted according to  and the 

function  that indicates the interface. The red color represents the solid, the blue one represents the 

liquid and the green one is the interface. 

For a matter of CPU time optimization, we may define a remesh frequency. For that, we compute 

the norm of the Gibbs-Thomson velocity v and we find the maximum velocity vmax, over the entire 

domain as: 

 

v = 



 d0K     with  = 

a1

W(n)
 , d0 = 

a1W(n)


 , the curvature K = ·n 

 

We compute the displacement vmax.t and we sum the displacements for each time step. When the sum 

of the displacements exceeds 3W0 /2, remeshing is activated. 

2.3.3.  Time adaptation. Improvements on CPU time can also be obtained automatically by adapting 

the time step t as: 

 t = hmin/(10·vmax) (8) 

hmin is the minimal mesh size. 
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2.3.4.  Adaptation of the prescribed number of elements. When a mesh adaptation step is performed, 

the “interface volume”, defined as the volume occupied by the interface thickness of the phase field 

function, Vinterface (surface in 2D)  may be obtained as follows: 

 

VInterface = 





 



  dV with  = 





0                                for  <  E

1

2E
 + 

1

2E
 cos 







 E
     forE <  < E

0                                for  > E

  

 
 

(9) 

 

with E = 1. Then we compute the number of elements needed at the interface as  

 

N1 = SInterface/Selement = 2.Sinterface/hmin
2      

in 2D 

 

N1 = VInterface/Velement = 6.Vinterface/hmin
3      

in 3D 

 

Finally we compute the total number of element needed as NE = N1 + N2 with N2 a constant, to add 

a certain number of elements outside the interface thickness. This adaptation is done because, during 

dendritic growth, the number of elements should largely increase during the computation because the 

surface of the interface increases, and so we need more elements to represent it. 

3.  Numerical Results 

3.1.  Convergence method. 

Let us consider a rectangular domain [0;1000]x[0;300] on which we place an initial seed of size 5. To 

study the convergence of our method, we compute the tip velocity in the x direction. The anisotropy 

function for growth is Wn = W0(1  34) 







1 + 
44

1  34
 
(x)

4
+ (y)

4 


 with 4 = 0.05. Other simulation 

parameters are:  = 1, 0 = 1, t = hmin/(10·Vmax). In the following, we compare the solution for 

different values of the minimal mesh size hmin. 

In figures 2 and 3, we observe that the tip velocity decreases with time and becomes constant until 

it decreases instantly to become very small when the tip reaches the border of the domain. On the left, 

we represent the sensitivity of the solution to the mesh’s minimal size; on the right, the steady-state 

velocity computed value, compared with the value obtained using a green function calculation for an 

analytical test value. We see that with decreasing the minimal mesh size in the interface the velocity 

converges to the analytical solution. 

 

    
Figure 2. Dimensionless tip velocity as a function of grid spacing for  = 0.65, d0/W0 = 0.554 and 

N2 = 25 000. The red line corresponds to the value obtained from the green function calculation [1].  
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Figure 3. Dimensionless tip velocity as a function of interface thickness for  =  0.65. The red line 

corresponds to the value obtained from the green function calculation. 

3.2.  Computational time 

We will show the difference on the computational time with different conditions for a rectangular 

domain [1000;300] with  0 =  0.65, 4 = 0.05,  = 1 and emin = 10
-7

. 

 

Table 1. Table for different time computation with different conditions  

Case VTip NE hmin Nb_Proc Fr 
Adapt 

Time 
Adapt NE TCPU 

1 0.0469 4 638 842 0.4 1 No No No 36 000h* 

2 0.0469 4 638 842 0.4 4 No No No 2 400h* 

3 0.0469 4 638 842 0.4 16 No No No 1 240h* 

4 0.0485 100 000 0.4 16 1 No No 504h 

5 0.051 80 000 0.4 16 Yes No No 80h 

6 0.05 80 000 0.4 16 Yes Yes No 13h 

7 0.0469 46 000 0.4 16 Yes Yes 
Yes(N2 = 

25000) 
10h 

* Predicted time  

 

We observe the influence on CPU time using the parallel computation from the first three cases, 

using 1, 4 or 16 processors. From case 3 and case 4, we show the decreased CPU time using the mesh 

adaptation. From case 4 to case 5, we show the influence of the mesh adaptation with the frequency 

computed above depending on the velocity. In case 6 and 7 we add the time adaptation and the 

adaption of the number of element. The graphs in figure 4 show the CPU time for the different cases.    

 

                                               
Figure 4. CPU time with different conditions taken to simulate the same dendritic growth. 

 

In Table 2, we show that using our model we can obtain exactly the same tip velocity, for different 

parameters, computed using the green function supposed as a test solution.  
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Table 2. Table to compare the tip velocity  

 4  d0/W0 VTip VTip
GF

 % error Domain NE TCPU 

0.65 0.05 1 0.554 0.0469 0.0469 0 [1000;300] 46 000 10h 

0.55 0.05 2 0.277 0.017 0.017 0 [1000;300] 44 000 6h 30min 

0.55 0.05 4 0.139 0.017 0.017 0 [500;150] 34 000 2h 30 min 

0.45 0.05 4 0.139 0.00545 0.00545 0 [1000;300] 50 000 5h 50 min 

0.55 0.02 2 0.277 0.00685 0.00685 0 [1000;300] 30 000 7h 30 min 

4.  Conclusion 

We have presented a quantitative phase field model that replicates previous published results [1] while 

taking advantage of an anisotropic adaptive mesh based on an error estimator, with variable number of 

elements and parallel computations with time adaptation. The computational cost is then shown to be 

decreased by a factor of 3600 (case 1 to case 7) using 16 CPU. 

We have done 3D simulation for this model to show dendritic growth using the adaptive 

anisotropic and unstructured finite element mesh  

Figure 5 and taking advantage of the symmetry. Next step is to simulate a thermal-solute dendritic 

growth with physical parameters using the kinetic anisotropy for Al-Cu.  

 

        
 

Figure 5. 3D thermal dendritic growth, 4 = 0.05,  = 1,  =  0.65, Domain = 1000.    
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