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Analysis of Optimal Solutions to Robot Coordination Problems to Improve
Autonomous Intersection Management Policies

Florent Altché?! and Arnaud de La Fortelle!

Abstract— The deployment of Cooperative Intelligent Trans-
portation Systems (C-ITS) raises the question of future traffic
management systems, which will be operating with an increas-
ing amount of information and control over the infrastructure
and the vehicles. This topic of research shares some similarities
with robot coordination problems, inspiring our research on
autonomous intersection management. In this article, we use
a mixed-integer linear programming formulation for time-
optimal robots coordination along specified paths and apply
it to intersection management for autonomous vehicles. Our
formulation allows to simultaneously solve a discrete optimal ve-
hicle ordering problem, and a (discretized) continuous optimal
velocity planning problem taking into account kinodynamics
constraints. This allows faster pruning of the decision tree
for the discrete problem, thus reducing computation time. A
possible application for ITS is to evaluate the efficiency loss
from a given vehicle ordering policy, or dynamically adapt
policies to improve their efficiency. Moreover, any intermediary
solution found by the solver can be used as a heuristically good
policy, with proved bounds on sub-optimality.

I. INTRODUCTION

Cooperative Intelligent Transportation Systems (C-ITS)
and particularly autonomous vehicles will likely have im-
portant implications for future traffic management systems.
With advanced communication systems and increased control
on both the vehicles and the infrastructure, it becomes
imaginable to “perfectly” coordinate vehicular traffic flows.
Although this is certainly overoptimistic, as there are many
hypotheses to refine and a lot of engineering to do, this
thought gives a direction for our research. Provided we
have reasonably good information sharing and control, how
can we design the best intersection management system for
autonomous vehicles? Should we keep traffic lights? Should
we only allow vehicles to enter the intersection at full speed
to minimize occupation time? Several methods have been
proposed [1]-[4], as well as several metrics to evaluate
such systems [5]. However, finding the optimal solution is
ultimately NP-hard so that it is difficult to evaluate methods.

In this paper, we focus on the analysis of such optimal
solutions. We measure optimality in terms of traffic flow, by
minimizing the average sojourn time of the vehicles in the
intersection, which is equivalent to maximizing intersection
throughput. We present a simplified model combining two
important and difficult properties: the optimality of the
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discrete choice of a vehicle ordering (with relative priorities
between conflicting vehicles, which encodes a homotopy
class of trajectories), and the optimality of individual vehicle
trajectories respecting this ordering, which is a continuous
problem. Most previous work mostly considered the opti-
mization of the continuous component, leaving the discrete
optimization up to exhaustive enumeration. Our objective is
to show that treating both problems simultaneously allows
to find good heuristics for near-optimal priority-assignment
policies.

This paper is articulated as follows. In Section II, we
present a review of related work in the field of autonomous
intersection management and multi-robot coordination. In
Section III, we briefly describe the mixed-integer linear
programming framework allowing to solve the time-optimal
coordination problem for multiple moving robots with kino-
dynamic constraints. In Section IV, we illustrate on a simple
example how this framework can help evaluate intersection
management policies. In Section V, we show how near-
optimal policies could be designed for real-time applications.
Finally, Section VI gives some perspectives.

II. RELATED WORK

Traffic lights are the most widespread method used to
regulate heavy-traffic intersection; in this setting, right-of-
way is alternated between lanes to avoid possible collisions
between vehicles. A good timing of the phases is critical to
the performance of the regulated intersection, and a lot of
work has focused on finding good or optimal timings [6]—
[9] oft-line. However, such systems are suboptimal by nature,
as they do not adapt to real-time changes in the volume of
traffic. More recently, several authors have proposed using
sensors [10], [11] or communication [12] to adapt traffic
lights phases and timing in real-time. Other authors [13],
[14] have proposed methods based on queuing theory to
demonstrate asymptotic properties for a certain class of
traffic control algorithms. Although all of these systems are
shown to improve intersections throughput by allowing a
finer control of traffic, the need of using phases during which
vehicles in a lane are indiscriminately allowed to pass does
not guarantee optimality, and it is difficult to measure this
loss of efficiency.

Naumann et al. [15] are the first to propose using the fore-
seen abilities of autonomous vehicles to improve intersection
management a step further. They introduce a distributed
technique based on a reservation mechanism, where vehicles
reserve an area of the intersection for a certain duration, and
only the vehicles having a valid reservation can enter at a



given time. This approach has been perfected by Dresner
et al. [1] to accommodate a larger number of vehicles. In
such systems, the order in which reservations are granted
can obviously have a huge influence on the efficiency of
the autonomous intersection. In [1], reservations are granted
in a simple first-come, first-served (FCFS) policy, which is
known [16] to be less efficient than pre-timed traffic lights
for higher levels of traffic.

In [3], a reservation-based intersection management
method is proposed, along with a heuristically efficient
reservation-granting method. Reference [17] further studies
improvements to this method. These techniques, however, are
based on a set of general rules, such as having the fastest
vehicle go first, and give no guarantee regarding optimality.

We argue that the problem of autonomous intersection
management is closely related to that of (optimal) multi-
robot coordination, where the robots are the autonomous
vehicles, and that the study of the latter can help find
improved methods for the former. Peng et al. [18] are among
the first to apply optimization techniques to solve a multi-
robot coordination problem, taking into account kinodynamic
constraints. In their approach, robots evolve along fixed paths
divided in segments of predetermined length, and collision
avoidance is ensured by requiring that two robots cannot
simultaneously be in conflicting segments. The coordination
problem is formulated as a mixed-integer nonlinear pro-
gramming problem, which is very difficult to solve. Using
approximations of the vehicle dynamics, the exact problem
is translated into two easier mixed-integer linear problems.
Digani et al. [19] use a minimum-velocity hypothesis to
formulate a (non-convex) quadratic programming problem
for multi-robot coordination with kinematic constraints. A
shared issue with those two approaches is the difficulty of
handling the dynamic constraints, which need to be either
approximated or ignored. The foundation of this paper is a
new formulation for the multi-robot coordination problem
along fixed paths using the concept of priorities [20], which
has already been used for intersection management [21].
Using time discretization, our method allows a resolution-
exact modeling of second-order dynamics, presented in [22].

III. MILP-BASED OPTIMAL ROBOTS COORDINATION

In this section, we briefly present our mixed-integer
linear programming (MILP) formulation for multi-robots
coordination under kinodynamic constraints. A more detailed
presentation can be found in [22].

We consider a set of IV robots evolving on predetermined
paths inside a bounded coordination region. For automated
driving where coordination is mostly needed in the middle of
road intersections, the coordination region would be chosen
as the center of the intersection including a portion of the
roads leading to, and exiting from this center, as illustrated
in Fig. 1.

We assume that each robot ¢ follows a predetermined path
v, inside the coordination region, and we only consider the
longitudinal behavior of the robots. The dynamics of robot
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Fig. 1. Example of paths inside and outside the coordination region for a
three-lanes road intersection.

1 are described as a double integrator:

éi =V, (1)
Ui =aj, 2

where s; the curvilinear position of robot ¢ along its path, v;
its longitudinal velocity and a, its acceleration. This fixed-
paths hypothesis is well-suited for road intersections, as
vehicles generally stay inside circulation lanes.

The origin of s; is chosen so that s; = 0 when the front of
the robot enters the coordination region, and s; = sf“t >0
when it fully exits. The velocity is non-negative bounded
such that v; € [0,7;], and we assume that the longitudinal
acceleration a; of robot i is bounded to an interval [a;, ;]
with a; <0 <@;.

We assume that robot ¢ enters the coordination region at
time i with speed v!" € [0, 7;], and is required to leave the
coordination region with speed v¢“. We let t2“* denote the
corresponding exit time. Note that v¢** should be properly
chosen to avoid collisions outside of the coordination region.

For a pair of distinct robots ¢ and j, we call collision set
between i and j, noted C;; C [0, 57] x [0, 59%] the set of
positions (s;, s;) inside the coordination region where ¢ and
J would collide; we say that i and j are conflicting if C;; # 0.
To simplify this presentation, we assume that collision sets
are connected, which amounts to assuming that two robots
can cross paths at most once. Moreover, we approximate the
exact collision sets with minimally bounding polygons, with
edges either parallel to the coordinate axes or to the first
diagonal s; = s;.

A key remark to be made is that, for two conflicting
robots ¢ and j, one necessarily clears a conflict area before
the other can enter. Previous work [20] has shown that
the relative order of passage between conflicting robots can
be interpreted as priorities, and that the given of priority
relations for all conflicting robots define discrete classes of
solutions to the coordination problem. In general, there can
exist up to 2VV=1/2 gych classes.

Building from these results, we show in [22] that comply-



ing with assigned priorities is equivalent to respecting a set of
linear constraints involving binary variables. Indeed, under
our hypotheses, four possible types of conflicts can exist:
robots can follow one another throughout the coordination
region (a), or have crossing (b), merging (c) or diverging (d)
paths, as illustrated in Fig. 2. In these diagrams, priority ‘%
goes before 57 (noted ¢ > j) corresponds to cases where the
trajectory lies on the right-hand side of the collision set C;;.
Note that the additional integer variables are needed to deal
with the fact that the boundary of these sets are piecewise-
linear rather than linear.

Sj Sj

Si Si

(a) Following paths (b) Crossing paths

Sj Sj
Cij
Cij

84 84

(c) Merging paths (d) Diverging paths

Fig. 2. Possible bounding polygons for the collision set between two
conflicting robots 4 and j. The edges of C;; are straight lines with equations
s; =A,s; =Borl|s; —sj| =C where A, B,C are constants.

Moreover, we show that using temporal discretization
allows an exact linear modeling of second-order kinodynamic
constraints for constant accelerations, unlike the previous
approaches relying on spatial discretization which require
approximating robots dynamics. More specifically, with a
time step duration of 7 and noting s¥ and v¥ the position
and speed of vehicle ¢ at step k, constant acceleration second-
order dynamics are enforced as:

1
s gk 5 (vF +oF) =0 (3)
vf“ — vf <a;T 4)
vf“ - vf > ;T ®)

Since time is not directly a variable in this formulation,
we also introduce a binary variable at each time step and
for each vehicle, af, which indicates if robot ¢ has exited
the coordination region at step k. To minimize the average
sojourn time of robots, we simply can maximize the sum
Dk oF. Interestingly, this is equivalent to maximizing the
thrc;ughput of the intersection.

This formulation, which can be handled by many widely
available solvers, allows to simultaneously solve two prob-
lems: the discrete problem of choosing the best priority
assignment, which is the aim of an automated intersection
management policy, and the continuous (but discretized)
problem of finding optimal trajectories respecting those
priorities under kinodynamic constraints.

IV. POLICY EVALUATION

In this section, we show how this mixed-integer linear
programming formulation can be used to evaluate an inter-
section management policy on the example of autonomous
vehicles at an intersection. The simulation is based on the
free traffic modeling tool SUMO [23] and uses its path
generation algorithm to compute collisions sets. Vehicles are
added using Poisson arrival times and normally-distributed
entry speeds (truncated to a minimum speed, and a maximum
speed). The optimization problem is solved using the com-
mercial MILP solver Gurobi [24], using its Python interface
to generate the constraints. Lastly, if the problem is feasible,
the solution trajectories are simulated in SUMO using the
TraClI interface to verify that they do not generate collisions.
Vehicles are modeled as rectangles of 5m length by 2m
width, with [a;,@;] = [-3ms™2,4ms™2]. The exit speed
for all vehicle i is set as v¢*' = ¥ = 15ms~! and v{"
is normally distributed with average 12ms~! and standard
deviation 3ms™!, truncated to [10ms~!, 15ms™1].

Simulations are performed on a personal computer running
on an Intel Core i7-4790 CPU (clocked at 3.60 GHz) with
16 GB of RAM.

We present the results from three distinct sets of simula-
tions; our objective is to evaluate the performance loss caused
by the choice of sub-optimal priority assignments. In order
to do so, we compare the optimal assignment found using the
problem of Section III with a first-come, first-served (FCFS)
ordering of the vehicles as proposed, e.g., in [1] which allows
simple computation of optimal trajectories.

A. Microscopic simulation

The first simulation compares the optimal trajectories
with those resulting from first-come, first-served (FCFS)
ordering. Figure 3 shows these trajectories, for a given set
of 57 vehicles on a single-lane, four-roads intersection. For
illustration purposes, vehicles only travel from south to north,
and from east to west in this example. It can be seen that
FCFS ordering causes a higher average sojourn time for
vehicles, and in fact saturates the intersection, as can be
seen in the increasing time vehicles remain stopped. By
contrast, an optimal ordering allows the same vehicles to
pass without stopping. Note that this does not guarantee that
every vehicle is better served by an optimal ordering. For
instance, the vehicle with trajectory highlighted in red exits
the intersection later in the optimal ordering than in the FCFS
ordering.

The attached video submission! shows two simulations
run on the intersection presented in Fig. 1, with optimal and
first-come, first-served ordering.

B. Number of vehicles

It is known that first-come, first-served policies are often
efficient for lower volumes of traffic, whereas they lose
efficiency when the number of vehicles increases [16]. Fig. 4

I Also available at https://youtu.be/U7I7x09Hkeo
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Fig. 3. Trajectories of the vehicles in a single-lane intersection for FCFS

and optimal ordering of the vehicles. The gray areas correspond to the center
of the intersection. Notice that trajectories do not intersect in the gray areas.

shows the influence of the number of vehicles N on the aver-
age relative time loss for the optimal priority assignment and

policy alone
FCFS ordering. This indicator is computed as - tqlof; R
where t21°¢ is the time vehicle ¢ would have needed to exit
the coordination region if there were no other vehicle, and
t2°""Y the sojourn time of the vehicle in the given policy.
These data have been computed over a set of 20 initial

configurations on the intersection presented in Fig. 1.
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Fig. 4. Comparison of average normalized delays for optimal and FCFS
ordering for an increasing number of robots. The shaded areas correspond
to the [50%, 75%)] percentiles of vehicles for each policy.

C. Influence of time step duration

The discretization time step has a double influence on the
solution: first, the safety constraints force vehicles to have
passed the conflict area one time step before another vehicle
is admitted. Second, we assume constant acceleration during
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Fig. 5. Influence of the time step duration on the average normalized

delay for optimal and first-come, first-served ordering. The shaded areas
correspond to the [50%, 75%] percentiles of vehicles for each policy.

one time step. As the duration of a time step decreases, the
average normalized delay is expected to decrease for the
same initial configuration.

To measure the effect of the choice of time step duration
on solution quality, we show the average relative time loss
for various values of the time step, for both optimal and
first-come, first-served (FCFS) ordering in Fig. 5. These data
have been computed over a set of 20 initial configurations
comprising 15 vehicles. The shaded areas correspond to
the [50%, 75%)] percentiles. Note that, due to the relatively
small number of vehicles in the simulations, the first quartile
(corresponding to the first 25% of the vehicles) have a near-
zero time loss for both optimal and FCFS orderings. It can be
seen that the average delay in the optimal ordering is always
below that of FCFS ordering. This result emphasizes the
fact that optimizing vehicles trajectory for a given ordering
is less effective than choosing a good ordering with lower-
quality trajectories. In the remainder of this article, a time
step duration of 1s is used.

V. DESIGN OF NEAR-OPTIMAL POLICIES

In this prospective section, we describe how using the
presented formulation could allow to design near-optimal
policies for real-time applications. A first possibility for
reducing computation time with bounded optimality loss is
to use less strict termination criteria for the MILP solver.
Indeed, branch-and-bound algorithms used in most solvers
keep exploring the decision tree until the current solution
is very close to the best known bound for the objective
function, usually with tolerated relative difference (or gap)
of less than 10~%. In our particular formulation, we observe
that the solver generally finds relatively quickly a reasonably
good solution, then spends a lot of time improving this
solution to gain a few percents of optimality. For real-time
applications, a possible approach to decrease computation
time is to increase the maximum tolerated gap, leading to a
potentially sub-optimal solution in a much shorter time while
ensuring an upper bound on the loss of optimality. In Fig. 6
(red and blue curves), we compare the average computation
times for a gap tolerance of 10~% and 10~! over 10 instances
for a time step duration of 1s; in our test instances, the actual
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Fig. 6. Computation time, depending on the number of vehicles, for a
gap tolerance value of 10~% and 10~ 1, and for the time-receding approach
with tolerance value of 10~1.

average optimality loss from increasing gap tolerance to 10%
is approximately 5%. Using this method, up to 14 vehicles
can be treated in less than a second, whereas only 10 vehicles
can be treated in the same time span with a gap tolerance of
1074

Another possibility for real-time applications is to use
a receding time horizon approach. At each time step, the
optimization problem can be solved only considering the
vehicles currently inside the coordination region, taking their
position and speed at the beginning of the time step as
initial conditions. Vehicles inside the coordination region are
tasked to adjust their control to comply with the optimal
trajectory. This process can then be repeated at the next
time step. Note that in this approach, priorities assigned at a
given time step can still be modified in the following steps,
which should have a very limited impact on optimality. The
green curve in Fig. 6 shows the average computation time
needed to converge (with a 10% gap tolerance and 1s time
steps), as a function of the number of vehicles simultaneously
present inside the coordination region. Using this approach,
up to 24 simultaneous vehicles can be treated in less than a
second, which is reasonable for real world applications. For
an even higher number of vehicles, choosing a longer time
step duration could also be a possibility, since the proposed
formulation ensures that such solutions remain feasible.

Note that vehicles are not required to follow the resolution-
optimal trajectory found by the solver, as long as they respect
their assigned relative priorities. For reasonable control laws
with time as optimization criterion, the above-computed
near-optimal policies will likely remain efficient although
no optimality guarantee could be given. Notably, [21]
has demonstrated a decentralized model predictive control
scheme allowing vehicles to cross an intersection under
assigned priorities.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have used a simplified autonomous inter-
section model: there are no unexpected events, no pedestrian,
no human-driven vehicles, perfect communication, etc. How-

ever, this simplified model allows to reduce the complexity
— although the problem remains NP-hard — and we can get
optimal solutions for small instances of traffic flows. This is
a first lesson: very clearly, such a time-optimal algorithm
can be used to manage simple intersections where the traffic
flow is limited. Using the rather standard average normalized
delays criteria, this allows a significant decrease in the
waiting times (from up to 40% to around 10%) comparing
with a First-Come First-Served policy where all vehicles also
optimize their speed profile. We must emphasize this is true
for fluid traffic patterns. However, it shows that theoretically,
one can compute an optimal scheduling in some cases.
Moreover, we know from previous work that our priority
framework allows easily to take into account unexpected
events [25] or even distributed schemes [21], which could
allow to relax some hypotheses.

What we need to do now it to get a better idea of the
optimal patterns. We know from previous studies that FCFS
is not optimal for dense traffic situations, where gated or
exhaustive policies (in the sense of queuing theory, similar
to adaptive traffic lights) are better, and may be optimal. This
study is another confirmation FCFS is not optimal, though
for very small traffic it is closer to optimality. Very clearly,
we must change our methods for intersections subjected to
large traffic flows since real-time computation of an optimal
solution, even for our simplified model, is out of reach.

Moreover, we also showed that the branch-and-bound
algorithm applied to this particular problem converges much
faster than it terminates, meaning we can get optimal (or
slightly suboptimal) solutions long before we have the proof
of its optimality. This may lead to some approximated
optimization that could still be operational for large flows.
This is clearly an interesting avenue of research, as very few
results exist on what a very good policy would be like for
an intersection with dense to saturated traffic.
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