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Abstract 

Raw biomass resources and many wastes are composed of poor-LHV organic matter (LHV < 

20 MJ/kg). Their use as renewable fuels for heat or power generation is challenging, 

particularly when they are in solid form. Indeed, their combustion in air is critical and it is not 

possible to build autonomous burners independently of external conditions without an 

assistance. Three main options are currently studied: (i) the co-combustion, in which the poor-

LHV fuel flame is supported thanks to an additional rich fuel, (ii) the oxy-combustion (iii) the 

electro-combustion, consisting in the generation of thermal plasma for activating and assisting 

the combustion. This last option is highly interesting because it only requires electricity 

(having low carbon content if renewable electricity). Depending on the nature of the 

feedstock, the electric power of the plasma does not exceed 1% to 5% of the flame power. 

Most plasma electro-burners technologies today on the market use DC plasma torches. These 

technologies suffer from many drawbacks among which: limited electrodes lifetime, poor 

reliability, important water cooling needs, need of AC/DC transformers, etc. leading to high 

CAPEX and OPEX. With the objective to go over these limits and reduce OPEX and CAPEX 

while increasing reliability, the Center PERSEE MINES-ParisTech has been working in the 

development of an original three-phase AC plasma technology to be integrated in a plasma 

electro-burner. This paper presents the main achievements on the plasma technology with a 

special focus on the limitation of electrodes erosion thanks to an active thermo-chemical gas 

sheathing. 

 

1- INTRODUCTION 

 

In the present context of conventional fossil fuel depletion and global warming, energy 

production from biomass and organic wastes is a major challenge for the future of society and 

environment. Most of crude renewable organic resources are characterized by a low heating 

value and their direct combustion in air can only be achieved in a high temperature 

environment. Due to the increase of renewables in the energy mix, together with fluctuation 

of electricity demand, modern thermal power plants using low heating value feedstock are 

more and more led to operate under dynamic conditions including low temperature operation 

conditions during start up, heat up and low load  phases. To face these evolutions in operation 

modes, the most developed technique consists in using assistance to combustion thanks to 

specific additional burners working with rich fossil fossils, generally natural gas or heavy 

fuel. This solution is constraining, costly and environmentally damaging since it not only 

implies the combustion of expensive rich fossil fuels but also increased operating cost due to 

additional burners and side elements. 

For few years, new alternative solutions for the assistance of low heating value feedstock 

combustion have emerged. Among these news techniques, the plasma assistance combustion 
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is particularly promising and attractive. The principle is based on the controlled 

thermochemical activation of the combustion thanks to the use of plasma whose power 

generally does not exceed few percent of the combustion thermal power. Such systems, called 

plasma electro-burners present number of advantages versus traditional technologies based on 

partial oxidation or combustion among which: their ability to deliver and tune the enthalpy 

and/or temperature through an external energy supply with temperatures that cannot be 

achieved with combustion methods, their very short dynamic response, their limited 

environmental impact (no direct CO2 emissions), their flexibility and ability to operate under 

very different atmospheres (neutral, reducing or oxidant), and their compactness due to their 

very high volumetric energy density which opens the way to process intensification.  

Most plasma electro-burners technologies today on the market use DC plasma torches. These 

technologies suffer from a certain number of weaknesses and drawbacks among which: 

limited electrodes lifetime, poor/limited reliability, important water cooling needs, need of 

AC/DC transformers leading to high Capital (CAPEX) and Operational (OPEX) costs. 

With the objective to go over these limits and reduce OPEX and CAPEX costs while 

increasing reliability, the Center PERSEE MINES-ParisTech has been working for many 

years in the development of an original 3-phase AC plasma technology to be integrated in a 

plasma electro-burner.  

 

2- BIOMASS AND WASTE 

 

In 2050, primary energy consumption would reach 22.6 Gtep i.e. three fold the 2000 

consumption (7.38 Gtep).  Simultaneously the share of electricity would rise from 34 % to 

42.5 %. According to B1-GIEC and IMACLIM-CIRED scenarii, the share of biomass in the 

energy mix would reach in 2050 a part comprised between 9.7 % and 14.4 % (2.2 to 3.25 

Gtep). In conventional thermal power plants where coal plays today a major role, the decrease 

of coal share to face up to critical environmental issues will necessarily involve an increase 

use of biomass and wastes. Indeed, as shown on Table 1, the economic and environmental 

advantages of this renewable resource are obvious: (i) a highly competitive MWh price versus 

other renewable energy technologies (wind, hydro or solar) and fossil fuels, (ii) an expected 

CAPEX (2030) among the lowest on the market and (iii) greenhouse gases emissions around 

30 kg CO2 equivalent per MWh corresponding to 10 % of fossil fuel emissions and same 

order of magnitude than other renewable energy technologies.  

Biomass can be considered as a form of solar energy storage during the photosynthesis 

process. It is often considered as a clean energy. However, In many cases, non-sustainable 

biomass resource exploitation can create important environmental damages and it is important 

to keep in mind that biomass can be considered as a clean and renewable energy resource only 

on condition that it is accompanied by a sustainable policy. Biomass can have different 

origins (agricultural, farming or food industry residues, sewage sludge, municipal wastes, 

dedicated energy plantations…) and it can be classified into three main categories depending 

on its state: gas, liquid or solid. With 10 Mtep in 2011, France is the first European country in 

terms of wood exploitation [2]. We will focus in the following on solid biomass only. 

 

3- SOLID BIOMASS FOR ENERGY PRODUCTION 

 

Solid biomass can be used for electricity production and its use in thermal power plant is 

increasing since the resource is more abundant than biogas and biofuels. Most developed 

countries engaged towards a clean energy transition policy follow this strategy with the aim to 

“decarbonize” their energy but also to limit their fossil fuel dependency. 
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In France, solid biomass resource for electricity production per year (residues from forest 

industry and wood transformation industry, straw…) is estimated to 5 Mtep plus 0.5 Mtep of 

sewage sludge (potential of non-exploited resource). Most of this biomass is characterized by 

LHV (Low Heating Value) varying between 6 to 20 MJ/kg, Chlorine and Sulphur contents 

generally lower than 0.1 % and very high water content generally ranging from 30 to 50 % of 

the mass, hence the need for drying it before they use for energy purposes [3]. 

We give on Table 1 the typical characteristics of biomass feedstock used in a Polish thermal 

power plan (Poloniec) for the co-combustion with coal.  

 

 

Mixure (80 

% wood 

20 % agro) 

Wood 

ships 

Agro Straw-

pellets 

Sun 

flower 

Palm 

nut shell 

 Raw Biomass  

Humidy (%) 35,90 42,40 11,55 13,00 11,50 9,70 

Ash content (%) 1,80 0,29 2,63 - 2,90 2,00 

LHV (MJ.kg
-1

) 10,50 9,40 15,85 14,80 16,00 17,90 

Density (kg.m
-3

) 350 300 437,5 600 600 300 

 Wet Biomass  

Volatile  (%) -- 80,00 80,78 83,10 80,00 80,00 

Ash (%) 2,81 0,50 3,95 6,90 3,28 2,20 

C (%) 49,15 49,75 49,01 45,83 49,51 53,69 

H (%) 5,96 6,12 5,86 
 

5,91 5,80 

N (%) 0,25 0,05 0,87 0,80 0,93 0,49 

O (%) -- 43,50 40,25 40,63 40,21 37,78 

S (%) 0,05 0,04 0,11 0,15 0,16 0,04 

Cl (mg.kg
-1

) -- 100 550 1 000 700 300 

P (mg.kg
-1

) -- 100 1 150 1 000 1 600 300 

alkalin (Na+K) acid soluble 

(mg.kg
-1

) 
-- 600 6 650 10 000 11 000 1 300 

Table 1: Characteristics of biomass used in the Polish Poloniec power plant (mass fractions) 

for co-firing with coal. 

 

China which is the country having highest energy consumption and CO2 emissions is 

currently massively investing on biomass integration technologies in the energy mix. In 2010, 

5.5 GW electricity production from biomass was achieved among which 62% was directly 

produced by wood-energy [4]. The objective for 2020 is to reach 30 GW; this will need a 

USD$ 3.1 billion investment. Today the number of thermal power plants in China using 

biomass is estimated between 500 and 700 [4]. In order to support this policy, a $USD 0.039 

subsidized price for electricity production from biomass is currently applied.  

Thermal processes for large scale energy production from biomass can be classified into three 

main categories: pyrolysis, gasification and combustion. This later is the most common 

since it accounts around 97% in the global bioenergy production.  

The high water content is generally a major drawback for biomass combustion and sustaining 

a continuous and stable flame need humidity content lower than 65 % [5]. Fixed and fluidized 

beds are the most developed technologies for solid biomass combustion [6]. Fixed bed being 

far away the most simple and spread option for small units while fluidized bed technologies 

allow achieving higher yields are most suitable for big installations.  
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The self-sustained and clean combustion of low heating value feedstock such as biomass is 

not obvious and is today an important scientific and technical challenge. The main drawback 

is that the combustion of low heating value feedstock in air can only be realized at high 

temperature which makes it highly dependent on the furnace thermal conditions. At low 

temperature, such as encountered during start up, heat up and low load regimes feedstock 

having a  low heating value cannot be used without this add of an external energy source.  

In order to exceed these drawbacks, three options for the combustion assistance of low 

heating value feedstock are today under development: (i) oxy-combustion, (ii) co-combustion 

(or co-firing) and (ii) plasma-assisted combustion. 

In oxy-combustion, pure oxygen, generally produced by cryogenic processing with purity 

higher than 95%, is used as combustive. This allows obtaining a stable flame while limiting 

NOx production. The flue gases being mainly composed of CO2 and Steam this possibly 

opens the way towards the direct capture of CO2 in post combustion. The main drawback of 

this technique relies on the high cost of oxygen production which is around 0.20 - 0.22 kWh 

per kg of oxygen (cryogenic separation) [7]. 

As example, a technical and economical assessment of a 460 MW oxy-combustion coal 

power plant gives a cost comprised between 72 and 83 MW for the production of oxygen 

corresponding around 15-18 % of the total electric power [8]. In addition with increased 

operational costs (OPEX), investment costs (CAPEX) for an oxy-fuel combustion power plant 

is also high:  2 089 €/kW against 1 323 €/kW for a supercritical coal power plant [8]. 

The principle of co-combustion consists in using an extra fuel, generally fuel oil or natural 

gas to assist the combustion of a low heating value feedstock. It is today the most developed 

method used during the startup and heat up phases. 

 

4- PLASMA ASSISTED COMBUSTION 

 

Plasma, which represents about 99% of the universe, is often presented as the forth state of 

matter. It is composed of electrons, ions, molecules at fundamental or exited state. Thanks to 

existence of charge carriers (electrons and ions), plasmas are characterized by a high electric 

conductivity. Plasma systems can be classified into two main categories: non thermal plasma 

where temperature (energy) of heavy particles (molecules and ions) is much lower than those 

of electrons and thermal plasmas where all the species have approximately the same 

temperature (energy). In an environment having a low carbon content electricity, such as what 

can be expected in the future with a large scale development of renewable energy (wind, 

solar, …), plasmas are particularly attractive and may open the way towards breakdown 

technologies and solutions able to answer to major tomorrow’ energy and environment 

challenges. Indeed plasmas allow: (i) an energy input without direct CO2 emissions which is: 

robust, flexible, instantaneous reactive and tunable in a very wide range of operating 

conditions (atmosphere, pressure…) and likely to lead to temperatures that may exceed 

temperatures encountered in conventional combustion processes, (ii) to increase efficiency 

and reduce environmental impacts of a wide range of industrial processes thanks to their 

ability to generate unique and very reactive chemical species. 

As shown on Figure 1, plasmas can interact with combustion by different means [9] dealing 

with thermal, chemical and transport phenomena. On the thermal side, plasmas allow to 

increase the temperature and speed up the chemical reactions, including oxidation according 

to Arrhenius law. On the chemical side, plasmas can produce many active radical and species 

such as for example O, OH and H that have been identified as playing a major role in the 

chain combustion / oxidation mechanisms. On the transport side, generally considered as an 

indirect effect, plasma can participate to the breaking of big fuel molecules thus modifying the 
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combustion kinetics. Other effects linked with electromagnetic forces acting of a source of 

momentum can have a great impact on the fluid dynamics and heat and mass transfer. 

 

 
Figure 1: Role of plasma in combustion enhancement [9]. 

 

Plasma assisted combustion presents a great potential in many industrial sectors such as 

internal combustion engines [10-12], turbo machines and gas turbines [13-14] and thermal 

power plants [15]. Spark ignition of internal combustion engines, plane reactors or gas 

turbines is the most common “plasma system”. In a standard spark plug, an electrical 

breakdown is created between two electrodes allowing ionizing and cracking molecules of the 

mixture air-fuel. This ignites the combustion mechanisms locally and the flame can propagate 

towards the overall mixture. On this area, new advanced ignition technologies are currently 

under development by most engine, and turbo machines manufacturers.  

 

5- PLASMA ELECTRO-BURNERS FOR COAL COMBUSTION 

 

Plasma electro-burners can generate a stable flame with a low heating value feedstock even in 

a low temperature environment thanks to the thermo-chemical plasma activation. For 

economic and environmental reasons, this technology has today an exponential development 

in China in coal power plants in replacement of traditional burner (Figure 2).  

 
Figure 2: Scheme of a pulverized coal power plant: overall (left) and boiler (right). 
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80 % of new coal power plants installed in China are equipped with plasma burners: in 

October 2012 more than 627 boilers  equipped with plasma burners were in operation in 

China corresponding to a total installed capacity around 265 GW (total power plants). Plasma 

technologies cover boiler with powers ranging from 50 to 1000 MW. The yearly savings of 

auxiliary fossil fuels was estimated to 5 million tons equivalent to 3.5 billion euros. Figure 3 

shows a picture of the Tianjin Guodian coal power plant (China) equipped with plasma 

burners. 

 

Figure 3: Tianjin Guodian coal power plant (China). 

 

Most installations use classical DC plasma technologies with tungsten based cathodes. The 

main technology supplier is Yantai Longyuan Electric Power Technology Co. Ltd (Longyuan 

Corp.) with a market share around 95%. Longyuan was created in 1996; it became a China 

Guodian Corporation subsidiary in 1998. Longyuan first succeeded in implementing this 

technology in a 50 MW "Yantai Power Plant" in February 2000. In October 2007, this 

technology was successfully implemented in a 560 MW unit "Korea Samchonpo Power 

Plant". Despite the rapid growth of this new technology in China, it is likely this technology 

suffers from important weaknesses and drawback slowing down its development on the 

occidental market due to domestic standards issues [16]. In [17] one can find a representation 

of one patent filled by Yantai Longyuan Technology Co. Ltd in 2002. 

In Eastern Europe, intensive researches have been carried by V. E. Messerle, A.B. Ustemenko 

and E. I. Karpenko group [18].  They developed a DC plasma technology. The nominal power 

of a single plasma torch is in the range 100 - 200 kW. This technology was implemented in 27 

pulverized coal furnaces spread in 16 power plants located in 6 countries (Russia, Kazakhstan, 

Korea, Slovenia, Mongolia and China) [19]. Other studies have been carried out in Russia and 

Ukraine using a plasma micro wave technology but, tour knowledge this technology never 

reached the industrial stage [20]. Finally researches are currently carried out in Czech 

Republic and Poland by the company ORGREZ based on DC plasma technologies with power 

ranging from 20 to 100 kW [21]. 

In France, researches in the field have been carried out in 1984 by BERTIN and Cie. These 

researches led to a patent [22]. The reactor has two stages respectively upstream and 

downstream the plasma zone. The injection of fuel as plasma gas aims at reducing the 

electrode erosion. The plasma chamber is equipped with a convergent nozzle in the upstream 

area and a divergent nozzle in the downstream area. 

In 1994, a patent was filled by the French utility EDF [23]. The system had several tangential 

air injection ports to create a vortex in the plasma gas and was working in DC. 
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6- CONCEPT OF PLASMA ELECTRO-BURNER FOR BIOMASS/WASTE 

COMBUSTION 

 

With the recent necessity to limit the atmospheric CO2 concentration, Europe progressively 

turns away from coal and wish to replace it by regenerative solid biomass, including organic 

wastes. A lot of industrial sectors are concerned by this transition, going from energy sector to 

metallurgy, cement work, etc. Nevertheless, this change is not so trivial at technological level 

because the difference between these two fuel types can be significant (LHV, dryness, particle 

size and variability of the quality). Burners are within the first devices concerned by this 

change. In 80/90’s, several plasma electro-burners were invented and developed for 

pulverized coal combustion in order to offer by means of a low electricity consumption (Pelec 

= few % of Pcomb) the possibility for the plants to operate with one unique fuel while 

increasing the operation flexibility (see previous section). By the way, the current Chinese 

plasma electro-burners presented previously derived from them. This new category of burners 

has been somewhat put aside in Europe because of the slowing down of the European coal 

technology development. Today, with the drive to develop biomass sector, there is a 

resurgence of interest. But, a plasma electro-burner designed for coal combustion cannot be 

directly used for combustion of common biomass. It requires revisions: (i) minor ones, if 

adequate associated technologies of biomass pre-treatment (ultra-drying, roasting, pyrolysis) 

and injection (grinding and pulverization) are specially developed and set-up in order to 

upgrade the fuel and get comparable properties as coal, or (ii) major revisions, even complete 

redesign, if the goal would be to directly used weakly treated or raw biomass. 

In any case, the technological challenges are significant, and the best solution would certainly 

need, at the same time, development efforts on the fuel pre-treatment processes and/or the 

injection technology, and on the plasma electro-burner technology itself.  

The existing coal plasma electro-burners require a particle size of 50-100 m [24]. The bio-

materials able to be convenient and grinded at this size could be dried non-filamentous ones 

such as wood-char, dried sewage sludge, roasted kernel, bone meal and dried leaf. So, a 

special technology for grinding and pulverizing at a micron-size these materials must be 

designed.  

On the burner side, it is important to note that the existing coal plasma electro-burners suffer 

from a lack of robustness due essentially to the plasma torch technology used inside them. 

The severe electrodes erosion coming from the combination of oxidative conditions and 

particles impact reduces drastically the life–time of the burners. Thus, whatever the fuel to be 

used, a consequent development effort must be done on the plasma torch technology before a 

large industrial deployment. 

Despite the technological challenges, a biomass plasma electro-burner technology (Figure 4) 

would offer evident advantages. A robust tunable device allowing generating from biomass 

pulverized in air and low electricity consumption a stable flame independently of external 

thermal conditions would be a great advance for many sectors. Obviously, the quality of the 

combustion offered by the burner would be determinant for targeting its applications. For 

example, glass work sector is more demanding than energy sector on the quality of exhaust 

gases. 
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Figure 4: Scheme of a biomass plasma electro-burner. 

 

Overall, in addition to the flexibility gain brought, the use of such biomass burners would 

allow guaranteeing for the future thermal installations a total independence from fossil fuels 

and making huge economy of atmospheric CO2. Assuming in the near future, a systematic 

regeneration of the biomass and availability of free-carbon electricity (renewable energy 

deployment), a biomass burner would lead to avoid the consumption of several million tons of 

fossil fuels. As an example, a 100 MWth/25 MWe biomass power plant needs to use 325 tons 

of oil per year for ensuring its flexibility and consequently emits 1980 tons/year of CO2. The 

use of plasma electro-burners in this case would require only 180 MWh carbon-free electricity 

per year for avoiding this CO2 pollution. 

 

7- THREE-PHASE AC PLASMA TECHNOLOGY 

 

Arc plasma technologies can be split into two main categories: DC and AC plasma torches 

[25-26]. DC plasma torches usually have a tip cylindrical geometry with the tip, generally 

cathode, located at the upstream axis of a narrow cylindrical nozzle, generally anode. The 

plasma plume is characterized by a very high velocity (several hundred m/s) resulting from 

the combined effect of the narrow nozzle diameter and the severe thermal expansion of the 

plasma gas due to strong gas heating. 

Despite continuous technological and material improvements DC plasma torches suffer from 

one critical weak spot:  electrode erosion resulting in limited electrode lifetime due to the 

combination of very strong thermal, mechanical, and chemical constrains. Another drawback 

of DC plasma torches is the need for delicate and costly electronics for the AC–DC current 

rectifier which generally accounts about 30 % of the overall capital and operating costs. 

On the other hand, AC plasma technologies have attractive features to exceed some of the 

critical drawbacks of DC plasma technologies [27]. In multiphase AC plasma systems, several 

arcs can coexist in a larger discharge chamber volume creating a large volume zone as the 

arcs are generally much less confined than in classical DC plasma torches. The plasma 

average temperature can consequently be significantly lower than in DC systems.  With the 

plasma temperature decrease, radiation and convection heat losses can be strongly reduced, 

increasing the overall electro-thermal efficiency. Unlike DC, multiphase AC plasma systems 

can be supplied thanks to simple transformers, thus significantly reducing OPEX and CAPEX 

costs while increasing reliability and scalability. Each electrode acts successively as anode 

and cathode, leading to a more symmetrical operating mode than in DC systems and limited 

electrode erosion. The convection transfer within the plasma can be enhanced by the strong 

arc motion resulting from the self-induced MHD forces. Finally, AC plasma systems can use 

different electrode materials that can be water-cooled (copper, stainless steel, tungsten…) or 

consumable (graphite…). 
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In 1973, at CNRS-Odeillo, France, Bonet started working on the development of a three-

phase AC plasma technology for the high temperature treatment of refractory materials [28]. 

The research led to a very intense technological effort, and to the study and analysis of a wide 

range of prototypes and design options together with electrode materials and plasma gases. 

Between 1979 and 1980, the French Lafarge cement company in collaboration with the 

Limoges University and CNRS-Odeillo led a collaborative research program on raw cement 

powder decarbonization based on Odeillo’s three-phase AC technology. The feasibility of the 

process was demonstrated but it was abandoned probably for economic reasons.  

In 1986, the French engineering company Bertin in collaboration with the French utility 

company EDF worked on the development of a hybrid 500 kW electro-burner prototype [29- 

30]. The plasma technology was inspired from Odeillo’s technology. Despite significant 

technological achievements, the concept never reached the industrial scale and was 

abandoned in the 1990s. 

The development of the three-phase AC technology started again in 1993 in collaboration 

between PROMES-CNRS and PERSEE MINES-ParisTech in the field of hydrocarbon 

cracking for the co-synthesis of carbon black and hydrogen [31-34]. The R&D continued 

between 1997 and 2003 through three successive European projects. In parallel with the 

production of carbon black, it was demonstrated the three-phase AC plasma technology was 

also particularly suitable for the large scale synthesis of fullerenes and carbon nanotubes [35-

36]. In 2002, the 250 kW three-phase AC plasma equipment, initially located at PROMES-

CNRS Odeillo, was moved to PERSEE MINES-ParisTech Sophia Antipolis. Between 2004 

and 2009, the development of the technology continued in collaboration between MINES-

ParisTech and TIMCAL with the objective of bringing the technology at a pilot scale. Since 

1993, four international patents have been granted, more than 30 papers were published in 

peer review journals [38-53] and four PhD theses carried out. 

In his PhD, Fabry 1999 [37] focused on the development of experimental devices, diagnostic 

tools for the three-phase AC reactor, experimental analyses based on macroscopic heat and 

mass balances, as well as experimental plasma flow diagnostics.  

Meanwhile, Ravary [38] demonstrated that the flow was highly influenced by the arc motion. 

The presence of three electrodes creates a mutual electromagnetic influence of the arcs which 

deeply modifies the. To analyze this complex behavior, a high-speed cinema camera was used 

to film the arc zone. Movies showed the importance of the electromagnetic forces applied on 

the arcs which consequently had very characteristics motions. On the theoretical side, the 

forces have been evaluated in a simplified geometry. This estimation proved to be in 

qualitatively good agreement with the phenomena. A simplified model derived from the 

electromagnetic force model was used as a source of momentum as input of the CFD model 

[39-40]. A comprehensive summary of achievements obtained between 1993 and 2003 is 

given in [41]. 

In his PhD, Rehmet 2013, [42] deepened the analysis of the three-phase AC plasma system on 

non-reactive conditions (nitrogen, syngas) through an original approach carried out  in parallel 

on  the theoretical and experimental sides. The experimental study was based on high speed 

video camera and electrical signal analyses. The theoretical analysis was made through the  

development of an unsteady 3D Magneto- Hydro-Dynamic (MHD) model using the CFD 

software Code_Saturne. A parametric study based on current, frequency, plasma gas flow rate 

and electrode configurations (coplanar and parallel), was carried out. These studies confirmed 

and highlighted the dominant influence of the electromagnetic phenomena. In a paper 

published in 2013, Rehmet [43] presented MHD numerical model. The experimental results 

published in a follow up paper [44-45] showed the arc behavior was totally in line with 

modeling results. Results showed that the electrode jets due to Maecker effect were playing an 

essential role. The influence of the electrode configuration was studied in [46]. In the coplanar 
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electrode configuration, the arcs remain confined within the inter-electrode gap and arc 

behavior is mostly controlled by electrode jets while, in the parallel electrode configuration, 

the arcs length increases. In this configuration, arcs are pushed toward the axial and radial 

directions by the combined effect of electrodes jets and Lorentz forces along the arc column. 

This work showed the plasma power could efficiently be controlled by artfully adjusting the 

electrodes layout.  

At this time, the 3-phase AC plasma technology with graphite electrode was able to run under 

any neutral or reducing plasma gas (argon, helium,  nitrogen, hydrogen, carbon monoxide, 

syngas,…)  but hardly under oxidizing conditions (air, oxygen, carbon dioxide,…) due to 

strong electrodes erosion. This issue was addressed by Takali in 2015. In his PhD dissertation 

[47], Takali studied the development of a 100 kW plasma torch working in air to be 

embedded in an industrial electro-burner in making possible an operation in oxidizing 

environment by reducing as much as possible the air erosion of the graphite electrodes. For 

this purpose, different methods were imagined, investigated and tested on both theoretical 

(numerical modeling) and experimental sides. The by far best solution involved the injection 

of a carbonaceous element under finely controlled conditions acting as sheathing agent at the 

vicinity of the electrodes. The challenges lies in being able to control the oxidation to locally 

keep an atmosphere having a mixture closed to syngas (mixture  CO-H2) which behaves 

neutral at high temperature with  carbon (neither oxidant nor reducing). To illustrate this, 

Figure 5 represents the composition (molar fractions at thermodynamic equilibrium) of a 

mixture (C / O2 / N2) versus temperature for four increasing C/O2 ratios: 0.2, 1, 2 and 4 

respectively. It appears clearly that cases (a) and (b) must be avoided since it would strongly 

erode graphite electrodes while cases (c) and (d) must be researched since it would not 

chemically interact with solid carbon.   
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(c) (d) 

Figure 5: Composition (molar fractions at thermodynamic equilibrium) of a mixture (C / O2 / 

N2) versus temperature for  four  increasing C/O2 ratios: 0.2, 1, 2 and 4 respectively 

 

Among the different cheap carbonaceous element likely to be used as electrodes sheathing, 

natural gas is particularly attractive. Indeed, its partial combustion in air would produce a 

mixture of carbon monoxide and hydrogen (syngas). In order to study this, a CFD numerical 

model  based on the Jones-Lindstedt reduced kinetic model [48] has been developed in the 

fluent CFD code (« Laminar finite-rate » model). 
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Table 2: Kinetics data for the Jones and Lindstedt mechanism. 

Methane is injected around the electrodes at three flow rates: 1.5 Nm
3
.h

-1
, 3 Nm

3
.h

-1
 and 6 

Nm
3
.h

-1 
respectively. As shown on Figure 6, methane flow rate shows a huge influence on 

spatial distribution of the gas composition. At high methane flow rate, methane is blown 

toward the discharge zone and reaction with oxygen takes place below the electrodes. For this 

reason, the areas with high CO and  H2 concentrations are  localised undernith the electrodes. 

When decreasing the methane flow rate from 6 Nm
3
.h

-1 
to 3 Nm

3
.h

-1
, CO and  H2 are  

produced along  the  transversal  area of the électrode. In this case, as a result of the methane 

velocity decrease, the residence time at the vicinity of the electrodes is higher and in line with 

the kinetics of the partial oxidation. On the other hand, when reducing the methane flow rate 

to 1.5 Nm
3
.h

-1
, the methane velocity become too low to sheath electrodes and the  CO and  H2 

remains very low. Experiments confirmed the great interest of this solution together with the 

strong sensitivity of methane flow rate on the local concentration of CO and and  H2 and 

consequenly on the erosion rate of the electrodes. In our specific case, an optimal methane 

flow rate around  3 Nm
3
.h

-1
.. was found giving erosion rates as low as 0.1 to 0.01 g/kWh 

similar to erosion rates obtained with nitrogen. 
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To finish, Figure 7 illustrates drawings of the three-phase AC plasma torch specially designed 

for being integrated at a later stage in a burner and its combustion test bench. The behavior of 

the torch in reactive conditions, i.e. with pulverized solid biomass injection in air, is currently 

under study. The first results obtained are very encouraging in terms of combustion 

efficiency. The different biomass fuels injected at different sizes of pulverization (wood, dried 

sewage sludge) are nearly 100% burned (conversion into CO2 and H2O) even though the 

biomass flow rate is low compared to the plasma power because of the limitation of the 

thermal power capacity of the test bench. The test bench is equipped with a special window in 

order to visualize the plasma and the generated flame with a high-speed camera. The flame 

obtained is extremely stable and the erosion rate of the torch electrodes is of the same order of 

magnitude as in neutral condition operation thanks to the active thermo-chemical gas 

sheathing technique set-up. A complete experimental study of biomass combustion will be 

reported in a next paper. 

 

 
Figure 7: Drawings of the three-phase AC plasma torch and its biomass combustion test 

bench. 

 

8- CONCLUSION 

 

In the current context of global warming, the use of poor LHV biomass and waste for heat and 

power production will certainly play a major role in the next coming years. Unfortunately, 

poor LHV feedstock suffers from a major weakness, particularly when in solid form: they can 

hardy burn in autonomous burners without an external assistance. For few years, a new 

alternative solution derived from the coal industry has emerged: the plasma assistance 

combustion. This solution is particularly attractive in the perspective low carbon electricity 

production thanks to large scale deployment of renewable energy. 
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The principle is based on the thermochemical activation of the combustion thanks to the use 

of a thermal plasma whose power generally does not exceed few percent of the combustion 

thermal power. Such systems, called plasma electro-burners present number of advantages 

versus traditional technologies among which: their ability to deliver and tune the enthalpy 

and/or temperature through an external energy supply with temperatures that cannot be 

achieved with combustion methods, their capacity to be an intense source of radicals in air, 

their very short dynamic response, their limited environmental impact (no direct CO2 

emissions), their flexibility and ability to operate under very different atmospheres, and their 

compactness. Most plasma electro-burners technologies today on the market use DC plasma 

torches. These technologies suffer from many drawbacks among which: limited electrodes 

lifetime, poor reliability, important water cooling needs, need of AC/DC transformers, etc. 

leading to high CAPEX and OPEX.  

With the objective to exceed these limits and reduce OPEX and CAPEX while increasing 

reliability, the Center PERSEE MINES-ParisTech has been working in the development of an 

original three-phase AC plasma technology to be integrated in a plasma electro-burner. This 

technology based on graphite electrodes was initially designed for operating under inert or 

reducing conditions (cracking of methane, gasification, etc.). The main barrier for using this 

technology under oxidizing conditions was linked with the huge electrode erosion in the 

presence of oxygen. This challenge has succeeded thanks to an active thermo-chemical gas 

sheathing of the graphite electrodes. This paper presents the state of art and the main 

achievements on the plasma technology with a special focus on the limitation of electrodes 

erosion. It paves the way towards the design of a future robust and flexible biomass plasma 

electro-burner. 
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