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Abstract—Computer vision is a thriving field of re-
search, and Python is an instrument of choice for de-
veloping image processing software applications. Used
in conjunction with specialized libraries written in
C or C++, performance can be enhanced to match
native code. The SMIL library [1] is a new C++ image
processing library offering ease of programming with
a Python wrapper. However, SMIL applications also
have to be executed on embedded platforms such as
FPGAs on which a Python interpreter is not available.
The generic answer to such an issue is to re-code the
original Python applications in C or C++, which will
be then optimized for every hardware target, or to
try to compile Python into native code using tools
such as Cython [2]. The approach taken by the FREIA
project [3, 4] is to ease portability of applications
written in a DSL embedded in C (the FREIA API) by
using specific optimizations such as image expressions
evaluation, removal of temporary variables or image
tiling. Is it possible for SMIL Python applications to
benefit from the FREIA compilation toolchain in order
to increase their portability onto specialized hardware
targets? We present in this paper (1) a methodology to
convert a dynamic DSL into a static one that preserves
programmability, (2) a working implementation which
takes care of types, memory allocation, polymorphism
and API adaptation between SMIL and FREIA, (3) and
experimental results on portability and performance.

I. Introduction

Computer vision is now a fast-growing field of research
and is going to play a large role in everybody’s life in
the near future. Augmented reality or autonomous vehicles
such as drones or cars are showing more and more promise
and should be available to consumers in the next decade.
To support this innovative field, new image processing
libraries are developed and compete in terms of perfor-
mance and programmability. They are often based on a
Python API: the Python programming language offers
good programmability through its high-level abstractions,
dynamic type system and easy-to-learn syntax. Native
performance can also be achieved using wrappers around
C or C++ code.

However, in our hardware jungle era [5], substantial
efforts have to be made to have those libraries efficiently
running onto all kinds of modern accelerators, such as
GPUs, FPGAs or many-core processors. Production com-
pilers are not yet able to target the whole range of today’s
hardware: it is up to developers to provide an optimized

version of their library onto a specific hardware. Program-
ming models such as OpenMP [6] for shared memory,
OpenCL [7] for heterogeneous platforms or MPI [8] for
distributed computing can help target a class of accelera-
tors at once, but further optimizations are often hardware-
specific.

New compiler techniques must arise to support com-
plex image processing applications without sacrificing pro-
grammability. This paper focuses on two image process-
ing interfaces considered as DSLs, SMIL and FREIA,
supporting each a different set of hardware targets and
providing different levels of programmability. We built a
compiler to automatically generate lower-level but more
portable FREIA DSL code from high-level SMIL DSL
applications. We evaluate this compiler on a set of seven
image processing applications.

II. Context
Mathematical Morphology is an image processing the-

ory based on lattice theory initiated at MINES ParisTech.
Several software libraries have been developed since the
inception of this theory, each providing better performance
or usability. SMIL and FREIA are two of them.

A. The SMIL library
SMIL (Simple Morphological Image Library) [1, 9] is a

new C++ image processing library developed at MINES
ParisTech. It focuses on efficiently implementing mathe-
matical morphology operators such as erosions and dilata-
tions onto modern multicore CPUs. It aims at providing:

• good performance, using loop auto-vectorization
through the GCC compiler [10] and OpenMP paral-
lelization [6];

• ease of programming, through several Swig [11] auto-
generated interfaces to higher-level programming lan-
guages such as Python;

• portability on several CPUs and operating systems,
using the CMake [12] compilation toolchain;

• maintainability and extensibility, through C++ tem-
plates and functors.

Figure 1 depicts an example of a SMIL script using the
Python interface. This script reads an image from a file,
performs an morphological dilatation on this input image
and then saves the resulting image.
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import smilPython as smil
imin = smil.Image("input.png")
imout = smil.Image(imin)
smil.dilate(imin, imout)
imout.save("output.png")

Figure 1. Morphological dilatation in SMIL

B. The FREIA framework
FREIA (Framework for Embedded Image Applica-

tions) [3] is a C image processing framework. It provides
a C API divided into elementary and composed image
operators. This API abstracts several implementations
targeting different categories of hardware accelerators :

• multicore and vector CPUs with SMIL (through an
intermediate C wrapper around SMIL C++ code);

• CPUs with vector extensions through Fulguro [13];
• FPGAs with the SPoC [14] and Terapix [15] backends;
• manycore CPUs such as the Kalray MPPA [16] with

Sigma-C [17, 18], a dataflow programming language;
• GPUs using OpenCL [7].

Used in combination with our in-house C source-to-source
compiler framework PIPS [19], FREIA applications can
be further optimized at the image operator level for the
designated hardware target [4, 20].

Figure 2 represents an abridged version of a morpho-
logical dilatation using the FREIA API. In this example,
image structures must be explicitly allocated before use
and freed after.

#include "freia.h"
int main(void) {

/* initializations... */
freia_data2d *imin = freia_common_create_data(/*...*/);
freia_data2d *imout = freia_common_create_data(/*...*/);
freia_common_rx_image(imin, /*.. */);
freia_cipo_dilate(imout, imin, 8, 1);
freia_common_tx_image(imout, /*.. */);
freia_common_destruct_data(imin);
freia_common_destruct_data(imout);
/* shutdown... */

}

Figure 2. Morphological dilatation in FREIA (excerpt)

C. Bridging the gap
The SMIL library supports several CPU targets using

the GCC compiler and the CMake toolchain. Nevertheless,
porting this image processing library on specific hardware
accelerators such as GPUs to take advantage of hetero-
geneous architectures can be a hard task. Meanwhile, the
FREIA framework supports a wide range of hardware
accelerators, but fails in comparison to offer easy pro-
grammability: users still have to manage memory and
write C code.

Several solutions are possible to reconciliate SMIL pro-
grammability and FREIA set of hardware targets. A total
port of SMIL on every FREIA target is a hard and long
task, and would not reuse the work done for FREIA. One
can try to re-implement the SMIL API using FREIA,

but this solution does not allow our C compiler PIPS
to perform its optimizations. Allowing C- and Fortran-
supporting PIPS to handle C++ source code to regenerate
directly target-optimized FREIA code is also a lengthy
process, and although it can yield some long-term benefits,
it is not in the scope of this project.

In this paper, we present smiltofreia, a source-to-
source compiler designed to convert SMIL applications
written using the Python interface into FREIA C. Thus
a SMIL application can be automatically ported to the
FREIA-supported hardware targets and take advantage
of the PIPS source-to-source compiler optimizations. Fig-
ure 3 represents our compilation chain highlighting the
benefits of smiltofreia in terms of portability.

Multicore
CPUs

Manycore
CPUs GPUs FPGAs

SMIL lib Fulguro Sigma-C OpenCL SPoC Terapix

SMIL Python
Swig wrapper

FREIA common
runtime

SMIL
app.py

FREIA
app.c

hardware

applications
runtimes

smiltofreia

Figure 3. Compiler toolchain diagram

III. Manipulating and accelerating Python
code: RedBaron and Cython

In order to analyze and convert SMIL Python ap-
plications into FREIA C, we tried two Python tools:
RedBaron [21, 22], a Python refactoring framework, and
Cython [2], a Python-to-C compiler.

The Python standard library itself provides low-level
tools to parse and query Python code. Among them,
inspect [23], which can be used to inspect and modify run-
ning Python code, and ast [24], for manipulating Python
code Abstract Syntax Trees.

A. RedBaron, a Python refactoring tool
We built our smiltofreia compiler on top of the

RedBaron refactoring tool. RedBaron is a high-level
Python interface allowing developers to easily refactor
their Python code without losing information. It is based
on the Baron [25] FST (Full Syntax Tree) which, unlike a
traditional AST, does not drop comments and formatting
data. As a consequence, regenerating source code from a
FST should be an invariant transformation:

fst_to_code(code_to_fst(source_code)) == source_code

For instance, the RedBaron FST of the SMIL dilatation
call smil.dilate(imin, imout) from Figure 1 is represented
in Figure 4. Note that the formatting information (line
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breaks and spaces) separating the words is kept in this
data structure in order to regenerate the very same source
code.

{"type": "atomtrailers",
"value": [

{"type": "name", "value": "smil"},
{"type": "dot", "first_formatting": [],
"second_formatting": []},
{"type": "name", "value": "dilate"},
{"first_formatting": [], "third_formatting": [],
"type": "call", "fourth_formatting": [],
"second_formatting": [],
"value": [

{"type": "call_argument",
"first_formatting": [],
"second_formatting": [], "target": {},
"value": {"type": "name", "value": "imin"}},
{"type": "comma", "first_formatting": [],
"second_formatting": [{"type": "space",

"value": " "}]},
{"type": "call_argument", "first_formatting": [],
"second_formatting": [], "target": {},
"value": {"type": "name", "value": "imout"}}

]}]}

Figure 4. FST of smil.dilate(imin, imout)

RedBaron provides an efficient and intuitive object-
oriented interface to query and manipulate this FST.
Top-level nodes, corresponding to actual lines of codes,
can be accessed and modified through array subscripts
and assignments. Transforming the dilatation in the FST
fst of Figure 1, line 4, into an image copy is as sim-
ple as rewriting the content of the corresponding node
fst[3] = "imout = imin".

Compared to RedBaron, the Python standard module
ast provides a clumsier interface and drops some essential
formatting information, useful when refactoring.

B. Cython, a Python-to-C compiler
We investigated the use of Cython, a Python-to-C com-

piler, for generating FREIA code from our SMIL Python
applications. First, we wrapped a subset of the FREIA
API in Python using the Cython extension system, which
provides an easy way to interface Python applications and
C libraries. Then we used RedBaron to convert SMIL
applications into FREIA Python, and from this point
generate standalone C code using the Cython compiler.
Figure 5 represents our Cython toolchain to generate
FREIA from SMIL.

Our SMIL dilatation script in Figure 1 is thus trans-
formed into the FREIA/Cython Python script of Figure 6.
The Cython compiler then generates a C source file from
this Python code. Figure 7 shows the output of the Cython
Python-to-C compiler around the FREIA dilatation call.
However, the generated source code is too low-level, and
thus too far from FREIA, for our source-to-source frame-
work PIPS to perform additional relevant optimizations.

Cython introduces a lot of new variables and uses
opaque data structures, which makes the code a lot more
complex to analyze. As a consequence, PIPS regeneration
of optimized source code for the specific hardware targets
could not work.

SMIL
Python

app

FREIA
Python

app

FREIA
C app

FREIA Python
wrapper

FREIA
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RedBaron
Cython
compiler
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Figure 5. Using Cython to convert SMIL applications into FREIA

def main(*args):
freia.initialize(*args)
fdin = freia.DataIO()
fdin.openInput(0)
fdout = freia.DataIO()
fdout.openOutput(0, fdin.framewidth, fdin.frameheight,

fdin.framebpp)
freia_img_imin = freia.Data2D(fdin.framebpp,

fdin.framewidth,
fdin.frameheight)

freia_img_imin.rxImage(fdin)
freia_img_imout = freia.Data2D(fdin.framebpp,

fdin.framewidth,
fdin.frameheight)

freia_img_imin.cipoDilate(freia_img_imout, 8, 1)
freia_img_imout.txImage(fdout)
freia.shutdown()

Figure 6. Conversion of a SMIL dilation in FREIA/Cython

The Cython approach, which works well for interfacing
Python and C code and hence accelerating Python ap-
plications, is thus not recommended for post-processing
the generated C code. Even though this approach was not
pursued, experiments with Cython nonetheless played a
role in PIPS development by providing hard to analyze
generated C code.

static PyObject *__pyx_pf_9smil_dilate_6Data2D_14cipoDilate(
struct __pyx_obj_9smil_test_Data2D *__pyx_v_self,
struct __pyx_obj_9smil_test_Data2D *__pyx_v_imout,
__pyx_t_7pyfreia_int32_t __pyx_v_connexity,
__pyx_t_7pyfreia_uint32_t __pyx_v_size) {

PyObject *__pyx_r = NULL;
__Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL;
__Pyx_RefNannySetupContext("cipoDilate", 0);
__Pyx_XDECREF(__pyx_r);
__pyx_t_1 = PyInt_FromLong(

freia_cipo_dilate(__pyx_v_imout->_c_data2d,
__pyx_v_self->_c_data2d,
__pyx_v_connexity, __pyx_v_size));

__Pyx_GOTREF(__pyx_t_1);
__pyx_r = __pyx_t_1;
__pyx_t_1 = 0;
__Pyx_XGIVEREF(__pyx_r);
__Pyx_RefNannyFinishContext();
return __pyx_r;

}

Figure 7. Actual C call to FREIA dilatation after Cython compila-
tion
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IV. smiltofreia, a SMIL Python to FREIA C
compiler

Instead of using Cython for generating low-level C
from Python, we developed an in-house Python-to-C
compiler for SMIL applications. Our compiler, named
smiltofreia, generates directly FREIA C code from
SMIL Python applications. smiltofreia iterates over the
RedBaron FST of a SMIL application and transforms each
node into a corresponding C statement. An example of
this compiler output is available on Figure 8.

#include "freia.h"
#include "smil-freia.h"

int main(int argc, char *argv[]) {
/* initializations... */
freia_data2d *imin;
imin = freia_common_create_data(/* */);
freia_data2d *imout;
imout = freia_common_create_data(/* */);

#define e0 SMILTOFREIA_SQUSE
#define e0_s 1

freia_cipo_dilate_generic_8c(imout, imin, e0, e0_s);
freia_common_tx_image(imout, &fdout);
freia_common_destruct_data(imout);
freia_common_destruct_data(imin);
/* shutdown... */

}

Figure 8. Simplified FREIA C output of our compiler for Figure 1

Python is a dynamic language with a garbage collector
dealing with memory allocation. A contrario, C is lower-
level: variables must be declared; memory management is
done by hand; and heap-allocated memory must (ideally)
be freed at the end of its use. Besides, SMIL and FREIA
API, although close, can differ. Our compiler addresses
these differences to generate code that respects the C spec-
ification and the semantics of the source SMIL application.
As a consequence, our compiler input is constrained: only
pure SMIL Python code without other Python modules is
supported, and the type of all variables must be statically
inferable.

A. Typing

Our compiler is focused on a subset of the SMIL API
that has an equivalent in FREIA, and must also deal with
issues arising when trying to generate static code from a
dynamic one. We wrote a defensive implementation that
puts programming constraints on the Python input code.
The goal is to ensure that a successful transformation will
produce a well-typed and well-memory-managed C code.
The smiltofreia compiler knows both SMIL and FREIA
APIs and the correspondence between their functions’
signatures. Variables are typed at first initialization and
cannot be mutated. The compiler fails otherwise with
a consistent error message, thanks to RedBaron FST,
which provides a convenient way to locate a specific node
in Python code. Function arguments are also typed and
transformed before they are passed to FREIA functions.

B. Function Polymorphism
The SMIL library features polymorphism i.e., methods

can have several signatures, which requires some care
when transforming. We also chose to keep real-world SMIL
Python as a developer would write it as an input. However,
FREIA is more rigid and needs fully-typed arguments
when calling functions. For example, we use several tricks
to deal with optional parameters such as rewriting Python
code on the fly to a canonical form closer to the cor-
responding FREIA call. For this purpose, the RedBaron
ability to access and modify FST nodes is key.

The following Python code illustrates the polymorphism
of the smil.dilate function regarding its last argument:

1 smil.dilate(imin, imout, 5)
2 smil.dilate(imin, imout, smil.SquSE(5))

• At Line 1, the last parameter is an integer; in this case
it denotes a 5-pixel wide square structuring element.

• At Line 2, the last parameter is a full-fledged struc-
turing element.

The first line is internally modified, using RedBaron abil-
ities to rewrite nodes, to yield

smil.dilate(imin, imout, smil.SquSE(5))

which is consistent with the second line.

C. Image Expression Atomization
The SMIL library massively uses operator overload-

ing, which eases image manipulation such as arithmetic
operations etc. This allows to write expressive codes,
but corresponds internally to nested calls. Our compiler
manages this issue, sometimes by generating intermediates
variables. Operands can also be API calls. Since FREIA
calls do not return images pointers, SMIL arithmetic
expressions are decomposed into their atomic forms. Red-
Baron helps us by taking care of operators precedence. For
instance, the following SMIL expression:

out = in0 * in1 + ((in2 - in4) | (in5 & in1)

is transformed in the five following FREIA operator calls,
according to the semantics of the operators:

freia_aipo_mul(tmp0, in0, in1);
freia_aipo_sub(tmp1, in2, in4);
freia_aipo_and(tmp2, in5, in1);
freia_aipo_or(tmp3, tmp1, tmp2);
freia_aipo_add(out, tmp0, tmp3);

Four intermediate image variables are added.

D. Dealing with API variations
SMIL and FREIA, being both mathematical morphol-

ogy libraries, provide relatively close APIs: function names
and parameters are similar, which eases the conversion.
The remaining differences must nonetheless be taken care
of.

1) Structuring elements: One example of an API varia-
tion between SMIL and FREIA is the structuring element
data structure. A structuring element is a data structure
describing a neighborhood for stencils. They are widely
used in mathematical morphology operators.

In FREIA, structuring elements are boolean integer
arrays and only take the first neighbors into account.
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Operating on a larger neighborhood amounts then to
iterating several times over the operation. In SMIL, the
corresponding data structure is more complex: it involves
in particular a std::vec of neighbors and a integer size.
When converting a SMIL morphological operator into
FREIA, smiltofreia takes care of the size of the struc-
turing element to generate a loop over the FREIA operator
call. For instance, the following SMIL dilatation with a
structuring element of size 5:

smil.dilate(imin, imout, smil.SquSE(5))

is translated into the following FREIA code:
#define e0 SMILTOFREIA_SQUSE
#define e0_s 5
freia_cipo_dilate_generic_8c(imout, imin, e0, e0_s);

Common-used structuring elements are stored in a sep-
arate smil-freia.h compatibility header as constants.
Preprocessor macros are used to mimic the SMIL data
structure for keeping track of the structuring element
size, while allowing our source-to-source compiler to fully
forward-substitute these variables.

2) Altering FREIA: During the development of
smiltofreia, we came to realize that some transforma-
tions would be eased by adapting directly the FREIA
API. For example, part of the FREIA API implies that
we always use a default structuring element, whereas the
SMIL equivalent accepts arbitrary ones. Functions having
the following signature

void freia_cipo_dilate(freia_data2d *imout,
freia_data2d *imin,
uint32_t size);

only use square structuring elements (a boolean array of
nine ones), but of arbitrary size: internally, a loop around
freia_aipo_dilate is used.

Instead of adding additional constraints into
smiltofreia inputs, we can alter and improve FREIA to
support such cases. New functions have thus been added
to FREIA to bring it closer to the SMIL API:

void freia_cipo_dilate_generic_8c(freia_data2d *imout,
freia_data2d *imin,
const int32_t *se,
uint32_t size);

These new functions ease the generation of FREIA code
from SMIL. Another example is the smil.mask() function,
which had no direct equivalent in FREIA prior to this
work. A workaround combining two existing FREIA func-
tions but adding temporary images would be easier to
implement, although at the expense of the global perfor-
mance.

V. Evaluation
We evaluated our compilation chain using seven image

processing FREIA applications taken from [4], which we
rewrote entirely in idiomatic SMIL Python. We are thus
able to compare the performance of the output of our
smiltofreia compiler to the original application. FREIA
applications can also be further optimized by the source-
to-source compiler PIPS. This optimized version is com-
pared below to the non-optimized one. We execute these
applications using the SMIL backend of FREIA on an

Intel IvyBridge Core i7-3820 CPU. A summary of our
evaluation methodology is represented Figure 9.

Hand-written
FREIA app

Manual conversion

SMIL Python
app

smiltofreia

Generated
FREIA app

PIPS
init

opt

PIPS
init

opt

Figure 9. Evaluation methodology

The execution times of our seven applications are avail-
able in Table I. This table represents the figures of the
original FREIA applications, their optimized version using
PIPS and their port on SMIL Python. Here, Column
“SMIL” refers to the Python applications; Column “Hand-
written” is the original FREIA applications, which have
been rewritten in SMIL and executed in their original form
in Sub-column “init” or optimized by PIPS in Sub-column
“opt”. Similarly, Column “Generated” represents the out-
put of our smiltofreia compiler. Two sub-columns, “init”
and “opt”, show original and optimized execution times.

Apps
SMIL FREIA

Python Hand-written Generated
– C++ init opt init opt

anr999 0.69 0.63 0.47 0.64 0.47
antibio 26.0 24.7 24.6 25.0 25.0
burner 49.5 8.5 8.37 8.56 8.36
deblocking 29.8 30.3 30.0 30.0 29.9
licensePlate 2.68 4.31 1.93 4.29 1.95
retina 8.54 7.7 6.58 6.7 6.61
toggle 1.58 1.53 1.53 1.35 1.39

Table I
Execution times (ms) of SMIL and original FREIA versions

of a set of applications

More interesting is the representation of the speedups
between original SMIL Python applications and PIPS-
optimized FREIA applications, which can be seen in
Figure 10. The “anr999”, “licensePlate” and “retina” ap-
plications benefit from the conversion to FREIA and the
subsequent PIPS optimizations, whereas “antibio”, “de-
blocking” and “toggle” are already competitive in SMIL
Python. The “burner” application is a specific case involv-
ing a morphological operator called geodesic reconstruct by
closing that is, in SMIL, implemented using complex (and
in this case inefficient) data structures such as hierarchical
queues. The FREIA version is simpler and only involves
highly-optimized classical operators, which explains the
huge performance gap between the two of them. On
average, these results show that smiltofreia generated
FREIA is ×1.5 faster than original SMIL code and has
performance very close to hand-written, PIPS-optimized
FREIA code.
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Figure 10. SMIL Python over FREIA + PIPS, handwritten and
generated by smiltofreia

The relative performance of FREIA code between origi-
nal hand-written applications and smiltofreia generated
FREIA code, with and without PIPS optimizations, is rep-
resented Figure 11. The performance of the two versions
is very similar, except for “toggle” and “retina”. The dis-
crepancies mainly come from the original translation from
FREIA to SMIL Python: in the “retina” case, two FREIA
functions were partly converted to match SMIL API. This
partial conversion leads to increased performance when
converting back to FREIA. The “toggle” application ben-
efits greatly from the freia_aipo_mask operator introduced
to match SMIL API. On average, smiltofreia generated
FREIA code is ×1.03 faster than hand-written FREIA,
and PIPS-optimized smiltofreia output is the same as
PIPS-optimized FREIA.

These table and plots show that SMIL applications eas-
ily benefit from our FREIA compilation toolchain with no
performance impairment compared to hand-written code.
What’s more, SMIL applications can now directly target
the whole set of FREIA hardware backends (FPGAs,
manycore and GPUs) without modifying the input code.

VI. Related Work

Python is a versatile general-purpose programming lan-
guage especially used for fast application prototyping.
However, the Python interpreter performance pales com-
pared to native compiled languages such as C or C++.
Other research projects use subsets of Python as inputs
to accelerate applications on several hardware targets.
Cython [2], which we already described in subsection III-B,
is both an interfacing tool between Python and C and
a Python-to-C compiler. Yet Cython output is overly
complex and implements parts of the Python interpreter.
Pythran [26] is a Python-to-C++ compiler for scientific
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Figure 11. smiltofreia generated FREIA code compared to hand-
written FREIA, with and without PIPS optimizations

programs targeting multicore CPUs with SIMD exten-
sions. Pythran generates C++ source code or shared
libraries from Python code, which can be reused directly
in a Python application. Numba [27] is a Python-to-LLVM
JIT compiler dedicated to accelerating Python code, but
still needs the Python interpreter to work. Similarly, Para-
keet [28] is a JIT compiler to parallelize Python code
on CPUs or GPUs. Theano [29] and Tensorflow [30] are
DSL compilers for Python linear algebra applications for
deep learning which generate optimized C++ or CUDA.
Image processing compilers such as Halide [31] and Poly-
Mage [32] also aim at performing domain-specific opti-
mizations while still offering ease of programming through
high-level DSLs. While PolyMage is still limited to CPU
execution, Halide is able to generate OpenCL and CUDA
code for running onto GPUs.

VII. Conclusion

We study in this paper a static to dynamic DSL compila-
tion scheme that preserves programmability. We developed
a fully-functional implementation, called smiltofreia,
that converts image processing applications written in a
high-level DSL running on a small set of hardware targets
to a lower-level DSL that supports a greater number of
backends. Our proposed solution relies on transformations
on an AST-like data structure of the original application
for generating corresponding calls and variable declara-
tions in the output language. Since the source DSL is
embedded in Python, and the target DSL is embedded
in C, typing and polymorphism have been taken care of.
Experimental results on a set of seven image processing
applications show that generated code is competitive with
its input in terms of execution times. Moreover, additional
target-specific optimization provided by the source-to-
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source compiler PIPS can lead to improved performance
for our target DSL applications.

To sum up, our SMIL compiler can port high-level image
processing applications onto a variety of hardware accel-
erators, such as GPUs, manycore or FPGA accelerators,
by reusing another lower-level image processing DSL as a
target. We benefit from the existing compiler toolchain of
our target DSL to provide hardware-specific optimizations.

Keywords: dynamic language, DSL, compilation, image
processing
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