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Abstract

Background: Many mechanical experiments in plasticity-induced fatigue are
prepared by the recourse to finite element simulations. Usual simulation outputs, like
local stress estimations or lifetime predictions, are useful to choose boundary
conditions and the shape of a specimen. In practice, many other numerical data are
also generated by these simulations. But unfortunately, these data are ignored,
although they can facilitate the calibration procedure. The focus of this paper is to
illustrate a new simulation protocol for finite-element model calibration. By the
recourse to hyper-reduction of mechanical models, more data science is involved in
the proposed protocol, in order to solve less nonlinear mechanical equations during
the calibration of mechanical parameters. Usually, the location of the crack initiation is
very sensitive to the heterogeneities in the material. The proposed protocol is versatile
enough in order to focus the hyper-reduced predictions where the first crack is initiated
during the fatigue test.
Methods: In this paper, we restrict our attention to elastoplasticity or
elastoviscoplasticity without damage nor crack propagation. We propose to take
advantage of the duration of both the experiment design and the experimental
protocol, to collect numerical data aiming to reduce the computational complexity of
the calibration procedure. Until experimental data are available, we have time to
prepare the calibration by substituting numerical data to nonlinear equations. This
substitution is performed by the recourse to the hyper-reduction method (Ryckelynck
in J Comput Phys 202(1):346–366, 2005, Int J Numer Method Eng 77(1):75–89, 2009). An
hyper-reduced order model involves a reduced basis for the displacement
approximation, a reduced basis for stress predictions and a reduced integration domain
for the setting of reduced governing equations. The reduced integration domain
incorporates a zone of interest that covers the location of the crack initiation. This zone
of interest is updated according to experimental observations performed during the
fatigue test.
Results: Bending experiments have been performed to study the influence of a grain
boundary on AM1 superalloy oligocyclic fatigue at high temperature. The proposed
hyper-reduction framework is shown to be relevant for the modeling of these
experiments. To account for the microstructure generated by a real industrial casting
process, the specimen has been machined in a turbine blade. The model calibration
aims to identify the loading condition applied on the specimen in order to estimate the
stress at the point where the first crack is initiated, before the crack propagation. The
model parameters are related to the load distribution on the specimen. The calibration
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speed-up obtained by hyper-reduction is almost 1000, including the update of the
reduced integration domain focused on the experimental location of the crack
initiation. The related electric-energy saving is 99.9 %.

Keywords: Materials informatics, Data science, Model inversion, Hyper-reduction,
POD, Calibration protocol, Energy consumption

Background
Anemergingfield inmaterials sciences is the introductionof novel data-driven approaches
for mining materials knowledge from the large collections of experimental, modeling and
simulation datasets being produced today. This field is termed “materials informatics” in
[1]. In this paper, large simulation data are generated and converted into hyper-reduced
order models in order to calibrate mechanical parameters of finite element models. These
parameters are calibrated when observed data are replicated by simulation outputs. The
calibration of complex in-situ experiments, such as mechanical experiment under X-ray
tomography [2–4], demand ever longer numerical simulations. They also generate a huge
amount of numerical data that are temporary stored in computermemory. Because in-situ
experiment are getting more and more complex, there is a need for simplified calibration
protocols allowing to preserve all the original mechanical parameters of the specimen
finite-element model. To be pertinent for platicity-induced fatigue tests, the simplified
protocol must be versatile enough to account for the experimental location of the crack
initiation. This location is not perfectly predictable because of random heterogeneities
involved in materials, at various scales [5].
In the calibration framework of heterogeneous mechanical experiments, experimental

data are not available before several days or several months. It takes time, because the
specimen and the experimental setup must be designed and prepared before starting the
experiments, as shown by the blue boxes of the flowchart in Fig. 1. For example, Fig. 2

Ωψ.

ΩZ

Fig. 1 Flowchart of the hyper-reduced protocol for the calibration of model parameters in case of
plasticity-induced fatigue. In the orange box, an hyper-reduced order model is substituted for a finite element
model
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dary

Fig. 2 Example of complex specimen for bending experiments on a turbine blade. Additional slots have
been machined on a turbine blade in order to amplify the stress concentration factor around the grain
boundary involved in the blade. This specimen has been designed by Alain Köster at Centre des Matériaux [6]

shows a specimen for a cyclic bending test. This specimen has been designed by Alain
Köster at Centre des Matériaux [6]. The complex shape of this specimen aims to amplify
the stress concentration factor around a grain boundary involved in a turbine blade.Hence
the macroscopic location of the first crack is imposed by the shape of the specimen and
its boundary conditions, but the microscopic location of the crack initiation is revealed by
the fatigue test. For instance, in Fig. 3, a slot has beenmachined in a turbine blade in order
to obtain an assumed location of the crack initiation in Zone A. But the experimental
crack initiation occurred in Zone B. Similar experimental results have been published in
[7]. We refer the reader to [6] for more details about this mechanical experiment.
In continuum mechanics, the optimal parameters of the calibration problem are solu-

tions to an inverse problem, known also as PDE contained optimization problem. We
denote by μc ∈ R

Nc the vector of parameters submitted to calibration. In case of experi-
mental setups that aim to generate heterogeneous plastic strains, the design of the spec-
imen and the design of the experimental setup are guided by finite element (FE) simula-
tions, as shown by the greed box of the flowchart in Fig. 1. In these simulations, the FE

Fig. 3 Example of the experimental location of a crack initiation in a modified turbine blade for
plasticity-induced fatigue test. A slot has been machined in order to obtain an assumed location of the crack
initiation in Zone A. The experimental crack initiation occurred in Zone B. The related fatigue test was
performed by Mélanie Leroy at Centre des Matériaux [6]
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model is similar to the model submitted to calibration. It has only additional parameters
of design, denoted by μd ∈ R

Nd . The theoretical simulation output vector is denoted by
y(μc,μd) ∈ R

Ny and its experimental counterpart is denoted by yexp. The design parame-
ters are setup to focus the experiment on a phenomenon, here we consider the oligocyclic
fatigue of heterogeneous materials. The calibration problem reads: find μc solution of the
following minimization problem:

μc = argmin
μc

‖y(μc,μd) − yexp‖ (1)

where ‖ · ‖ is the Frobenius norm, μd is the vector of design parameters that results from
the design of the experimental setup and the design of the specimen. In the sequel, for
simplicity, we denote by μ the vector of all parameter μT = [μcT ,μdT ]. In practice, the
exact location of the crack initiation is not predictable. Hence, the stress predictions in
this location are simulation outputs that are only defined when the experimental results
are available. Then, the proposed calibration protocol must be versatile enough to adapt
the simulation outputs according to the experimental observation of the crack initiation.
Usually in plasticity-induced fatigue, no data science is incorporated in the sequence

of decisions that precedes the experimental data generation, although a large amount of
simulation data are created when evaluating y(μ). The red blocs in the flowchart shown
in Fig. 1 are not present in the classical finite element protocol. The usual simulation
outputs y(μ) are often a tiny part of the total numerical data generated by simulations.
In heterogeneous plasticity, FE simulations are both depending on the parameters μ and
time. Let’s denote by qn(μ) ∈ R

N the vector of nodal displacements, at time step tn. These
variables are obtained by the solution of a nonlinear and time dependent mechanical
problem. Let’s denote by Rn ∈ R

N the residuals of the FE equations that give access to
the FE variables at time tn. The FE mechanical problem reads: given μ, find qn(μ) such
that,

Rn(qn(μ); μ) = 0, n = 2, . . . , N t (2)

y(μ) = s((qn(μ))Nt
n=1) (3)

where s is the functional form of the FE post-processing. For the sake of simplicity,
although Rn depends on qn−1, this is not mentioned in equations. In statics, R is the
residual of FE equilibrium equations that stress should fulfill, if no additional approxima-
tion is introduced. The stresses are forecasted by the constitutive equation of thematerial.
They are denoted by σn

FE(x,μ). These stresses are available at integration points of the
FE mesh: x ∈ {x1, . . . , xNG }. In practice, the number of simulation outputs Ny is much
smaller than the number of FE degrees of freedom N and the number of integration
points NG . The simulation data qn and σn

FE(x,μ) are temporarily stored in computer
memory for various values of parameters during the design of the experimental setup. For
instance, for a single FE simulation of a bending test on a turbine blade, the storage of
the displacements and the stresses respectively represents 2 and 60Go in the computer
memory. Unfortunately, they are usually deleted after each FE simulation, when using a
pure FE approach. The ratio of remaining data involved in y compared to the total amount
of simulation data is smaller than Ny

N+NG . In practice it is much less than 0.001%.
As shown in [8], a better datamining can be applied on simulation results by the recourse

to a model order-reduction method. Various model reduction methods are available in
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elastoplasticity or elastoviscoplasticity [9–16]. These methods can reduce the computa-
tional complexity of optimization procedures or parametric analyses [17–22], by intro-
ducing reduced vectors stored in a matrix denoted by V ∈ R

N×N , with N < N . Hence,
in the orange box of the flowchart in Fig. 1, the finite element model can be replaced by a
reduced order model. The reduced approximation of FE solutions reads:

q̃n(μ) = V γn(μ) (4)

where q̃n is the reduced approximation of qn according to a given reductionmatrixV and
N (N < N ) reduced variables stored in the vector γn ∈ R

N . Therefore, the model output
can be estimated by using less variables:

s̃((γn(μ))N
t

n=1) = s((V γn(μ))N
t

n=1) (5)

The calibration process differs from a data assimilation process by the time required to
have access to experimental data. In data-assimilation protocol, data are assumed to be
available without any connection to numerical simulations. We refer the reader to [23]
formore details onmodel order-reduction in this framework. Here, experimental data are
available after a period of time that can be several days or several months dedicated to the
design and the preparation of the experimental setup. Therefore, many simulation data
can be collected before the solution of the calibration problem. This collection of numer-
ical data is termed “offline step” in the framework of model reduction for optimization
problems. The optimization of the parameters to calibrate is termed the online step. In
Fig. 1, a dashed line separates the “offline step” and the “online step” in the flowchart of
the proposed protocol.
In the calibration framework, while the design of the experimental setup is performed,

the parameter space is sampled according to few points in the parameter space. These
sampling points are denoted by (μj)mj=1. This is an ideal framework to practice empiri-
cal approaches to model reduction such as the proper orthogonal decomposition (POD)
[24,25], the reduced basis method [26], the APHR method [27]. These methods are qual-
ified as empirical, because the reduced vectors are extracted from simulations results by
considering these results as numerical data. The physics is in the simulation results, not in
the extraction procedure conversely to reduced basis given by normal modes. But empiri-
cal approaches have proven their computational efficiency. For given simulation data, the
PODmethod is generated by using a singular value decomposition of known FE solutions
stored in a matrix [28]. In case of FE models having a large number of degrees of freedom
(more than 100,000) and a large number of time steps (more than 50), we perform the
computation of V by the incremental algorithm proposed in [29].
The empirical modes of the reduced basis have a FE representation. Let’s denote by

(ξi(x))Ni=1 the shape functions of the FE model used to approximate the displacements
u(x, tn;μ) such that:

u(x, tn;μ) =
N
∑

i=1
ξi(x) qni (μ), x ∈ � (6)
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where � is the spatial domain covered by the FE mesh. Therefore, the empirical modes
denoted by (ψk (x))Nk=1 are:

ψk (x) =
N
∑

i=1
ξi(x) Vik , k = 1, . . . , N (7)

The reduced governing equation obtained by a Galerkin projection of the FE equations
reads: find γ n(μ) such that,

VT Rn(V γn(μ); μ) = 0, n = 2, . . . , N t (8)

y(μ) = s̃((γn(μ))N
t

n=1) (9)

The accuracy of a reduced-order model can be evaluated through the FE residual Rn as
proposed in [30] for linear problems having an affine dependence on parameters. Error
estimators help to better sample the parameter space as proposed in [26,30]. In static
mechanics of materials, the FE residual is related to the equilibrium of the Cauchy stress,
denoted by σn

HR, estimated by the proposed hyper-reduced model at time tn:

q� T Rn(V γn(μ); μ) =
∫

�

ε(u�) : σn
HR(x;μ) dx

−
∫

�

u� fn(x;μ) dx −
∫

∂F�

u� Fn(x;μ) ds (10)

u� =
N
∑

i=1
ξi(x) q�

i (11)

where u� is a test function, q� is the related FE vector, ε(·) is the symmetric part of the
gradient of the argument, fn is a given body load at time tn and Fn is a given Neumann
boundary condition on the boundary ∂F� of �. The constitutive laws are described by
using the framework of the irreversible thermodynamic processes. The strain history
is taken into account by using internal variables [31–34]. For the sake of clarity, these
equations are not detailed in this paper. But in most cases in mechanics of materials,
the related residual Rn is not linear with respect to the displacement and there is no
affine dependence with respect to the parameters. In this framework, the constitutive
relation error proposed by P. Ladeveze [35,36] is more convenient. It has been extended
to hyper-reduced model in [37], for standard materials.
In nonlinear mechanics of materials, the Galerkin projection does not provide sufficient

simulation speed-up during the online step, except when using the PGD method as pro-
posed in [38]. As shown in [27,39–43], the repeated evaluations of VT Rn involved in the
projection of the FE equations into the reduced space scale with N . It is often too much
time consuming. In this paper, we reduce this complexity by using the hyper-reduction
method [9,27].With thismethod the reduced equations are setup on a reduced integration
domain (RID) which is a sub-domain of�. Then, the constitutive equations are evaluated
only over the RID. Therefore, the stresses are not predicted outside of the RID. If the RID
does not contain the point where the crack is initiated during the fatigue test, then we
will have missing simulation outputs for the calibration of the life duration criterion. This
paper aims to propose a convenient solution to this issue.
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Methods
Many numerical datamust be collected before generating the hyper-reduced ordermodel.
But we show that most of the data we need are naturally generated by finite elements
simulations used to design the specimen and the experimental setup. Furthermore, the
proposed hyper-reduction framework can account for the location of the crack initiation
in the specimen, with a minor impact on the computational complexity of the online
step. During the offline step, before or during the experiments, the empirical modes
are enriched around the macroscopic location of the assumed crack initiation, by the
recourse to a numerical inclusion. After the experiments, a reduced integration domain
is incorporated into the reduced-order model in order to setup the reduced governing
equations on γn(μ). The RID is setup in order to cover the experimental location of
the crack initiation observed during the fatigue test. A flowchart of the hyper-reduction
protocol is shown in Fig. 1.
In this paper, the macroscopic location of the first crack in the specimen is enforced by

the design of the specimen and the applied boundary conditions. Let’s denote by S1 the
numerical simulation used to validate the shape of the specimen and the boundary condi-
tions, before starting the experiments. The vector of parameters related to S1 is denoted by
μ1. Let’s denote byQ1 ∈ R

N×Nt thematrix related to displacement predictions, such that:

Q1
in = qni (μ1), i = 1, . . .N , n = 1, . . . , N t (12)

In order to obtain more numerical results around the assumed location of the crack initi-
ation, we introduce a numerical inclusion in a subdomain denoted by ̂�. This subdomain
has an arbitrary, but macroscopic, extent around the assumed location of the crack initi-
ation. In the case of the proposed example, this subdomain is shown in Fig. 4, in a yellow
color. In this inclusion, the elastic modulus is increased up to 10 % of its original value.
Then a new simulation is performed. It is named S2 and the related matrix of displace-
ment is denoted by Q2 ∈ R

N×Nt . The smaller the extent of the numerical inclusion and
the smaller the modification of the Young modulus, the smaller the variations of the dis-
placements between S1 and S2. These variations are mainly local variations around and
inside the numerical inclusion. By following the derivative extended POD [44,45] and the
inclusion theory, as proposed in [46], the matrix of reduced vector V is generated by the
singular value decomposition of the matrix [Q1,β ‖Q1‖

‖Q2−Q1‖ (Q2 − Q1)]:

Fig. 4 The numerical inclusion The colors blue, red and yellow are respectively related to the first grain of
AM1, the second grain of AM1 and the numerical inclusion. This inclusion is centered around the point where
the first crack has been predicted by using five cycles of loading with respect to the parameters of the first
simulation S1. Its size has been arbitrary chosen
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[

Q1,β
‖Q1‖

‖Q2 − Q1‖ (Q2 − Q1)
]

= V SWT + r, ‖r‖ < εPOD (13)

where β is a numerical parameter (0 ≤ β ≤ 1),V is the matrix containing the right eigen-
vectors used for the reduced basis, S is a diagonal matrix of N largest singular values and
W contains the right eigenvectors. When β = 0, we obtain the usual POD modes related
to (qn(μ1))N

t
n=1. N is large enough to ensure that residuals r have a Frobenius norm below

a given threshold εPOD. We refer the reader to [28] for more details on the mathematical
properties of the singular value decomposition. As specified in [37] for error estimation,
data related to stresses from simulation S1 are also collected in order to generate a POD
reduced-basis devoted to stresses. This reduced basis is denoted (ψσ

k )
Nσ

k=1.
The RID receives the contribution of empirical modes and it is supplemented by a zone

of interest. The former is a subdomain denoted by�ψ , the latter is a subdomain denoted by
�I . In the proposed versatile hyper-reduction approach,�ψ is generated during the offline
step of the calibration protocol, but �I is chosen during the online step according to the
experimental location of the crack initiation, as shown in the flowchart in Fig. 1. It enables
a versatile approach to calibration by hyper-reduction in the framework of plasticity-
induced fatigue. The hyper-reduction method aims at preserving the usual assembly loop
on elements when computing the FE residuals. Such an approach facilitates the hyper-
reduction of various kind of nonlinear constitutive equations in mechanics. The RID is
denoted by�Z . It is a collection of few elements of the original FEmesh, termed “reduced
mesh”. The mesh downloaded in computer memory for the hyper-reduced predictions is
the reduced mesh, not the full original FE mesh.
Let’s introduce the list of FE degrees of freedom of the reduced mesh:

F = {i ∈ {1, . . . ,N },
∫

�Z
ξ2i (x) dx > 0}, �Z = �ψ ∩ �I (14)

This set of indexes is generated at the beginning of the online step, when �I is known.
We denote by (iα)Card(F)

α=1 the entries of the list F . Card(F ) is the cardinal number of F .
Therefore, the hyper-reduced approximation reads:

uHR(x, tn;μ) =
Card(F)
∑

α=1
ξiα (x) θnα (μ), ∀x ∈ �Z (15)

Here θn(μ) ∈ R
Card(F) is an intermediate variable. We denote by ̂V the restriction of V

to the RID:

̂Vαk = Viαk , α = 1, . . . ,Card(F ), k = 1, . . . , N (16)

When choosing a RID, we obtain an interface � between the RID and the remaining part
of the domain:

� = �Z ∩ (�\�Z) (17)

On �, there is no specified boundary conditions, because there is no boundary here in the
original FE model. Following the formulation proposed in [46], additional Dirichlet-like
boundary conditions are imposed to setup the HR governing equations, such that:
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θn = (I − ZT Z) θn� + ZT Z ̂V γn (18)

where Z has only few rows of the identity matrix. Z selects the entries of θn that are not
connected to the interface �. ZT Z is a diagonal matrix involving entries equal to one
or zero. The diagonal entries of ZT Z are equal to one only for the degrees of freedom
that are not connected to �. I is the identity matrix and θn� is a vector that fulfills the
Dirichlet-like boundary condition on �. Then, the projection of FE residual related to the
boundary value problem setup over �Z reads:

̂VT ZT ẐRn(θn(μ);μ) = 0, n = 2, . . . , N t (19)

where ̂Rn is the FE residual vector computed over the RID, for time instant tn. In statics,
the entries of this residual are:

̂Rn
α(θn(μ); μ) =

∫

�Z
ε(ξiα ) : σ

n
HR(x;μ) dx

−
∫

�Z
ξiα fn(x;μ) dx −

∫

∂F�∩∂�Z
ξiα Fn(x;μ) ds (20)

α = 1, . . . ,Card(F )

where σn
HR is the solution of a constitutive equation depending on the local evolution in

time of the strain related to the hyper-reduced prediction unHR. Moreover, the additional
boundary condition follows a reduced basis approximation:

θn� = ̂V γ̃n (21)

where γ̃ n ∈ R
N are additional reduced-variables. N additional closure equations are

chosen in order to retrieve the usual reduced-basis approximation of the displacements:

γ̃n = γn ⇒ θn = ̂V γn (22)

Therefore, we retrieve the usual form of the hyper-reduced equations introduced in [27]:
for given parameter (μ), find γn(μ) such that

̂VT ZT ẐRn(̂V γn(μ); μ) = 0, n = 2, . . . , N t (23)

y(μ) = ŝ((γn(μ))N
t

n=1) (24)

where ŝ is the restriction of s̃ to the reduced mesh. All the mechanical parameters related
to �Z are preserved in this setting of the reduced equations. As mentioned in [27], it is
recommended to add few elements in the RID in order to estimate s̃ by ŝ. Here, the product
ZT Z ̂Rn is formal. As shown in [41], the reduction of the computational complexity
of the assembly procedure can be reduced by a factor Card(Z)

N , where Z is the set of
degrees of freedom that are not connected to �. In practice, when downloading a reduced
mesh in computer memory, the entries of ̂Rn that are connected to � are set to zero,
before the left multiplication by the matrix ̂VT . The introduction of the RID is crucial for
elastoviscoplastic or elastoplastic models, because in many practical cases, no speed-up is
achieved if the mesh is not restricted to the RID. When a reduced mesh is downloaded
in computer memory, the simulation outputs are generated only for the reduced mesh.
This last point is of great importance to reduce simulation time, because saving data is
time consuming. This is especially the case for simulation software in materials sciences
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that are designed to store large amounts of data during simulations. In previous work on
hyper-reduction, this consideration on output storage was neglected.
The construction of the subdomain �ψ is empirical. It is performed at the end of the

offline step, as shown in Fig. 1. It incorporates the contribution of several reduced bases
depending on the mechanical fields involved in the original FE model. In [27], the RID
accounts for the points where thermalmodes and their gradients reach their highest value.
In [9], we have considered themaximum values of modes related to displacements, strains
and internal variables. When evaluating approximation errors generated by the hyper-
reduction theory, as proposed in [37], the RID incorporates the points, and connected
elements, where of modes related to displacement and stress are maximum. In all this
cases,�ψ is the union of the support of few FE shape-functions, plus connected elements:

�ψ = ∪i∈G supp(ξi) ∪ �+ (25)

where�+ is an additional layer of surrounding elements connected to:∪i∈G supp(ξi), here
supp(w) is the support of the function w and G is a set of node indexes where a mode has
reach its highest value. In this paper, G is the union of a set related to mode magnitude
and a set related to stress magnitude, denoted by Gu and Gσ respectively. Gu is the index
set of closest nodes to interpolation points related to the empirical interpolation method
(EIM) [47] applied on UN = span(ψk )Nk=1. Gσ is the index set of closest nodes to the
interpolation points related to the EIM applied on the subspace spanned by (ψσ

k )
Nσ

k=1. The
nodes having their index in G are located where the magnitude of the modes (ψk )Nk=1
and (ψσ

k )
Nσ

k=1 are significant. The location of these points is chosen as if we would like to
interpolate the displacements and the stresses by following the EIM, although we do not
need any interpolation of them. We simply assume that the location of these points is
relevant to generate the RID.

Results and discussion on a bending specimen in cristal plasticity
In [6], bending experiments have been performed byMélanie Leroy to study the influence
of a grain boundary on AM1 superalloy oligocyclic fatigue at high temperature. Here the
temperature field is not uniform over the specimen, but it does not vary during the load
cycles. We matter about the grain-boundary strength, and not about the weakest part of
the turbine blade. Then, to account for the microstructure generated by a real industrial
casting process, the specimen has been machined in a turbine blade. The model calibra-
tion aims to identify the loading condition applied on the specimen in order to estimate
the stress at the point where the first crack was initiated, before the crack propagation.
The model parameters are related to the load distribution on the specimen. The numer-
ical method has been implemented in the research software named Z-set (http://www.
zset-software.com).
We have selected a blade involving two grains. The Euler angles of each grains are

(−13.9, 5.6, 0.9◦) and (64.2, 17.8,−84.0◦). As shown in Fig. 2, slots have been designed
and machined on the turbine blade in order to amplify the stress concentration factor
around the grain boundary. The position of the slots, the boundary conditions and the
magnitude of the mechanical loading have been chosen by recourse to FE simulations.
This preliminary work, before doing experiments, including the machining of the slots,
took almost 3months. This gave us time to conduct the numerical simulation S2 and the

http://www.zset-software.com
http://www.zset-software.com
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datamining. Both exact locations of the crack initiation and the grain boundary around the
crack are revealed at the end of the fatigue test. Here the term exact must be understood
as “at the scale of the local element size in the mesh”.
Themesh of the specimen and the boundary conditions are shown in Fig. 5. The FEmesh

of the specimen involves 350,000 quadratic tetrahedron-elements and 570,000 nodes. One
elastoplastic simulation of the specimen, submitted to five loading cycles, takes approxi-
mately 67 h (almost 3 days) by using a single processor. The number of time steps, for five
loading cycles, is Nt = 131. The simulation time dedicated to read and write numerical
data is about 3 % of the total computational time. This part of the computational time
can not be reduced if the full mesh is downloaded for hyper-reduced simulations. Hence,
if the full mesh is downloaded for the hyper-reduced simulations, the speed-up factor can
not be better than 100/3 ≈ 30.
The constitutive equation of AM1 follows the crystal plasticity theory proposed in [48].

It accounts for the thermal expansion and thermal sensitivity of plasticity. The expected
life duration of the specimen in the framework of oligocyclic fatigue should be around
10,000 cycles. This is a constrain to account for, when choosing themagnitude of the load.
Before the experiment, the life duration of the specimen was estimated by neglecting the
effect of the grain boundary on the life duration criterion.
Data observed during the experiment are the normal displacements at three points A,

B, C . The loading magnitude is both imposed during the experiments and the numerical
simulations. The exact location of the load could not have beenmeasured accurately. This
location has a significant impact on stresses around the grain boundary. Hence, we have
to calibrate the location of the load prior to the calibration of the life duration model. The
load is defined by the barycentric coordinates of four forces Fa, Fb, Fc and Fd such that:

F = μc
1 μc

2 Fa y + (1 − μc
1) μc

2 Fb y + μc
1 (1 − μc

2) Fc y
+(1 − μc

1) (1 − μc
2) Fd y (26)

μc = [μc
1,μ

c
2], N c = 2 (27)

Fig. 5 Mesh, boundary conditions and stress σ11 at maximum loading condition. The FE mesh of the
specimen involves 350,000 quadratic tetrahedron-elements and 570,000 nodes. On the left, the first grain of
AM1 is in blue, the second in red. On the right, we show a zoom on the stress σ11 in the vicinity of the grain
boundary, where the crack initiation has been predicted. Only one of the two grains has been represented in
this zoom. The red color is related to the maximum stress and the yellow color is related to stresses close to
zero
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The location of points A, B, C and the location of the loads are shown in Fig. 9. The
displacements of points A, B and C , are 10 times less sensitive to μc

1 than to μc
2.

Once the shape of the specimen has been fixed and validated by a linear elastic simula-
tion,we have access to the prediction of the elastic stressaσn

e , for alla ∈ R, at one sampling
pointμ1 = [0.5, 0.5] in the parameter space. This simulation is named S0. Here, a is a vari-
able determined in order to have an estimated life duration of the specimen about 10,000
loading cycles. For the validation of the value of a, an elastoplastic simulation has to be per-
formed. This elastoplastic simulation is the simulation S1. A sufficient number of loading
cycles should be considered in order to forecast a stabilized strain-stress cycle at the weak-
est point of the specimen. Here, we have considered five loading cycles only. It generates
intermediate numerical data, constituting more than 62Go in the computer memory.
The simulation outputs, related to displacement at pointsA, B and C, occupy only 72 ko

in computer memory. Hence, the usual FE calibration procedure creates and then deletes
99.9998 %of the numerical data generated by the FE simulations, without any datamining.
The reduced basis (ψk )Nk=1 obtained by the DEPOD involves 10modes (N = 10, εPOD =

10−4, β = 0.1). These modes are shown in Fig. 6. A focus on the numerical inclusion ̂�

is shown for each modes in Fig. 7. The modes 1–4 account for the effect of thermal
expansion during the first time steps of the simulation. Modes five and six are clearly
related to the bending of the specimen. Modes 7–10 are much more complex. They
have strong gradients in the numerical inclusion. The mode number 10 is both local,
in the numerical inclusion, and global over the blade. Its singular value is almost 10−4

times smaller than the highest singular value related to displacements. In our opinion, the
mechanical meaning of this mode is very weak. Therefore, we decided to remove this last
empirical mode.

Fig. 6 Empirical modes (ψk )
10
k=1. These modes have been generated by the derivative extended POD
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Fig. 7 Focus on modes around the numerical inclusion. Modes 7–10 clearly account for the strains
generated by the numerical inclusion

The convenient choice of the dimension of the reduced space, N, can be performed
offline by comparing the simulation outputs of S1 to the one generated by various HR
predictions, by varying N. The discrepancy between the simulation outputs is denoted by
η. Fig. 8 shows the error on output predictions obtained forN = 1 toN = 9. In the sequel,
we consider HR predictions based on nine empirical modes and the related RID.
As shown in Fig. 8, the error committed during the last cycle is much smaller than the

error with respect to the full time interval. For the last cycle, the infinite norm of the
discrepancy on the local stresses in ̂� is 1 %. It is 0.5 % for the displacements on points
A, B and C. Approximation errors are much higher during the heating of the specimen,
more than 50 %.
The online construction of the RID takes only 30 s. The RID and �ψ are shown in Fig.

9. In this figure, �ψ does not provide stress prediction close to the location of the crack
initiation, contrary to �Z . The zone of interest �I contains only few elements around the
location of the first crack, as revealed by the fatigue test. Far from the crack initiation, �Z

and �ψ are identical. Hence the proposed protocol is really relevant for the prediction
of the stresses that contribute to the crack initiation. The RID involves 2569 nodes and
1000 elements. �ψ includes the elements below the loading forces Fa, Fb, Fc, Fd , and the

Fig. 8 Convergence of the approximation errors on simulation outputs, for μ = μ1 and over the last cycle of
loading, according to the infinite norm. The curve in red is related to the relative error on displacements at
points A, B and C. The blue curve is related to the stresses in the numerical inclusion
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Fig. 9 The reduced integration domain. The RID �Z involves 2569 nodes and 1000 elements. �ψ is shown
on the left. A focus around the location of the crack initiation is shown for both �ψ (in the center) and �Z (on
the right). Outside this focus, �Z and �ψ are identical

pointsA, B andC related to simulation outputs.When downloading the reduced-mesh in
the computer memory, the hyper-reduced predictions are very fast: 263 s. The simulation
speed-up is 931, compared to the FE predictions. Regarding the numerical data, each HR
prediction generates 241 times less numerical data than the FE simulation. The reduced
basis ̂V is 180 times less memory demanding than V. Hence, the HR simulations could
have been done on a processor having lessmainmemory. Furthermore, the computational
time being 931 times shorter, the electric energy saving byHRpredictions is almost 99.9 %.
The calibration processwas performedby the recourse to 20HRparametric simulations.

Then, the optimal parameters have been validated by using an usual FE simulation.

Conclusions
Accessing to the data being faster than accessing to the solutions to nonlinear mechan-
ical equations, we obtain very fast calibration of finite element models in heterogeneous
plasticity.
Compared to parallel computing, hyper-reduction is less accurate, but it provides large

speed-up for numerical simulations. Furthermore, it provides energy power saving that
does not occur in parallel computing. Here, we save up to 99.9 % of energy thanks to the
simulation speed-up.
A high speed-up of almost 1000 can be obtained by downloading a reduced mesh in the

computer memory. If not, the speed-up factor of hyper-reduced simulations is about 30.
This is mostly explained by the time needed to read and write data for elements that are
not in the reduced integration domain, although nomechanical computation is performed
on these elements.
A versatile approach to hyper-reduction is proposed. Hence the location of the reduced

integration domain accounts for both numerical data and experimental data related to
the location of the crack initiation. In the proposed example, the online construction of
the reduced integration domain takes only 11 % of the duration of one hyper-reduced
simulation.
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In the usual calibration procedure, 99.9998 % of numerical data generated by the design
of the experimental setup are wasted, although these data enable huge computational
time savings and electric energy savings when using the hyper-reduction method. More-
over, hyper-reduced simulations are less demanding in computational ressources. In the
proposed example, each HR prediction generates 241 times less numerical data than the
FE simulation. And the reduced bases restricted to a reduced mesh are 180 times less
memory demanding than the full reduced bases.
In future work, we must improve de hyper-reduced prediction of specimen heating.

Fortunately, in the proposed example, the approximation error committed during the
heating did not have a significant effect on the accuracy of the mechanical response of
interest. This situation was very convenient for the calibration of the load position applied
to the specimen.
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