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Two sided boundary stabilization of heterodirectional linear coupled
hyperbolic PDEs

Jean Auriol1, and Florent Di Meglio1

1 MINES ParisTech, PSL Research University, CAS - Centre automatique et systèmes, 60 bd St Michel 75006 Paris, France

We solve the problem of stabilizing a general class of linear first-order hyperbolic systems using actuation at both boundaries
of the spatial domain. We design a novel Fredholm transformation similarly to backstepping approaches to derive a boundary
controller and a boundary observer enabling stabilization by output feedback. This yields an explicit full-state feedback law that
achieves the theoretical lower bound for convergence to zero.

Index Terms—Distributed parameter systems, Linear systems, Backstepping, Stability of linear systems, Linear system observers

I. INTRODUCTION

THIS article solves the problem of boundary stabilization
of a general class of coupled heterodirectional linear

first-order hyperbolic systems of Partial Differential Equations
(PDEs) in minimum time, with arbitrary numbers m and n
of PDEs in each direction. The actuation is applied on both
boundaries.

Most physical systems involving a transport phenomenon
can be modeled using hyperbolic partial differential equa-
tions (PDEs): traffic flow [4], heat exchangers [24], open
channel flow [10], [13] or multiphase flow [15], [17]. The
backstepping approach [18], [21] has enabled the design of
stabilizing full-state feedback laws for these systems. These
controllers are explicit, in the sense that they are expressed
as a linear functional of the distributed state at each instant.
The (distributed) gains can be computed offline. Comparing
results obtained via backstepping design with existence results
for stabilizing controllers reveals a gap. In [20], an extensive
review of controllability results for linear hyperbolic systems is
given, along with the theoretical lower bounds for convergence
times. These bounds vary according, mainly, to the number and
location of available actuators. Backstepping results have, until
now, focused on single-boundary actuation, see e.g. [12] for
the case of two coupled PDEs, [18] for an arbitrary number of
PDEs or [5] for a minimum-time result in the general (single
boundary actuation) case.

When actuation is applied at both boundaries, the literature
usually focuses on design of dissipative boundary conditions
to stabilize the system. This does not guarantee stabilization in
the minimum theoretical time, and is only possible for small
coupling terms between PDEs, but can generally be achieved
using static boundary output feedback, which is much less
computationally intensive. Recently the problem of stabilizing
a system of two coupled PDEs with control at both sides has
been solved in [22] in the case of reaction-diffusion PDEs and
for 2-state heterodirectional linear PDEs with equal transport
velocities. A generalization of this result for a general system
of two hyperbolic PDEs is given in [6].
The main contribution of this paper is a generalization of this
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result with the design of a minimum time stabilizing controller
in the general case of heterodirectional hyperbolic PDEs with
actuation at both boundaries. A proposed boundary feedback
law ensures finite-time convergence of the states to zero in
minimum time. The minimum time defined [20] is the largest
time between the different transport times in each direction.

Applications where controls and/or sensors are located at
the two boundaries include control of open channel flow [7]
and state and parameter estimation for oil drilling [14]. The
process of drilling for hydrocarbons involves the circulation
of a drilling fluid inside the serveral kilometer-long well to
pressurize and clean the borehole. Under certain conditions,
oil and gas flow from the reservoir into the well, resulting in
a multiphase flow that needs to be monitored to ensure safety
of operations. Sensors are typically located at the surface and,
on more modern drilling facilities, at the bottom of the well. In
this paper, we investigate the benefits of using sensors at both
boundaries by conducting simulations on a distributed model
for two-phase flow [2].

From a theoretical point of view, our approach, similar to
the one presented in [6] is the following. Using a Fredholm
transformation, the system is mapped to a target system with
desirable stability properties. This target-system is designed
as an exponentially stable cascade. The well-posedness of
the Fredholm transformation is a consequence of a clever
choice of the domain on which the kernels are defined and
of the cascade structure of the target system. A full-state
feedback law guaranteeing exponential stability of the zero
equilibrium in the L2-norm is then designed. This full-state
feedback law would require fully distributed measurements in
practice, which is not realistic. For this reason we derive a
boundary observer relying on measurements of the states at
both boundaries.

The main technical difficulty of this paper is to prove well-
posedness of the Fredholm transformation and its invertibility.
Interestingly, the transformation kernels satisfy a system of
equations with a cascade structure akin to the target system
one. This structure enables a recursive proof of existence of
the transformation kernels.

The paper is organized as follows. In Section II we in-
troduce the model equations and the notations. In Section
III we present the stabilization result: the target system and



2

its properties are presented in Section III-A. In Section III-
B, we derive the integral transformation and we present the
domains on which the kernels are defined. The well-posedness
of the kernel equations is proved in Section IV. This proof
uses an important theorem which is given in Appendix in
order to make the whole paper more readable. In Section
V we prove the invertibility of the Fredholm transformation
using an operator approach. The control feedback law and
its properties are given in Section VI. In Section VII we
present the uncollocated observer design. This observer is
obtained with the a similar approach than the one developed
for the control law. Finally, some simulation results are given
in Section VIII. We conclude this article with some remarks
presented in Section IX.

II. PROBLEM DESCRIPTION

A. System under consideration and notations

We consider the following general linear hyperbolic sys-
tem which appear in Saint-Venant equations, heat exchangers
equations and other linear hyperbolic balance laws (see [8]).

ut(t, x) + Λ+ux(t, x) = Σ++u(t, x) + Σ+−v(t, x) (1)

vt(t, x)− Λ−vx(t, x) = Σ−+u(t, x) + Σ−−v(t, x) (2)

evolving in {(t, x)| t > 0, x ∈ [0, 1]}, with the following
linear boundary conditions

u(t, 0) = U(t), v(t, 1) = V (t) (3)

where

u = (u1 . . . un)T , v = (v1 . . . vm)T (4)

Λ+ =

λ1 0
. . .

0 λn

 , Λ− =

µ1 0
. . .

0 µm

 (5)

with constant speeds:

−µm < · · · < −µ1 < 0 < λ1 < · · · < λn (6)

and constant real coupling matrices

Σ++ = {σ++
ij }1≤i≤n,1≤j≤n Σ+− = {σ+−

ij }1≤i≤n,1≤j≤m
(7)

Σ−+ = {σ−+
ij }1≤i≤m,1≤j≤n Σ−− = {σ−−ij }1≤i≤m,1≤j≤m

(8)

The initial conditions denoted u0 and v0 are assumed to belong
to L2([0, 1]). In the following we denote

∀i, j aij =
λi

λi + µj
(9)

We also define ā such that

|ā− 1

2
| = min

1≤i≤n,1≤j≤m
|aij −

1

2
| (10)

The aij and ā play an important role in the design of the target
system.

Remark 1: ā can be written as akl with k ∈ [0, n] and
l ∈ [0,m] (the uniqueness is not guaranteed). For this partic-
ular solution we denote λ̄ and µ̄ the corresponding transport
velocities.

Remark 2: The coupling terms are assumed constant here
but the results of this paper can be adjusted for spatially-
varying coupling terms.

Remark 3: Without any loss of generality we can assume
that ā ≥ 1

2 (if this is not the case we make the change of
variables x̄ = 1 − x). This assumption will be done in the
following

B. Well-posedness and operator formulation

We can rewrite the system in the abstract form

d

dt

(
u
v

)
= A

(
u
v

)
+B

(
U
V

)
(11)

where the operators A and B can be identified through their
adjoints. The operator A is thus defined by

A :D(A) ⊂ (L2(0, 1))n+m → (L2(0, 1))n+m(
u
v

)
7−→

(
−Λ+ux + Σ++u+ Σ+−v
Λ−vx + Σ−+u+ Σ−−v

)
(12)

with

D(A) = {(u, v) ∈ (H1(0, 1))n+m|u(0) = v(1) = 0} (13)

A is well defined and its adjoint A∗ is

A∗ :D(A∗) ⊂ (L2(0, 1))n+m → (L2(0, 1))n+m(
u
v

)
7−→

(
Λ+ux + (Σ++)Tu+ (Σ−+)T v
−Λ−vx + (Σ+−)Tu+ (Σ++)T v

)
(14)

with

D(A∗) = {(u, v) ∈ (H1(0, 1))n+m|u(1) = v(0) = 0} (15)

The operator B is defined by

< B

(
U
V

)
,

(
z1

z2

)
>= z1(0)tΛ+U + z2(1)TΛ−V (16)

Its adjoint is

B∗
(
z1

z2

)
=

(
z1(0)TΛ+

z2(1)TΛ−

)
(17)

C. Control problem

The goal is to design feedback control inputs U(t) =
(U1(t), . . . , Un(t))T and V (t) = (V1(t), . . . , Vm(t))T such
that the zero equilibrium is reached in minimum time t = tF ,
where

tF = max

{
1

µ1
,

1

λ1

}
(18)

This “minimum time” is the time needed for the slowest
characteristic to travel the entire length of the spatial domain.
The existence of a control law reaching the null equilibrium
in time tF is proved in [20] using a method of characteristics.
To the best of our knowledge, no explicit feedback law has
been designed to achieve this goal. Previous approaches yield
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• exponential stability for small coupling terms when two-
sided static output feedback is used [8].

• finite-time stability in time 1
λ1

+ 1
µ1

> max

{
1

µ1
,

1

λ1

}
when one-sided backstepping design is used, i.e with one
controlled boundary only ([5]).

• finite-time stability in time max

{
1

µ
,

1

λ

}
when only two

equations are considered ([6]).
In the second case, the system is mapped with a Volterra
transformation to a target system that has a cascade structure,
which is natural for backstepping. In the third case, a Fredholm
transformation is used to map the system to a target system
with desirable properties of stability. In the following we use
a combination of these two approaches.

III. CONTROL DESIGN

The control design is based on a modified backstepping
approach: using a specific transformation, we map the system
(1)-(3) to a target system with desirable properties of stability.
However, unlike the classical backstepping approach where a
Volterra transformation is used, we use a Fredholm transfor-
mation here.

A. Target system design

We map the system (1)-(3) to the following system

αt(t, x) + Λ+αx(t, x) = Ω(x)α(t, x) + Γ(x)β(t, x) (19)

βt(t, x)− Λ−βx(t, x) = Ω̄(x)β(t, x) + Γ̄(x)α(t, x) (20)

with the following boundary conditions

α(t, 0) = 0 β(t, 1) = 0 (21)

while Ω and Ω̄ ∈ L∞(0, 1) are upper triangular matrices
with the following structure

Ω(x) =


ω1,1(x) ω1,2(x) . . . ω1,n(x)

0
. . . . . .

...
...

. . . ωn−1,n−1(x) ωn−1,n(x)
0 . . . 0 ωn,n(x)


(22)

Ω̄(x) =


ω̄1,1(x) ω̄1,2(x) . . . ω̄1,m(x)

0
. . . . . .

...
...

. . . ω̄m−1,m−1(x) ω̄m−1,m(x)
0 . . . 0 ω̄m,m(x)


(23)

The coefficients of the matrices Γ(x) and Γ̄(x) are defined by

∀1 ≤ i ≤ n ∀1 ≤ j ≤ m

Γij(x) =

{
0 if aij ≥ ā or x < aij
γij(x) otherwise

(24)

∀1 ≤ i ≤ m ∀1 ≤ j ≤ n

Γ̄ij(x) =

{
0 if aji < 1− ā or x > aji
γ̄ij(x) ohterwise

(25)

Remark 4: The aij coefficients correspond to the spatial
position where the characteristic leaving x = 0 with velocity
λi and the one leaving x = 1 with velocity µj intersect.

Remark 5: As it will appear in the proof, the coefficients Γ
and Γ̄ do not make the system unstable due to their particular
cascade structure. Their presence is necessary to prove the
well-posedness of the backstepping transformation presented
bellow. The following example illustrates this particular struc-
ture in a simple case.

Example 1: We consider the following coefficients

n = 3, m = 2 Λ+ =

0.5 0 0
0 2 0
0 0 4

 Λ− =

(
1 0
0 3

)
(26)

We define the matrix A such that Aij = aij = λi
λi+µj

A =

(
1
3

2
3

4
5

1
7

2
5

4
7

)T
(27)

It yields ā = a32 = 4
7 . Consequently the matrices Γ and Γ̄

have the following structure

Γ(x) =

∗ ∗0 ∗
0 0

 Γ̄(x) =

(
0 ∗ ∗
0 0 ∗

)
(28)

where the potential non-null terms are represented by ∗. These
matrices have some structural properties that will be analyzed
in Section IV-B.
Besides, the following lemma assesses the finite-time conver-
gence of the target system.

Lemma 1: The system (19)-(20) reaches its zero equilibrium
in finite-time tF = max{ 1

λ ,
1
µ} = 1

λ .
Proof: ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ n, system (19)-(20) can be

rewritten as

αit(t, x) + λiα
i
x(t, x) =

n∑
p=i

ωip(x)αp(t, x)

+

m∑
p=1

γip(x)h[aip,1](x)βp(t, x)

(29)

βjt (t, x)− µjβjx(t, x) =

m∑
p=j

ω̄jp(x)βp(t, x)

+

n∑
p=1

γ̄jp(x)h[0,apj ](x)αp(t, x)

(30)

where, for any interval I , hI is defined by

hI(x) =

{
1 if x ∈ I
0 else (31)
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with the convention

γij(x) = 0 if aij > ā (32)
γ̄ij(x) = 0 if aji ≤ 1− ā (33)

By induction, let us consider the following property P (s)
defined for all 1 ≤ s ≤ n

P (s) : ∀p ≥ n+ 1− s, if t ≥ x

λp
then αp(x, t) = 0

Initialization: The initialization can be proved using a similar
technique than the one presented bellow in the induction and
is not detailed here.
Induction: Let us assume that the property P (s− 1) (1 < s ≤
n) is true. We denote r = n + 1 − s Integrating the rth line
of (29) along its characteristic lines and using the boundary
condition αr(t, 0) = 0, yields:

αr(t, x) =

∫ x
λr

0

n∑
p=r

ωrp(x− λrν)αp(t− ν, x− λrν)

+

m∑
p=1

γrp(x− λrν)h[arp,1](x− λrν)βp(t− ν, x− λrν)dν

(34)

with x ∈ [0, 1] and t ≥ x
λr

. Consequently, ∀p > r:

t ≥ x

λr
⇒ (1− λr

λp
)
x

λr
≤ t− x

λp

⇒ (1− λr
λp

)ν ≤ t− x

λp
∀ν ∈ [0,

x

λr
]

⇒ t− ν ≥ x− λrν
λp

⇒ αp(t− ν, x− λrν) = 0 (35)

The last implication uses the fact that P (s − 1) is true. Let
us now consider the following property P1(q) defined for all
1 ≤ q ≤ m

P1(q) : ∀x > arq, ∀t ≥ 1− x
µq

, βq(t, x) = 0

Initialization: The initialization can be proved using a similar
technique than the one presented bellow in the induction and
is not detailed here.
Induction: Let us assume that the property P1(q−1) (1 < q ≤
m) is true. Integrating the qth line of (30) along its charac-
teristic lines and using the boundary condition βq(t, 1) = 0,
yields:

βq(t, x) =

∫ 1−x
µq

0

n∑
p=q

ω̄qp(µqν + x)βp(t− ν, µqν + x)

+

n∑
p>r

γ̄qp(µqν + x)h[0,apq ](µqν + x)αp(t− ν, µqν + x)dν

(36)

with 1 ≥ x > arq, and t ≥ 1−x
µq

(this explains why the last sum
starts at p > r). Consequently, ∀p ≥ q and ∀ν ∈ [0, 1−x

µq
] such

that µqν + x ≤ apq (in order to have h[0,apq](µqν + x) 6= 0):

t ≥ 1− x
µq

⇒t− x

λp
≥ (

λp
µq(λp + µq)

− x

µq
)(1 +

µq
λp

)

⇒t− x

λp
≥ (

apq
µq
− x

µq
)(1 +

µq
λp

)

⇒t− x

λp
≥ (1 +

µq
λp

)ν

⇒t− ν ≥ x+ µqν

λp

Consequently, using the fact that P (s − 1) is true, it yields
∀ν ∈ [0, 1−x

µq
] such that µqν + x ≥ apq

αp(t− ν, µqν + x) = 0 (37)

Consequently the second sum in (36) is always null for t ≥
1−x
µq

. Moreover, using the fact that P1(q − 1) is true, we can
simplify the first sum removing most of the terms. We can
rewrite (36) as:

βq(t, x) =

∫ 1−x
µq

0

ω̄qq(µqν + x)βq(t− ν, µqν + x)dν (38)

with 1 ≥ x > arq, and t ≥ 1−x
µq

. Consequently βq(t, x) = 0

and P1(q) is true. This achieves the proof of P1(q) for all
1 ≤ q ≤ m.
For a given p we now focus on the following term of (34)

γrp(x− λrν)h[arp,1](x− λrν)βp(t− ν, x− λrν) (39)

This term can be non null only if

x− λrν ≥ arp ∀ν ∈ [0,
x

λr
] (40)

It yields

µq + λr
λr

x− (µq + λr)ν ≥ 1⇔ µq
λr
x+ x− 1 ≥ (µq + λr)ν

(41)

Since t ≥ x
λr

it yields

µqt+ x− 1 ≥ (µq + λr)ν ⇒ µq(t− ν) ≥ 1− x+ λrν
(42)

Using P1 we can deduce that (39) is always null. Conse-
quently, combining this result with (35), we can rewrite (34)
as

αs(t, x) =

∫ x
λr

0

ωrr(x− λrν)αr(t− ν, x− λrν) (43)

with x ∈ [0, 1] and t ≥ x
λr

. Consequently it yields

∀x ∈ [0, 1], t ≥ x

λp
⇒ αp(x, t) = 0 (44)

It achieves the recursion. It is then quite straightforward to
prove a similar result for β. Consequently we have

∀t ≥ 1

λ1
, α(x, t) = 0 (45)

∀t ≥ 1

µ1
, β(x, t) = 0 (46)
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This concludes the proof.
Using an operator framework, system (19)-(20) rewrites as

d

dt

(
α
β

)
= A0

(
α
β

)
(47)

The operator A0 is defined by

A0 : D(A0) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
α
β

)
7−→

(
−Λ+αx + Ωα+ Γβ
Λ−βx + Ω̄β + Γ̄α

)
(48)

with

D(A0) = {(α, β) ∈ (H1(0, 1))2|α(0) = β(1) = 0} (49)

A0 is well defined and its adjoint A∗0 is

A∗0 : D(A∗0) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
α
β

)
7−→

(
αTxΛ+ + αTΩ + βT Γ̄
−βTx Λ− + βT Ω̄ + αTΓ

)T
(50)

with

D(A∗0) = {(α, β) ∈ (H1(0, 1))2|α(1) = β(0) = 0} (51)

B. Fredholm transformation

1) Definition of the transformation
In order to map the original system (1)-(3) to the target

system (19)-(21), we use the following transformation

α(t, x) = u(t, x)

+ h[0,ā](x)

∫ − µ̄
λ̄
x+1

x

(K(x, ξ)u(t, ξ) + L(x, ξ)v(t, ξ))dξ

+ h]ā,1](x)

∫ x

λ̄
µ̄ (1−x)

(M(x, ξ)u(t, ξ) +N(x, ξ)v(t, ξ))dξ

(52)
β(t, x) = v(t, x)

+ h[0,ā](x)

∫ − µ̄
λ̄
x+1

x

(K̄(x, ξ)u(t, ξ) + L̄(x, ξ)v(t, ξ))dξ

+ h]ā,1](x)

∫ x

λ̄
µ̄ (1−x)

(M̄(x, ξ)u(t, ξ) + N̄(x, ξ)v(t, ξ))dξ

(53)

where we recall that for any interval I, hI(x) is defined by

hI(x) =

{
1 if x ∈ I
0 else (54)

We define the following triangular domains, depicted in Figure
1:

T0 = {(x, ξ)| x ∈ [0, ā], x ≤ ξ ≤ − µ̄
λ̄
x+ 1} (55)

T̄1 = {(x, ξ)| x ∈ [ā, 1],
λ̄

µ̄
(1− x) < ξ ≤ x} (56)

The kernels K,L, K̄ and L̄ are defined on T0. The kernels
M,N, M̄ and N̄ are defined on T̄1. They are assumed con-
tinuous in their domains of definition. They all have yet to be
defined.

Remark 6: One may think that due to the use of the h-
functions, the transformation presents a discontinuity in x = ā.
Nevertheless, one can check that the right and left limits are
equal since the integrals vanish and that consequently we do
not have any discontinuity.

Remark 7: Since α(0) = β(1) = 0 the two control laws U
and V can be computed as functions of (u, v).

Remark 8: This transformation is a Fredholm transformation
and can be rewritten using integrals between 0 and 1 as follows

α(t, x) = u(t, x)−
∫ 1

0

Q11(x, ξ)u(t, ξ) +Q12(x, ξ)v(t, ξ)dξ

(57)

β(t, x) = v(t, x)−
∫ 1

0

Q21(x, ξ)u(t, ξ) +Q22(x, ξ)v(t, ξ)dξ

(58)

with

Q11(x, ξ) = −K(x, ξ)h[x,− µ̄
λ̄
x+1](ξ)h[0,ā](x)

−M(x, ξ)h[ λ̄µ̄ (1−x),x](ξ)h]ā,1](x) (59)

Q12(x, ξ) = −L(x, ξ)h[x,− µ̄
λ̄
x+1](ξ)h[0,ā](x)

−N(x, ξ)h[ λ̄µ̄ (1−x),x](ξ)h]ā,1](x) (60)

Q21(x, ξ) = −K̄(x, ξ)h[x,− µ̄
λ̄
x+1](ξ)h[0,ā](x)

− M̄(x, ξ)h[ λ̄µ̄ (1−x),x](ξ)h]ā,1](x) (61)

Q22(x, ξ) = −L̄(x, ξ)h[x,− µ̄
λ̄
x+1](ξ)h[0,ā](x)

− N̄(x, ξ)h[ λ̄µ̄ (1−x),x](ξ)h]ā,1](x) (62)

2) Kernel equations
We now differentiate the Fredholm transformation (52)-(53)

with respect to time and space to compute the equations
satisfied by the kernels. We start with the α-transformation
(52).

If x ≤ ā: Differentiating (52) with respect to space and
using the Leibniz rule yields

αx(t, x) = ux(t, x)−K(x, x)u(t, x)− L(x, x)v(t, x)

− µ̄

λ̄
K(x,− µ̄

λ̄
x+ 1)u(− µ̄

λ̄
x+ 1)

− µ̄

λ̄
L(x,− µ̄

λ̄
x+ 1)v(− µ̄

λ̄
x+ 1)

+

∫ − µ̄
λ̄
x+1

x

(Kx(x, ξ)u(t, ξ) + Lx(x, ξ)v(t, ξ))dξ (63)

Differentiating (52) with respect to time, using (1), (2) and
integrating by parts yields

αt(t, x) = −Λ+ux(t, x) + Σ++u(t, x) + Σ+−v(t, x)

+K(x, x)Λ+u(t, x)− L(x, x)Λ−v(t, x)

−K(x,− µ̄
λ̄
x+ 1)Λ+u(t,− µ̄

λ̄
x+ 1)

+ L(x,− µ̄
λ̄
x+ 1)Λ−v(t,− µ̄

λ̄
x+ 1)

+

∫ − µ̄
λ̄
x+1

x

(Kξ(x, ξ)Λ
+u(t, ξ) + Lξ(x, ξ)Λ

−v(t, ξ))dξ

(64)
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Plugging these expressions into the target system (19)-(20)
yields the following system of kernel equations

0 =Σ++ − Λ+K(x, x) +K(x, x)Λ+ − Ω(x) (65)
0 =Σ+− − Λ+L(x, x)− L(x, x)Λ− − Γ(x) (66)

0 =− µ̄

λ̄
Λ+L(x,− µ̄

λ̄
x+ 1) + L(x,− µ̄

λ̄
x+ 1)Λ− (67)

0 =
µ̄

λ̄
Λ+K(x,− µ̄

λ̄
x+ 1) +K(x,− µ̄

λ̄
x+ 1)Λ+ (68)

0 =Λ+Kx(x, ξ) +Kξ(x, ξ)Λ
+ +K(x, ξ)Σ++

+ L(x, ξ)Σ−+ − Ω(x)K(x, ξ)− Γ(x)K̄(x, ξ) (69)
0 =Λ+Lx(x, ξ)− Lξ(x, ξ)Λ− +K(x, ξ)Σ+−

+ L(x, ξ)Σ−− − Ω(x)L(x, ξ)− Γ(x)L̄(x, ξ) (70)

if x > ā: Similarly we get

0 =Σ++ + Λ+M(x, x)−M(x, x)Λ+ − Ω(x) (71)

0 =Σ+− + Λ+N(x, x) +N(x, x)Λ− − Γ(x) (72)

0 =− λ̄

µ̄
Λ+N(x,− λ̄

µ̄
(x− 1)) +N(x,− λ̄

µ̄
(x− 1))Λ− (73)

0 =
λ̄

µ̄
Λ+M(x,− λ̄

µ̄
(x− 1)) +M(x,− λ̄

µ̄
(x− 1))Λ+ (74)

0 =Λ+Mx(x, ξ) +Mξ(x, ξ)Λ
+ +M(x, ξ)Σ++

+N(x, ξ)Σ−+ − Ω(x)M(x, ξ)− Γ(x)M̄(x, ξ) (75)

0 =Λ+Nx(x, ξ)−Nξ(x, ξ)Λ− +M(x, ξ)Σ+−

+N(x, ξ)Σ−− − Ω(x)N(x, ξ)− Γ(x)N̄(x, ξ) (76)

We now compute the kernels for the β-transformation
if x ≤ ā: Differentiating (53) with respect to space and time
and then plugging into the target system (19)-(20) yields the
following system of kernel equations

0 =Σ−+ + Λ−K̄(x, x) + K̄(x, x)Λ+ − Γ̄(x) (77)

0 =Σ−− − Λ−L̄(x, x) + L̄(x, x)Λ− − Ω̄(x) (78)

0 =− K̄(x,− µ̄

λm
x+ 1)Λ+ +

µ̄

λ̄
Λ−K̄(x,− µ̄

λ̄
x+ 1) (79)

0 =
µ̄

λ̄
Λ−L̄(x,− µ̄

λ̄
x+ 1) + L̄(x,− µ̄

λm
x+ 1)Λ− (80)

0 =− Λ−K̄x(x, ξ) + K̄ξ(x, ξ)Λ
+ + K̄(x, ξ)Σ++

+ L̄(x, ξ)Σ−+ − Ω̄(x)K̄(x, ξ)− Γ̄(x)K(x, ξ) (81)
0 =− Λ−L̄x(x, ξ)− L̄ξ(x, ξ)Λ− + K̄(x, ξ)Σ+−

+ L̄(x, ξ)Σ−− − Ω̄(x)L̄(x, ξ)− Γ̄(x)L(x, ξ) (82)

if x > ā: Similarly, we get

0 =Σ−+ − Λ−M̄(x, x)− M̄(x, x)Λ+ − Γ̄(x) (83)
0 =Σ−− + Λ−N̄(x, x)− N̄(x, x)Λ− − Ω̄(x) (84)

0 =
λ̄

µ̄
Λ−N̄(x,− λ̄

µ̄
(x− 1)) + N̄(x,− λ̄

µ̄
(x− 1))Λ− (85)

0 =− λ̄

µ̄
Λ−M̄(x,− λ̄

µ̄
(x− 1)) + M̄(x,− λ̄

µ̄
(x− 1))Λ+

(86)
0 =− Λ−M̄x(x, ξ) + M̄ξ(x, ξ)Λ

+ + M̄(x, ξ)Σ++

+ N̄(x, ξ)Σ−+ − Ω̄(x)M̄(x, ξ)− Γ̄(x)M(x, ξ) (87)
0 =− Λ−N̄x(x, ξ)− Λ−N̄ξ(x, ξ) + M̄(x, ξ)Σ+−

+ N̄(x, ξ)Σ−− − Ω̄(x)N̄(x, ξ)− Γ̄(x)N(x, ξ) (88)

The well-posedness of all these kernel equations is assessed
in the following theorems

Theorem 1: Consider system (65)-(70) and (77)-(82). There
exists a unique solution K, L, K̄ and L̄ in L∞(T0)

Theorem 2: Consider system (71)-(76) and (83)-(88). There
exists a unique solution M , N , M̄ and N̄ in L∞(T1)
The proof of these theorems is described in the following
section and uses the cascade structure of the kernel equations
(which is due to the particular shapes of the matrices Ω, Ω̄, Γ
and Γ̄)

IV. WELL-POSEDNESS OF THE KERNEL EQUATIONS

In this section we prove Theorem 1. The proof of Theorem 2
is quite similar and is not detailed here. The proof follows
three steps:
• First, we develop the kernel equations and the associated

boundary conditions.
• Then we define a particular sequence in which to solve

the equations using the properties of the matrices Γ and
Γ̄.

• Finally, this sequence is used in a recursive approach to
complete the proof.

For every iteration of the recursion we prove that the ith

line of the system of kernel PDEs Kij , Lij (resp. K̄ij , L̄ij) is
well-posed. This proof involves the following well-posedness
theorem.

Theorem 3: Consider the following system of hyperbolic
equations

εj∂xFj(x, ξ) + νj∂ξFj(x, ξ) = Σj(x, ξ)F (x, ξ) (89)

where F = (F1 . . . Fn+m) is defined on the triangle D:

D = {(x, ξ)|x ≤ ξ c1ξ ≤ c1 − c2x d1ξ ≥ d1 − d2x}
(90)

where the coefficients c1, c2, d1, d2 are all positive. The corre-
sponding boundary conditions are defined on a closed subset
Rj included on the boundary of the domain ∂D

Fj|Rj = fj (91)

Assume
• that the homogeneous system, obtained by taking

Σ(x, ξ) = 0 in (89) along with boundary conditions (91)
is well-posed;

• that there exists αj > 0 such that the following inequal-
ities holds for all j = 1, . . . , n+m

∀(x, ξ) ∈ D αjεj(x) + νj(ξ) < −δ < 0 (92)

Then the system (89) with boundary conditions (91) has
an unique solution F ∈ L∞(D).
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Proof: The proof of this theorem is given in Appendix.

Remark 9: A necessary and sufficient condition for the first
assumption to be satisfied is that, for every j = 1 . . . n + m
the characteristics defined by the εj , νj uniquely connect each
point of T0 to Dj .

A. Development of the kernel equations

We only focus on the kernels K,L, K̄ and L̄ defined on T0

since the proof is similar for the remaining kernels. Developing
(65)-(70) and (77)-(82) we get the following set of kernel
PDEs:

for 1 ≤ i ≤ n, 1 ≤ j ≤ n

λi∂xKij(x, ξ) + λj∂ξKij(x, ξ) = −
n∑
k=1

σ++
kj Kik(x, ξ)

−
m∑
p=1

σ−+
pj Lip(x, ξ) +

∑
i≤p≤n

Kpj(x, ξ)ωip(x)

+
∑

1≤p≤m

K̄pj(x, ξ)Γip(x) (93)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m

λi∂xLij(x, ξ)− µj∂ξLij(x, ξ) = −
m∑
k=1

σ−−kj Lik(x, ξ)

−
n∑
p=1

σ+−
pj Kip(x, ξ) +

∑
i≤p≤n

Lpj(x, ξ)ωip(x)

+
∑

1≤p≤m

L̄pj(x, ξ)Γip(x) (94)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n

µi∂xK̄ij(x, ξ)− λj∂ξK̄ij(x, ξ) =

n∑
k=1

σ++
kj K̄ik(x, ξ)

+

m∑
p=1

σ−+
pj L̄ip(x, ξ)−

∑
i≤p≤m

K̄pj(x, ξ)ω̄ip(x)

−
∑

1≤p≤n

Kpj(x, ξ)Γ̄ip(x) (95)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂xL̄ij(x, ξ) + µj∂ξL̄ij(x, ξ) =

m∑
k=1

σ−−kj L̄ik(x, ξ)

+

n∑
p=1

σ+−
pj L̄ip(x, ξ)−

∑
i≤p≤m

L̄pj(x, ξ)ω̄ip(x)

−
∑

1≤p≤n

Lpj(x, ξ)Γ̄ip(x) (96)

with the following set of boundary conditions (in order to
make the whole content more readable we have removed the
domains of definition of the indices)

Kij(x, 1−
µ̄

λ̄
x) = 0 (97)

Kij(x, x) =
σ++

λi − λj
i > j (98)

L̄ij(x,−
µ̄

λ̄
x+ 1) = 0 (99)

L̄ij(x, x) =
σ−−

µi − µj
i > j (100)

(
µj
λi
− µ̄

λ̄
)Lij(x, 1−

µ̄

λ̄
x) = 0 (101)

(−λi + µi
µ̄

λ̄
)K̄ij(x,−

µ̄

λm
x+ 1) = 0 (102)

∀x < aij Lij(x, x) = −
σ+−
ij

λi + µj
(103)

if 1− aji ≥ ā K̄ij(x, x) = − σ−+

λj + µi
(104)

We add the following arbitrary boundary conditions (in order
to have a well-posed system)

if 1− aji < ā K̄ij(0, ξ) = 0 (105)

Besides, (65) imposes

∀i ≤ j ωij(x) = (λj − λi)Kij(x, x) + σ++
ij (106)

and (66) imposes

∀aij < x < 1 γij(x) = −(λi + µj)Lij(x, x) + σ+−
ij (107)

Similarly (78) imposes

∀i ≤ j ω̄ij(x) = (µj − µi)L̄ij(x, x) + σ−−ij (108)

and (77) imposes

∀0 ≤ x ≤ aji γ̄ij(x) = (µi + λj)K̄ij(x, x) + σ−+
ij (109)

This induces a coupling between the kernels through equations
(93), (94), (95) and (96) that could appear as non linear at first
sight. However, the coupling has a linear cascade structure due
to the particular shapes of the matrices Ω, Ω̄, Γ and Γ̄. We now
define two sequences ri and r̄i that will be used in a recursive
proof of the well-posedness. Some of these equations with the
corresponding characterisitc lines are represented on Figure 1
and Figure 2.

Remark 10: The artificial boundary condition we add for the
kernel K̄ is not a degree of freedom since it has no impact on
the control law and on the stability of the target system.
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Fig. 1. Representation of the K-kernels and the L-kernels (aij ≥ ā)
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Fig. 2. Representation of the L-kernels (aij < ā)

B. Definition of the sequences ri and r̄i

In this subsection we define two sequences ri and r̄i that
we are going to use in the recursive proof. Let us consider the
matrices ∆ and ∆̄ defined by the following relations

∀1 ≤ i ≤ n ∀1 ≤ j ≤ m ∆ij =

{
0 if aij ≥ ā
1 else

(110)

∀1 ≤ i ≤ m ∀1 ≤ j ≤ n ∆̄ij =

{
0 if aji < 1− ā
1 else

(111)

These matrices have exactly the same structure as the matrices
Γ and Γ̄. We have the following results (some of the proofs
are quite straightforward and are omitted there).

Lemma 2: ∆̄ = 1−∆T

Proof: The proof relies on the fact that due to the
definition of ā (Equation (10)), if aij > ā then aij > 1 − ā.
Suppose that ∆ij = 0, then aij ≥ ā ⇒ aij ≥ 1 − ā (since
ā > 1

2 ). It yields ∆̄ji = 1.
Suppose now that ∆ij = 1, then aij < ā ⇒ aij < 1− ā (due
to the definition of ā). It yields ∆̄ji = 0.

Lemma 3: If ∆ij = 0 then ∀k > i ∆kj = 0

Lemma 4: If ∆ij = 0 then ∀k < j ∆ik = 0

The two previous lemmas use the fact that aij < ai+1,j and
aij > ai,j+1. Same results hold for ∆̄.

Lemma 5: Either the last line of ∆ or the last line of ∆̄ is
null.

Proof: Let us assume that the last line of ∆̄ is non-null.
Consequently, ∀j ∈ [1, n] ajm ≤ 1−ā and particularly anm ≤
1− ā. This implies anm ≤ ā (due to the definition of ā) and
it yields ∆mn = 0. Using the previous Lemma concludes the
proof.
In the following we denote si (resp s̄i) the number of
coefficients which are equal to 1 in the ith line of ∆ (resp
∆̄). For 0 ≤ i ≤ n+m, we define the sequences ri and r̄i{

if r̄0 − r̄i ≥ sri−1 then ri+1 = ri − 1 r̄i+1 = r̄i
if r0 − ri ≥ s̄r̄i−1 then r̄i+1 = r̄i − 1 ri+1 = ri

where r0 = n+ 1, r̄0 = m+ 1. We use the convention s0 =
s̄0 =∞.

Theorem 4: The sequences ri, r̄i are well defined. Moreover
rn+m = r̄n+m = 1

Proof: To prove that the sequences are well defined we
need to prove that for any 0 ≤ i ≤ n + m one and one only
of the following assumptions is true

r̄0 − r̄i ≥ sri−1 (112)
r0 − ri ≥ s̄r̄i−1 (113)

We start by proving that at least one of the two assumptions
is true. By contradiction let us assume that none of them hold.
Consequently we have, for some i

r̄0 − r̄i < sri−1 (114)
r0 − ri < s̄r̄i−1 (115)

• By definition of sri−1, we have exactly sri−1 coefficients
that are equal to 1 on the (ri−1)th line of the matrix ∆. Using
Lemma 2 yields that we have exactly m − sri−1 coefficients
equal to 1 on the (ri − 1)th column of ∆̄
• By definition of s̄r̄i−1, we have exactly s̄r̄i−1 coefficients
that are equal to 1 on the (r̄i − 1)th line of ∆̄. Consequently
∆̄r̄i−1,s̄r̄i−1

= 1. Adjusting Lemma 3 to ∆̄ yields that on
the (n + 1 − s̄r̄i−1)th column of ∆̄ we have at least r̄i − 1
coefficients equal to 1.
• Since n+1− s̄r̄i < ri we get n+1− s̄r̄i ≤ ri−1. It means
that the column n+ 1− s̄r̄i is located lefter than the column
ri − 1. Consequently, using Lemma 3, we must have a larger
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number of coefficients equal to 1 on the column ri − 1 than
on the column n+ 1− s̄r̄i . This implies

m− sri−1 ≥ r̄i − 1 (116)

which is a contradiction with (114). To achieve the proof of
the well posedness of the two sequences ri and r̄i, we need
to prove that the two assumptions (112)-(113) cannot both be
true. This is quite straightforward using the same ideas. If we
assume that (113) holds, then n + 1 − s̄r̄i ≥ ri implies that
the column n+1− s̄r̄i of ∆̄ is located strictly righter than the
column ri − 1 and that consequently (Lemma 4), the number
of coefficients equal to 1 on the former column is larger than
the number on the later. This implies

m− sri−1 < r̄i − 1 (117)

and consequently (112) is false. The same holds when (112)
is true.
The following lemma makes the link between the matrices
∆, ∆̄, and Γ, Γ̄.

Lemma 6: The matrix Γ(x) has at least m − si null-
coefficients on its ith line. Similarly, the matrix Γ̄(x) has at
least n− s̄i null-coefficients on its ith line.

Corollary 1: ∀i ≤ n, ∀j ≤ m − si, Γ(x)ij = 0 and ∀i ≤
m,∀j ≤ n− s̄i, Γ̄(x)ij = 0

Proof: The proofs of this lemma and of this corollary
are quite straightforward noticing that the matrices Γ (resp.
Γ̄) and ∆ (resp. ∆̄) have exactly the same structure and that
consequently the properties described above can be easily
extended to Γ and Γ̄.

C. Induction hypothesis

By induction, let us consider the following property P (q)
defined for all 1 ≤ q ≤ m+ n:

∀rq ≤ i ≤ n, ∀r̄q ≤ ī ≤ m, ∀1 ≤ j ≤ n, ∀1 ≤ d ≤ m,
∀1 ≤ j̄ ≤ n, ∀1 ≤ d̄ ≤ m, the problem (93)-(104) where Ω,
Ω̄, Γ and Γ̄ are defined by (106)-(108) has an unique solution
Kij(·, ·), Lid(·, ·), K̄īj̄(·, ·), L̄īd̄(·, ·) ∈ L∞(T0).

Initialization : For q = 1, we have either (r1 = n and
r̄1 = m+ 1) or (r1 = n+ 1 and r̄1 = m) due to Theorem 3.
Assuming that r1 = n and r̄1 = m + 1, system (93)-(104)
rewrites as follow

for 1 ≤ j ≤ n

λn∂xKnj(x, ξ) + λj∂ξKnj(x, ξ) = −
n∑
k=1

σ++
kj Knk(x, ξ)

−
m∑
p=1

σ−+
pj Lnp(x, ξ) +Knj(x, ξ)σ

++
nn

(118)

for 1 ≤ j ≤ m

λn∂xLnj(x, ξ)− µj∂ξLnj(x, ξ) = −
m∑
k=1

σ−−kj Lnk(x, ξ)

−
n∑
p=1

σ+−
pj Knp(x, ξ) + Lnj(x, ξ)σ

++
nn

(119)

with the corresponding set of boundary conditions. The well-
posedness of such system is quite straightforward using [18]
or Theorem 3. The initialization still holds for r1 = n + 1
and r̄1 = m.

Induction : Let us assume that the property P (q − 1)
(1 < q ≤ n + m − 1) is true. We consequently have that
∀rq−1 ≤ i ≤ n, ∀r̄q−1 ≤ ī ≤ n, ∀1 ≤ j ≤ n, ∀1 ≤ d ≤ m,
∀1 ≤ j̄ ≤ n, ∀1 ≤ d̄ ≤ m, Kij(·, ·), Lid(·, ·), K̄īj̄(·, ·), and
L̄īd̄(·, ·) are bounded.
In the following we assume that r̄q = r̄q−1 (and that
consequently rq = rq−1 − 1). The result still holds if
rq = rq−1 and the proof is similar. We denote i = rq .
Using the induction hypothesis yields that ∀1 ≤ j̄ ≤ n,
∀1 ≤ d̄ ≤ m, ∀r̄q = r̄q−1 ≤ ī ≤ n K̄īj̄(·, ·), and L̄īd̄(·, ·) are
well-posed.
Rewriting equation (93) yields

− λi∂xKij(x, ξ)− λj∂ξKij(x, ξ) =

n∑
k=1

σ++
kj Kik(x, ξ)

+

m∑
p=1

σ−+
pj Lip(x, ξ)−

∑
i≤p≤m

Kpj(x, ξ)

· ((λp − λi)Kip(x, x) + σ++
ip )

]
−

∑
1≤p≤m

K̄pj(x, ξ)h[aip,1](x) · ((λi +µp)Lip(x, x) +σ+−
ip )

(120)

with the boundary conditions

Kij(x, 1−
µ̄

λ̄
x) = 0 Kij(x, x) =

σ++

λi − λj
i > j

The one-but-last sum uses the expression of Kpj for i ≤
p ≤ m. This term is known and bounded for p > i
(induction assumption). For p = i, λi = λp and the term
(λp − λi)Kip(xij(x, ξ, s), xij(x, ξ, s)) cancels.
Using Corollary 1 and relation (107) it is possible to rewrite
the last sum as∑
m+1−si≤p≤m

K̄pj(x, ξ)(σ
+−
ip + (λi + µp)Lip(x, ξ))h[aij ,1](x)

(121)

Using the definition of ri, we have

si ≤ si−1 = srq−1 ≤ m+ 1− r̄q
⇒ m− si ≥ r̄q − 1 (122)

Consequently, the last sum uses the expression of K̄pj for r̄q ≤
p ≤ m which is known according to the induction assumption.
Therefore, all the non-linearites that could appear at first sight
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on the kernel equations actually involve terms that have been
computed in the previous iterations and that are bounded. We
can rewrite (120) as

−λi∂xKij(x, ξ)− λj∂ξKij(x, ξ) =

n∑
k=1

C++
kj (x, ξ)Kik(x, ξ)

+

m∑
k=1

C−+
kj (x, ξ)Lik(x, ξ)ds (123)

where the coefficients C++
kj and C−+

kj are known and
bounded (since they are either constants or computed during
the previous iteration of the recursion).

Similarly, we can rewrite (94) as

−λi∂xLij(x, ξ) + µj∂ξLij(x, ξ) =

n∑
k=1

C−+
kj (x, ξ)Kik(x, ξ)

+

m∑
k=1

C−−kj (x, ξ)Lik(x, ξ)ds (124)

where the coefficients C−+
kj and C−−kj are known and bounded.

Moreover we have the boundary condition

(
µj
λi
− µ̄

λ̄
)Lij

(
x, 1− µ̄

λ̄
x
)

= 0 (125)

and

∀x < aij =
λi

λi + µj
Lij(x, x) =

σ+−
ij

λi + µj
(126)

Each Lij has a discontinuity line defined by ξ = 1− µj
λi
x. The

characteristics are integrated in opposite directions on each
side of the discontinuity: away from the ξ = x boundary for
ξ ≤ 1− µj

λi
x and away from the line ξ = 1− µ̄

λ̄
for ξ ≥ 1− µj

λi
x.

Therefore the parameters α and δ of Theorem 3, which have to
satisfy (92) for all Lij on the domain on which the equations
are considered, vary on each side of the discontinuity of all
the kernels. Therefore, in what follows, we define a sequence
of triangular domains, depicted on Figure 3, on which there
exists α and δ satisfying (92). More precisely, assuming that
ai1 ≥ ā (this specific case will be presented in Remark 10),
for all k ≤ m + 1 such that aik < ā (with the convention
ai(m+1) = 0), consider the domains Tk:

Tk = {(x, ξ)|x ≤ ξ ξ ≤ 1− µk−1

λi
x ξ ≥ 1− µk

λi
x}

Tm+1 = {(x, ξ)|0 ≤ x ≤ ξ ξ ≤ 1− µm
λi
x} (127)

The equations can be solved successively on these triangles,
starting from the rightmost one. Their are represented on
Figure 3.

The trace of the solution on the boundary of a given Tk
provides boundary conditions of the system considered on
Tk+1.
By induction, let us now consider the property Q(k) defined
for all k such that aik < ā by: The system (123)-(126) is
well-posed on Tk ∩ T0.

Initialization: Let k0 such that aik0
< ā ≤ ai(k0−1).

ξ

10

1

x =
 ξ

xa

λξ= -µ
 x+λ

µ
 ξ= -λ

 (x-1) 

Τ
1

Τ
k

aikaik+1

Τ
k+1

Fig. 3. Representation of the triangles Tk

On Tk0 ∩ T0, equations (123) and (124) can be simply
rewritten, for l = 1 . . . n+m as

εl∂xFl(x, ξ) + νl∂ξFl(x, ξ) = Σl(x, ξ)F (x, ξ) (128)

where F = (Ki,1 . . .Ki,n, Li,1, . . . Li,m)T . The functions εl
and νl are defined according to the location of the boundary
condition by

εl =

 −λi if l ≤ n
−λi if l > n and l − n < k0

+λi else
(129)

νl =

 −λl if l ≤ n
+µl if l > n and l − n < k0

−µl else
(130)

The homogeneous system, obtained by taking Σl(x, ξ) = 0
along with the corresponding boundary conditions is well-
posed. If we choose αk0 such that

µk0
− 1

λi
< αk0 =

µk0−1 + µk0

2λi
<
µk0

λi
(131)

we easily get

αk0
εl + νl =


−µk0−1−µk0

2 − λl if l ≤ n
−µk0−1−µk0

2 + µl if l > n and l − n < k0
+µk0−1+µk0

2 − µl else
(132)

In the first case, the result is always negative. If l − n < k0,
µl < µk0

<
µk0

+µk0−1

2 . Consequently, for the second case
the result is still negative. The same holds for the third case.
Consequently, the two hypothesis of Theorem 3 are verified
and we can conclude to the well-posedness of the kernel
equations on Tk0 . This concludes the initialization.

Recursion If we assume that Q(k) holds (for k0 ≥ k < m) we
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can easily prove using Theorem 3 that Q(k + 1) holds. The
well-posedness of the homogeneous system is direct using
Q(k) and one can easily check that the second hypothesis of
the theorem holds choosing αk+1:

αk+1 =
µk+1 + µk

2
(133)

with the convention µm+1 = µm + 1. Moreover this iteration
provides us the boundary condition for the next triangle. This
concludes the proof.

Remark 11: If ai1 < ā, the previous result still holds taking
ai0 = ā.
This proves the well-posedness of the ith line of the kernels K
and J on T0. Consequently P (q) is true and the well-posedness
of the kernels K,L, K̄, L̄ on T0 is proved.

V. INVERTIBILITY OF THE FREDHOLM TRANSFORMATION

Unlike the Volterra transformation, the Fredholm transfor-
mation is not always invertible. In [11], the authors prove
the invertibility of such a transformation in the case of a
first-order integro-differential hyperbolic equation. In [6] the
invertibility of the transformation is proved in the scalar case.
In this section we use similar arguments (in particular we rely
on the Fredholm alternative) to prove the invertibility of our
transformation.

1) Operator formulation of the Fredholm transformation
and properties

In this subsection we rewrite the previous Fredholm trans-
formation using operators. This will lead to some relations
verified by the adjoint operators. The Fredholm transformation

(57)-(58) can be written as an operator P acting on
(
u
v

)
. More

precisely we have

P = Id−Q (134)(
α
β

)
= P

(
u
v

)
(135)

where Q : (L2(0, 1))n+m → (L2(0, 1))n+m is the integral
operator defined by

Q

(
u
v

)
=

∫ 1

0

(
Q11(x, ξ)u(t, ξ) +Q12(x, ξ)v(t, ξ)
Q21(x, ξ)u(t, ξ) +Q22(x, ξ)v(t, ξ)

)
dξ

(136)

Its adjoint is:

Q∗
(
u
v

)
=

∫ 1

0

(
Q11(ξ, x)u(t, ξ) +Q21(ξ, x)v(t, ξ)
Q12(ξ, x)u(t, ξ) +Q22(ξ, x)v(t, ξ)

)
dξ

(137)

One can easily check that:

Q∗(D(A∗)) ⊂ D(A∗) (138)

The control
(
U
V

)
can also be rewritten using operators(

U
V

)
= Γ

(
u
v

)
(139)

with

Γ

(
u
v

)
=

∫ 1

0

(
Q11(0, ξ)u(t, ξ) +Q12(0, ξ)v(t, ξ)
Q21(1, ξ)u(t, ξ) +Q22(1, ξ)v(t, ξ)

)
dξ

(140)

Using (47) and (135) yields

d

dt

(
α
β

)
= A0

(
α
β

)
= A0P

(
u
v

)
(141)

Moreover using (11) and (135) we get

d

dt

(
α
β

)
=

d

dt
(P

(
u
v

)
)

= PA

(
u
v

)
+ PBΓ

(
u
v

)
(142)

Consequently P and Γ satisfy the following relation:

A0P = PA+ PBΓ (143)

Taking the adjoints, this is equivalent to

P ∗A∗0 = A∗P ∗ + Γ∗B∗P ∗ (144)

2) The Fredholm alternative
We give first the following useful lemmas:
Lemma 7: ker P ∗ ⊂ D(A∗0) = D(A∗)

Proof: Let us consider z ∈ ker P ∗. Consequently we have
P ∗z = 0. We can rewrite it(

z1

z2

)
=

∫ 1

0

(
Q11(ξ, x)z1(t, ξ) +Q21(ξ, x)z2(t, ξ)
Q12(ξ, x)z1(t, ξ) +Q22(ξ, x)z2(t, ξ)

)
dξ

(145)

If we evaluate the first line for x = 1 and the second one
for x = 0, using the fact that Q11(ξ, 0) = Q21(ξ, 0) =
Q12(ξ, 1) = Q22(ξ, 1) = 0, we get

z1(1) = z2(0) = 0 (146)

Consequently z ∈ D(A∗0) and we can write

ker P ∗ ⊂ D(A∗0) (147)

Lemma 8: ker P ∗ ⊂ ker B∗

Proof: Let us consider z ∈ ker P ∗. Consequently we have
P ∗z = 0. We can rewrite it(

z1

z2

)
=

∫ 1

0

(
Q11(ξ, x)z1(t, ξ) +Q21(ξ, x)z2(t, ξ)
Q12(ξ, x)z1(t, ξ) +Q22(ξ, x)z2(t, ξ)

)
dξ

(148)

If we evaluate the first line for x = 0 and the second one
for x = 1, using the fact that Q11(ξ, 1) = Q21(ξ, 1) =
Q12(ξ, 0) = Q22(ξ, 0) = 0, we get

z1(0) = z2(1) = 0 (149)

Consequently z ∈ ker B∗ and we can write

kerP ∗ ⊂ kerB∗ (150)

Lemma 9: ∀λ ∈ < ker(λId−A∗0)∩ ker B∗ = {0}
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Proof: Let us consider ν ∈ < and z ∈ ker(νId − A∗0)∩
ker B∗ = {0}. Consequently we have

0 =

(
z1(t, x)TxΛ+ + z1(t, x)TΩ + z2(t, x)T Γ̄− νz1(t, x)T

−z2(t, x)TxΛ− + z2(t, x)T Ω̄ + z1(t, x)TΓ− νz2(t, x)T

)
(151)

with the boundary conditions

z1(0) = z2(0) = 0 (152)

Consequently (using the Cauchy-Lipschitz’ theorem) we have

z =

(
0
0

)
We can now state the following theorem
Theorem 5: The map P ∗ = Id−Q∗ is invertible

Proof: Since Q∗ is a compact operator we can use the
Fredholm alternative (e.g [9]): Id2−Q∗ is either non-injective
or surjective. Consequently it suffices to prove that P ∗ is
injective. In addition, the Fredholm alternative also gives [9]

dim ker(Id−Q∗) < +∞ (153)

By contradiction we assume that ker P ∗ 6= {0}. We first prove
that ker P ∗ is stable by A∗0. We have ker P ∗ ⊂ D(A∗0). Let
then consider z ∈ ker P ∗. Using (144) we can obtain

P ∗A∗0z = 0 (154)

We thus have A∗0z ∈ ker P ∗. Consequently the restriction
A∗0|kerP∗

of A∗0 to ker P ∗ is a linear operator from ker P ∗ to
ker P ∗. Since the dimension of ker P ∗ is finite we can find
at least one eigenvalue ν. Let e ∈ ker P ∗ be a corresponding
eigenvector (by definition e 6= 0). We have e ∈ ker P ∗ and so
e ∈ ker B∗. Moreover we have A∗0e = νe. Consequently

e ∈ ker(νId−A∗0) ∩ kerB∗ (155)

which contradicts Lemma 9 and concludes the proof.

VI. CONTROL LAW AND MAIN RESULTS

We now state the main stabilization result as follows:
Theorem 6: System (1)-(2) with the following feedback

control laws

U(t) = −
∫ 1

0

(K(0, ξ)u(t, ξ) + L(0, ξ)v(t, ξ))dξ (156)

V (t) = −
∫ 1

0

(M̄(1, ξ)u(t, ξ) + N̄(1, ξ)v(t, ξ))dξ (157)

where K,L and M̄, N̄ are defined by (65)-(70) and (83)-(88),
reaches its zero equilibrium in finite time tF , where tF is
given by (18). The zero equilibrium is exponentially stable in
the L2-sense.

Proof: Notice that evaluating (52) at x = 0 yields (156)
and evaluating (53) at x = 1 yields (157). Since the kernels
are invertible, there exists a unique operator S such that(

u
v

)
= S

(
α
β

)
(158)

Applying Lemma 2 implies that (α, β) go to zero in finite
time tF , therefore (u, v) converge to zero in finite time tF

VII. OBSERVER DESIGN AND OUTPUT FEEDBACK
CONTROLLER

In this section we design an observer that relies on the
measurements of u at the right boundary and v at the left
boundary, i.e we measure

y1(t) = u(t, 1) (159)
y2(t) = v(t, 0) (160)

Then, using the estimates given by our observer and the control
law (156)-(157), we derive an output feedback controller.

A. Observer design

The observer equations reads as follows

ût(t, x) + Λ+ûx(t, x) = Σ++û(t, x) + Σ+−v̂(t, x) (161)
− P11(x)(û(t, 1)− u(t, 1))− P12(v̂(t, 0)− v(t, 0)) (162)
v̂t(t, x)− Λ−v̂x(t, x) = Σ−+û(t, x) + Σ−−v̂(t, x)

− P21(x)(û(t, 1)− u(t, 1))− P22(v̂(t, 0)− v(t, 0)) (163)

with the boundary conditions

û(t, 0) = U(t), v̂(t, 1) = V (t) (164)

where P11(·), P21(·), P12(·) and P22(·) have yet to be de-
signed. This yield the following error system

ũt(t, x) + Λ+ũx(t, x) = Σ++ũ(t, x) + Σ+−ṽ(t, x)

− P11(x)ũ(t, 1)− P12(x)ṽ(t, 0) (165)

ṽt(t, x)− Λ−ṽx(t, x) = Σ−+ũ(t, x) + Σ−−ṽ(t, x)

− P21(x)ũ(t, 1)− P22(x)ṽ(t, 0) (166)

with the boundary conditions

ũ(t, 0) = 0, ṽ(t, 1) = 0 (167)

This system evolves in [0, T ]× [0, x] and its initial condition
(ũ(0, x), ṽ(0, x)) = (ũ0(x), ṽ0(x)) belongs to L2([0, 1]). We
define the following system (which is the same as above
changing t in T − t).

− d

dt

(
ū
v̄

)
= Ā

(
ū
v̄

)
(168)

evolving in [0, T ] × [0, x] with the L2([0, 1]) arbitrary initial
condition (

ū(0, x)
v̄(0, x)

)
=

(
ū0(x)
v̄0(x)

)
(169)

The operator Ā is thus defined by

Ā :D(Ā) ⊂ (L2(0, 1))n+m → (L2(0, 1))n+m(
ū
v̄

)
7−→

(
−Λ+ūx + Σ++ū+ Σ+−v̄
Λ−v̄x + Σ−+ū+ Σ−−v̄

)
+

(
−P11(x)ū(t, 1)− P12(x)v̄(t, 0)
−P21(x)ū(t, 1)− P22(x)v̄(t, 0)

)
(170)

with

D(Ā) = {(u, v) ∈ (H1(0, 1))n+m|ū(0) = v̄(1) = 0} (171)
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B. A dual system

In order to find the observer gains we define a control
problem that is the dual of the observer problem. The observer
gains will then be defined by the gains of the dual controller.

1) A new control problem
Let us consider the following system

φt(t, x)− Λ+φx(t, x) = (Σ−+)Tψ(t, x) + (Σ++)Tφ(t, x)
(172)

ψt(t, x) + Λ−ψx(t, x) = (Σ−−)Tψ(t, x) + (Σ+−)Tφ(t, x)
(173)

evolving in {(t, x)| t > 0, x ∈ [0, 1]}, with the following
linear boundary conditions

ψ(t, 0) = U(t), φ(t, 1) = V (t) (174)

and the arbitrary initial conditions (belonging to L2([0, 1]))

φ(0, x) = φ0(x), ψ(0, x) = ψ0(x) (175)

Using Theorem 6, we can explicitly compute kernels
K1, L1, M̄1 and N̄1 such that system (172)-(173) with the
following feedback law

U(t) = −
∫ 1

0

(K1(0, ξ)φ(t, ξ) + L1(0, ξ)ψ(t, ξ))dξ (176)

V (t) = −
∫ 1

0

(M̄1(1, ξ)φ(t, ξ) + N̄1(1, ξ)ψ(t, ξ))dξ (177)

reaches its zero equilibrium in time tF where tF is given by
(18). As seen in Section II-B, this system can be rewritten in
the abstract form

d

dt

(
φ
ψ

)
= A

(
φ
ψ

)
+B

(
U
V

)
(178)

with the initial condition(
φ(0, x)
ψ(0, x)

)
=

(
φ0(x)
ψ0(x)

)
(179)

where A and B are defined in a similar form as the one
presented in equations (12)-(17).

2) Definition of the observer gains
We now define the gains of the observer as

P11(x) = M̄1(1, x)TΛ+ P21(x) = N̄1(1, x)TΛ+ (180)

P12(x) = K1(0, x)TΛ− P22(x) = L1(0, x)TΛ− (181)

Theorem 7: System (168)-(169) where P11, P12, P21 and
P22 are defined by (180)-(181) is the adjoint of system (178)-
(179). Moreover, both system reach their zero equilibrium in
time tF where tF is defined by (18).

Proof: We define < ·, · > as the scalar product associated
to the L2-norm. For every solution (ũ, ṽ) of (168)-(169)
and every solution (φ, ψ) of (178)-(179) (with any initial
conditions) we have

<
d

dt

(
φ
ψ

)
−A

(
φ
ψ

)
−B

(
V
U

)
,

(
ũ
ṽ

)
>= 0 (182)

It yields

0 =

∫ τ

0

∫ 1

0

(−ūTt (t, x) + ūTx (t, x)Λ+ − ūT (t, x)(Σ++)T

− v̄(t, x)T (Σ+−)T )φ(t, x) + (−v̄Tt (t, x)− v̄Tx (t, x)Λ−

− ū(t, x)(Σ−+)T − v̄(t, x)(Σ−−)T )ψ(t, x)dxdt

+

∫ 1

0

(v̄T (τ, x)ψ(τ, x)− v̄T (0, x)ψ(0, x)

+ ūT (τ, x)φ(τ, x)− ūT (0, x)φ(0, x))dx

+

∫ τ

0

∫ 1

0

(ū(t, 1)TΛ+(M̄1(1, x)φ(t, x) + N̄1(1, x)ψ(t, x))

+ v̄(t, 0)TΛ−(K1(0, x)φ(t, x) + L1(0, x)ψ(t, x)))dt
(183)

Using this expression, it can easily be seen that system (168)-
(169) is the adjoint of system (178)-(179). Moreover, taking
τ = tF yields

0 =<

(
φ
ψ

)
,− d

dt

(
ū
v̄

)
− Ā

(
ū
v̄

)
> (184)

+

∫ 1

0

−ūT (0, x)φ(0, x)− v̄T (0, x)ψ(0, x)dx

⇒ 0 = ūT (0, x)φ(0, x) + v̄T (0, x)ψ(0, x) (185)

Since this has to be true for any initial condition, it implies
that

v̄(0, x) = 0, ū(0, x) = 0 (186)

Consequently using the change of variable t = tF − t yields

ṽ(tF , x) = 0, ũ(tF , x) = 0 (187)

C. Output feedback controller

The estimates can be used in a observer-controller to derive
an output feedback law yielding finite-time stability of the zero
equilibrium

Lemma 10: Consider the system composed of (1)-(3) and
target system (162)-(164) with the following control law

U(t) = −
∫ 1

0

(K(0, ξ)û(t, ξ) + L(0, ξ)v̂(t, ξ))dξ (188)

V (t) = −
∫ 1

0

(M̄(1, ξ)û(t, ξ) + N̄(1, ξ)v̂(t, ξ))dξ (189)

where K,L and M̄, N̄ are defined by (65)-(70) and (83)-(88).
Its solutions (u, v, û, v̂) converge in finite time to zero

Proof: The convergence of the observer error states ũ, ṽ
to zero for tF ≤ t is ensured by Theorem 7, along with the
existence of the backstepping transformation. Thus, once tF ≤
t, v(t, 0) = v̂(t, 0) and one can use Theorem 6. Therefore for
2tF ≤ t, one has (ũ, ṽ, û, v̂) ≡ 0 which yields (u, v) ≡ 0.

VIII. APPLICATION: STATE ESTIMATION DURING
UNDERBALANCED DRILLING

In this section, we illustrate the benefits of our approach by
applying it to an industrial problem.
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A. Problem description

Consider the drilling system schematically depicted on
Figure 4. It consists of a 2530 meter-long drillpipe, rotating

Fig. 4. Schematic view of drilling facilities. In UnderBalanced Drilling
(UBD), oil and gas enter the annulus as the drilling process goes on.

around its main axis, through which is injected a drilling fluid,
typically water-based mud. At the end of the pipe, the fluid
exits through the drillbit (which chatters and cuts the rock) and
circulates back to the surface inside the annulus, carrying rock
cuttings. For numerous reasons [1], it is desirable to produce
oil and gas from the reservoir as the drilling process goes
on when possible, a technique referred to as UnderBalanced
Drilling (UBD). The term underbalanced refers to the value
of the pressure at the bottom of the annulus, which must be
lower than the value of the pressure of hydrocarbons inside the
reservoir (called the balance point) for the oil and gas to flow
in. To ensure safety and efficiency of operations, it is desirable
to monitor at all time the amount of gas inside the well. This
is a difficult task since sensors cannot be placed all along the
drillpipe, and the dynamics of multiphase flow are known to
be complex [3]. The presence of gas, in particular, makes the
distributed, delay-like nature of the dynamics predominant and
may generate instabilities, such as severe slugging.

B. Observer design

The simulation model is a Drift-Flux Model (DFM) de-
scribed in [2]. It models the flow of liquid (oil, water and
drilling fluid being considered as one liquid phase) and gas
along the drillstring using two mas conservation laws and one
combined momentum conservation law. Along with closure
relations, this yields a set of three nonlinear transport PDEs
with appropriate boundary conditions. The model can be
linearized around a given equilibrium profile, which yields
a system of the form (1)–(3) with n = 2 and m = 1 (see,
e.g., [3]).

The model used to design the observer is the same model,
starting from a different initial condition. This choice is
debatable, since perfect knowledge of the model is unrealistic,
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Fig. 5. Snapshots of the spatial profile of the liquid holdup as a function
of depth. The profile of the observer converges to the true profile in
approximately 25 minutes.

however assessing the robustness of the model with respect to
model uncertainty is out of the scope of this paper and will be
the topic of future contributions. Notice that the nonlinearity
of the model, combined with the offset in the initial condition
already yields differences in the linearized model parameters.

Similarly to [16], the observer is designed by copying
the nonlinear equations and adding the linear output error
correction terms such that linearizing the observer equations
yields (161)–(164).

C. Simulation results

Figure 5 depicts snapshots of the volume fraction of liquid
(holdup), as a function of well depth at different time instants
of a transient simulation. The three curves respectively corre-
spond to the ’plant’, the observer and an open-loop simulation
starting from the same initial condition as the observer, without
any correction terms. The holdup profile of the observer
converges in approximately 25 minutes to the plant profile,
while the open-loop profile would take around two hours (the
settling time of this particular system) to converge. This plot
is not shown here due to lack of space.

IX. CONCLUDING REMARK

Using a backstepping approach we have presented a stabi-
lizating boundary feedback law for a general class of linear
first-order system controlled in both boundaries. Moreover, the
zero equilibrium of the system is reached in minimum time
tF which is the largest time between the two transport times
in each direction.
Besides, the presented result narrows the gap with the theoreti-
cal controllability results of [20]. These results, although they
do not provide explicit control law, ensure exact minimum-
time controllability with less control inputs than what is
currently achievable using backstepping. More generally, this
raises the question of the links between controllability and
stabilization by backstepping. In particular future works will
consider first-order systems with a smaller number of controls
in each boundary.
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APPENDIX

In this appendix, we prove Theorem 3. Assume that the
assumptions of Theorem 3 hold then the system (89) with
boundary conditions (91) has an unique solution F ∈ L∞(D).
Classically (see [19] and [23]), the proof follows three steps:
• First, we compute the characteristic lines
• In each domain the equations are transformed into inte-

gral equations.
• Finally, a method of successive approximations is used

to find a solution to the integral equations.

A. Transformation into integral equations

The first assumption of Theorem 3 yields the existence and
uniqueness of characteristic curves defined as follows.
For each 1 ≤ j ≤ n + m and (x, ξ) ∈ D, we now
define the following characteristic lines (xj(x, ξ, ·), ξj(x, ξ, ·))
corresponding to equation (89){

dxj
ds

(x, ξ, s) = εj s ∈ [0, sFj (x, ξ)]

xj(x, ξ, 0) = x0
j (x, ξ), xj(x, ξ, s

F
j (x, ξ)) = x

(190)

{
dξj
ds

(x, ξ, s) = νj s ∈ [0, sFj (x, ξ)]

ξj(x, ξ, 0) = ξ0
j (x, ξ), ξj(x, ξ, s

F
j (x, ξ)) = ξ

(191)

These lines originate at the point (x0
j (x, ξ), ξ

0
j (x, ξ)) located

on the boundary of the domain and terminate on (x, ξ).
Integrating (89) along these characteristics and using boundary
conditions (91) yields

Fj(x, ξ) = fj(M
0
j (x, ξ, s))+∫ sFj (x,ξ)

0

Σj(Mj(x, ξ, s))F (Mj(x, ξ, s))ds (192)

where we denote Mj(x, ξ, s) = (xj(x, ξ, s), ξj(x, ξ, s)) and
M0
j (x, ξ, s) = (x0

j (x, ξ, s), ξ
0
j (x, ξ, s))

B. Method of successive approximations

In order to solve (192) we use the method of successive
approximations. We define

Φj [F ](x, ξ) =

∫ sFj (x,ξ)

0

Σj(Mj(x, ξ, sj))F (Mj(x, ξ, sj))ds

(193)

We now construct the sequence F p defined by

F 0(x, ξ) = 0 (194)

F p+1(x, ξ) =

 f1(M0
1 (x, ξ, sj))

...
fn+m(M0

(n+m)(x, ξ, sj))


+

 Φ1[F p](x, ξ)
...

Φ(n+m)[F
p](x, ξ)

 (195)

Consequently, if the sequence F p has a limit, then this limit is
a solution of the integral equation and therefore of the original
system.

We define the increment ∆F p = F p − F p−1. Provided the
limit exists one has

F (x, ξ) = lim
p→+∞

F p(x, ξ) =

+∞∑
p=0

∆F p(x, ξ) (196)

We now prove the convergence of the series.

C. Convergence of the successive approximations series

The proof of convergence is based on the following Lem-
mas.

Lemma 11: Assume that (92) holds. then for all j =
1 . . . n + 1, (x, ξ) ∈ D, the following function is strictly
increasing

φx,ξ : s ∈ [0, sFj (x, ξ)] 7−→ − αxj(x, ξ, s)− ξj(x, ξ, s)
+ (α+ 1) (197)

Proof: The proof is trivial. Recalling (92) yields

φ′x,ξ(s) = −αεj − νj > 0 (198)

This concludes the proof.
Lemma 12: For all j = 1 . . . n+m the following inequalities

hold∫ sFj (x,ξ)

0

(−αxij(x, ξ, s)− ξij(x, ξ, s) + (α+ 1))pds

≤ 1

δ

((α+ 1)− αx− ξ)p+1

p+ 1
(199)

Proof: Consider the following change of variables

τ = φx,ξ(s) (200)

It yields∫ sFj (x,ξ)

0

(−αxj(x, ξ, s)− ξj(x, ξ, s) + (α+ 1))pds

=

∫ −αx−ξ+(α+1)

−αx0
j (x,ξ)−ξ0

j (x,ξ)+(α+1)

τpdτ

−αεj − νj
(201)

Using (92) and the definition of δ, this yields∫ sFj (x,ξ)

0

(αxj(x, ξ, s) + ξj(x, ξ, s))
pds

<
(−αx− ξ + (α+ 1))p+1

δ(p+ 1)

−
(−αx0

j (x, ξ)− ξ0
j (x, ξ) + (α+ 1))p+1

δ(p+ 1)
(202)

Since (x0
j (x, ξ), ξ

0
j (x, ξ)) ∈ D and since α > 0, one has

−αx0
j (x, ξ)− ξ0

j (x, ξ) +α+ 1 ≥ 0 which yields the result.
Lemma 13: Let M > 0 be such that

M > Σ̄δ (203)

where Σ̄ is defined as

Σ̄ = max
(x,ξ)∈D

max
||F ||6=0

||Σ(x, ξ)F ||
||F ||

(204)
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If for some 1 ≤ q and some f̄ > 0 one has, for all (x, ξ) ∈ T0

∀j = 1 . . .m+ n |∆F pj (x, ξ)| ≤ Mp(−αx− ξ + (α+ 1))p

p!
(205)

Then one has ∀j = 1 . . .m+ n

|∆F p+1
j (x, ξ)| ≤ Mp+1(−αx− ξ + (α+ 1))p+1

(p+ 1)!
(206)

Proof: Assume that (205) holds for some fixed 1 ≤ p.
Let us consider 1 ≤ j ≤ (m+ n).

|∆F p+1
j (x, ξ)| = |Φj [∆F p](x, ξ)|

<

∫ sFj (x,ξ)

0

|Σj(Mij(x, ξ, sj))∆F
p(Mj(x, ξ, sj))|ds (207)

Using (205) this yields

|∆F p+1
j (x, ξ)| < Σ̄

∫ sFj (x,ξ)

0

f̄Mp

((α+ 1)− αxj(x, ξ, s)− ξj(x, ξ, s))p

p!
ds

< f̄
Σ̄Mp

δ

(−αx− ξ + (α+ 1))p+1

(p+ 1)!
(208)

which yields the result using (203)
Proof: We now prove the Initialization. Denoting

f̄ = max
(x,ξ)∈T0

max
j=1...n+m

|fj(x, ξ)| (209)

one has

∀j = 1 . . . n+m|∆F 0
j (x, ξ)| = |fj(M0

j (x, ξ))| < f̄ (210)

Then, using Lemma 15, one can prove by recursion that
+∞∑
p=0

|∆F p(x, ξ)| < f̄eM(−αx−ξ+(α+1)) (211)

Defining F as

F (x, ξ) =

+∞∑
p=0

∆F p(x, ξ) = lim
p→∞

F p(x, ξ) (212)

and taking the limit p→∞ in (195) yields the result.
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lyapunov approach to control irrigation canals modeled by saint-venant
equations, Proc. European Control Conference, Karlsruhe, 1999.

[11] Jean-Michel Coron, Long Hu, and Guillaume Olive, Stabilization and
controllability of first-order integro-differential hyperbolic equations,
arXiv preprint arXiv:1511.01078 (2015).

[12] Jean-Michel Coron, Rafael Vazquez, Miroslav Krstic, and Georges
Bastin, Local exponential hˆ2 stabilization of a 2\times2 quasilinear
hyperbolic system using backstepping, SIAM Journal on Control and
Optimization 51 (2013), no. 3, 2005–2035.

[13] Jonathan de Halleux, Christophe Prieur, J-M Coron, Brigitte d’Andréa
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