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Two sided boundary stabilization of heterodirectional linear coupled
hyperbolic PDEs

Jean Auriol1 and Florent Di Meglio2

Abstract— We solve the problem of stabilizing a general
class of linear first-order hyperbolic systems using actuation
at both boundaries of the spatial domain. We design a novel
Fredholm transformation similarly to backstepping approaches
to derive a boundary controller and a boundary observer
enabling stabilization by output feedback. This yields an explicit
full-state feedback law that achieves the theoretical lower bound
for convergence to zero.

I. INTRODUCTION

This article solves the problem of boundary stabilization
of a general class of coupled heterodirectional linear first-
order hyperbolic systems of Partial Differential Equations
(PDEs) in minimum time, with arbitrary numbers m and n
of PDEs in each direction. The actuation is applied on both
boundaries.
Hyperbolic partial differential equations (PDEs) are predom-
inant in modeling physical systems involving a transport
phenomenon: traffic flow [1], heat exchangers [22], open
channel flow [7], [10] or multiphase flow [11], [12], [13] can
be modeled using systems of first-order hyperbolic PDEs.
There are several approaches to study controllability and
control design for this class of systems. The first one is the
method of characteristics. Using such a method to transform
the PDEs equations into integral equations enables proving
the existence of control laws driving the system to zero in
minimum-time ([16]). Nevertheless this approach is limited
to existence results and does not provide an explicit control
law. A Lyapunov approach, similar to the one developed
in [6], [17], [18], [19], yields sufficient conditions on the
coupling coefficients of the PDEs that ensure stability of the
system. This enables the design of simple feedback laws that
modify the value of boundary coupling coefficients. More
recently, the backstepping approach has enabled the design
of stabilizing full-state feedback laws. These controllers are
explicit, in the sense that they are expressed as a linear func-
tional of the distributed state at each instant. The (distributed)
gains can be computed offline.

Comparing results obtained via backstepping design with
existence results for stabilizing controllers reveals a gap.
In [16], an extensive review of controllability results for
linear hyperbolic systems is given, along with the theoretical
lower bounds for convergence times. These bounds vary
according, mainly, to the number and location of available
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actuators. Backstepping results have, until now, focused on
single-boundary actuation, see e.g. [9] for the case of two
coupled PDEs, [14] for an arbitrary number of PDEs or [2]
for a minimum-time result in the general (single boundary
actuation) case.
When actuation is applied at both boundaries, the literature
usually focuses on design of dissipative boundary conditions
to stabilize the system. This does not guarantee stabilization
in the minimum theoretical time, and is only possible for
small coupling terms between PDEs, but can generally be
achieved using static boundary output feedback, which is
much less computationally intensive. Recently the problem
of stabilizing a system of two coupled PDEs with control
at both sides has been solved in [20] in the case of
reaction-diffusion PDEs and for 2-state heterodirectional
linear PDEs with equal transport velocities. A generalization
of this result for a general system of two hyperbolic PDEs
is given in [3].
The main contribution of this paper is a generalization of
this result with the design of a minimum time stabilizing
controller in the general case of heterodirectional hyperbolic
PDEs with actuation at both boundaries. A proposed
boundary feedback law ensures finite-time convergence
of the states to zero in minimum time. The minimum
time defined [16] is the largest time between the different
transport times in each direction.

Our approach, similar to the one presented in [3] is the
following. Using a Fredholm transformation, the system is
mapped to a target system with desirable stability properties.
This target-system is designed as an exponentially stable
cascade. The well-posedness of the Fredholm transformation
is a consequence of a clever choice of the domain on which
the kernels are defined and of the cascade structure of
the target system. A full-state feedback law guaranteeing
exponential stability of the zero equilibrium in the L2-norm
is then designed. This full-state feedback law would require
fully distributed measurements in practice, which is not
realistic. For this reason we derive a boundary observer
relying on measurements of the states at both boundaries.

The main technical difficulty of this paper is to prove
well-posedness of the Fredholm transformation and its
invertibility. Interestingly, the transformation kernels satisfy
a system of equations with a cascade structure akin to the
target system one. This structure enables a recursive proof
of existence of the transformation kernels.



The paper is organized as follows. In Section II we
introduce the model equations and the notations. In Section
III we present the stabilization result: the target system
and its properties are presented in Section III-A. In Section
III-B, we derive the integral transformation and we present
the domains on which the kernels are defined. The well-
posedness of the kernel equations is proved in Section IV.
This proof uses an important theorem which is given in
Appendix in order to make the whole paper more readable.
In Section V we prove the invertibility of the Fredholm
transformation using an operator approach. The control
feedback law and its properties are given in Section VI. In
Section VII we present the uncollocated observer design.
This observer is obtained with the a similar approach
than the one developed for the control law. Finally, some
simulation results are given in Section VIII. We conclude
this article with some remarks presented in Section IX.

II. PROBLEM DESCRIPTION

A. System under consideration and notations

We consider the following general linear hyperbolic sys-
tem which appear in Saint-Venant equations, heat exchangers
equations and other linear hyperbolic balance laws (see [4]).

ut(t, x) + Λ+ux(t, x) = Σ++u(t, x) + Σ+−v(t, x) (1)

vt(t, x)− Λ−vx(t, x) = Σ−+u(t, x) + Σ−−v(t, x) (2)

evolving in {(t, x)| t > 0, x ∈ [0, 1]}, with the following
linear boundary conditions

u(t, 0) = U(t), v(t, 1) = V (t) (3)

where

u = (u1 . . . un)T , v = (v1 . . . vm)T (4)

Λ+ =

λ1 0
. . .

0 λn

 , Λ− =

µ1 0
. . .

0 µm

 (5)

with constant speeds:

−µm < · · · < −µ1 < 0 < λ1 < · · · < λn (6)

and constant real coupling matrices

Σ++ = {σ++
ij }1≤i≤n,1≤j≤n Σ+− = {σ+−

ij }1≤i≤n,1≤j≤m
(7)

Σ−+ = {σ−+
ij }1≤i≤m,1≤j≤n Σ−− = {σ−−ij }1≤i≤m,1≤j≤m

(8)

The initial conditions denoted u0 and v0 are assumed to
belong to L2([0, 1]). In the following we denote

∀i, j aij =
λi

λi + µj
(9)

We also define

ā = min
1≤i≤n,1≤j≤m

|aij −
1

2
| (10)

The aij and ā play an important role in the design of the
target system.

Remark 1: ā can be written as akl with k ∈ [0, n] and
l ∈ [0,m] (the uniqueness is not guaranteed). For this
particular solution we denote λ̄ and µ̄ the corresponding
transport velocities.

Remark 2: The coupling terms are assumed constant here
but the results of this paper can be adjusted for spatially-
varying coupling terms.

Remark 3: Without any loss of generality we can assume
that ā ≥ 1

2 . This assumption will be done in the following

B. Well-posedness and operator formulation

We can rewrite the system in the abstract form

d

dt

(
u
v

)
= A

(
u
v

)
+B

(
U
V

)
(11)

where the operators A and B can be identified through their
adjoints. The operator A is thus defined by

A :D(A) ⊂ (L2(0, 1))n+m → (L2(0, 1))n+m(
u
v

)
7−→

(
−Λ+ux + Σ++u+ Σ+−v
Λ−vx + Σ−+u+ Σ−−v

)
(12)

with

D(A) = {(u, v) ∈ (H1(0, 1))n+m|u(0) = v(1) = 0} (13)

A is well defined and its adjoint A∗ is

A∗ :D(A∗) ⊂ (L2(0, 1))n+m → (L2(0, 1))n+m(
u
v

)
7−→

(
Λ+ux + (Σ++)Tu+ (Σ−+)TV
−Λ−vx + (Σ+−)Tu+ (Σ++)T v

)
(14)

with

D(A∗) = {(u, v) ∈ (H1(0, 1))n+m|u(1) = v(0) = 0}
(15)

The operator B is defined by

< B

(
U
V

)
,

(
z1

z2

)
>= z1(0)tΛ+U + z2(1)TΛ−V (16)

Its adjoint is

B∗
(
z1

z2

)
=

(
z1(0)TΛ+

z2(1)TΛ−

)
(17)

C. Control problem

The goal is to design feedback control inputs U(t) =
(U1(t), . . . , Un(t))T and V (t) = (V1(t), . . . , Vm(t))T such
that the zero equilibrium is reached in minimum time t = tF ,
where

tF = max

{
1

µ1
,

1

λ1

}
(18)

This “minimum time” is the time needed for the slowest
characteristic to travel the entire length of the spatial domain.
The existence of a control law reaching the null equilibrium
in time tF is proved in [16] using a method of characteris-
tics. To the best of our knowledge, no explicit feedback law



has been designed to achieve this goal. Previous approaches
yield
• exponential stability for small coupling terms when two-

sided static output feedback is used [4].

• finite-time stability in time 1
λ1

+ 1
µ1
> max

{
1

µ1
,

1

λ1

}
when one-sided backstepping design is used, i.e with
one controlled boundary only ([2]).

• finite-time stability in time max

{
1

µ
,

1

λ

}
when only

two equations are considered ([3]).
In the second case, the system is mapped with a Volterra
transformation to a target system that has a cascade structure,
which is natural for backstepping. In the third case, a
Fredholm transformation is used to map the system to a
target system with desirable properties of stability. In the
following we use a combination of these two approaches.

III. CONTROL DESIGN

The control design is based on a modified backstepping
approach: using a specific transformation, we map the system
(1)-(3) to a target system with desirable properties of sta-
bility. However, unlike the classical backstepping approach
where a Volterra transformation is used, we use a Fredholm
transformation here.

A. Target system design

We map the system (1)-(3) to the following system

αt(t, x) + Λ+αx(t, x) = Ω(x)α(t, x) + Γ(x)β(t, x) (19)

βt(t, x)− Λ−βx(t, x) = Ω̄(x)β(t, x) + Γ̄(x)α(t, x) (20)

with the following boundary conditions

α(t, 0) = 0 β(t, 1) = 0 (21)

while Ω and Ω̄ ∈ L∞(0, 1) are upper triangular matrices
with the following structure

Ω(x) =


ω1,1(x) ω1,2(x) . . . ω1,n(x)

0
. . . . . .

...
...

. . . ωn−1,n−1(x) ωn−1,n(x)
0 . . . 0 ωn,n(x)


(22)

Ω̄(x) =


ω̄1,1(x) ω̄1,2(x) . . . ω̄1,m(x)

0
. . . . . .

...
...

. . . ω̄m−1,m−1(x) ω̄m−1,m(x)
0 . . . 0 ω̄m,m(x)


(23)

The coefficients of the matrices Γ(x) and Γ̄(x) are defined
by

∀1 ≤ i ≤ n ∀1 ≤ j ≤ m

Γij(x) =

{
0 if aij ≥ ā or x < aij
γij(x) otherwise

(24)

∀1 ≤ i ≤ m ∀1 ≤ j ≤ n

Γ̄ij(x) =

{
0 if aji < 1− ā or x > aji
γ̄ij(x) ohterwise

(25)

Remark 4: The aij coefficients correspond to the spatial
position where the characteristic leaving x = 0 with velocity
λi and the one leaving x = 1 with velocity µj intersect.

Remark 5: As it will appear in the proof, the coefficients
Γ and Γ̄ do not make the system unstable due to their
particular cascade structure. Their presence is necessary to
prove the well-posedness of the backstepping transformation
presented bellow. The following example illustrates this
particular structure in a simple case.

Example 1: We consider the following coefficients

n = 3, m = 2 Λ+ =

0.5 0 0
0 2 0
0 0 4

 Λ− =

(
1 0
0 3

)
(26)

We define the matrix A such that Aij = aij = λi
λi+µj

A =


1
3

1
7

2
3

2
5

4
5

4
7

 (27)

It yields ā = a32 = 4
7 . Consequently the matrices Γ and Γ̄

have the following structure

Γ(x) =

∗ ∗0 ∗
0 0

 Γ̄(x) =

(
0 ∗ ∗
0 0 ∗

)
(28)

where the potential non-null terms are represented by ∗.
These matrices have some structural properties that will be
analyzed in Section IV-B.
Besides, the following lemma assesses the finite-time con-
vergence of the target system.

Lemma 1: The system (19)-(20) reaches its zero equilib-
rium in finite-time tF = max{ 1

λ ,
1
µ} = 1

λ .
Proof: ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ n, system (19)-(20) can

be rewritten as

αit(t, x) + λiα
i
x(t, x) =

n∑
p=i

ωip(x)αp(t, x)

+

m∑
p=1

γip(x)h[aip,1](x)βp(t, x)

(29)

βjt (t, x)− µjβjx(t, x) =

m∑
p=j

ω̄jp(x)βp(t, x)

+

n∑
p=1

γ̄jp(x)h[0,apj ](x)αp(t, x)

(30)



where, for any interval I , hI is defined by

hI(x) =

{
1 if x ∈ I
0 else (31)

with the convention

γij(x) = 0 if aij > ā (32)
γ̄ij(x) = 0 if aji ≤ 1− ā (33)

By induction, let us consider the following property P (s)
defined for all 1 ≤ s ≤ n

P (s) : ∀p ≥ n+ 1− s, if t ≥ x

λp
then αp(x, t) = 0

Initialization: The initialization can be proved using a similar
technique than the one presented bellow in the induction and
is not detailed here.
Induction: Let us assume that the property P (s − 1) (1 <
s ≤ n) is true. We denote r = n + 1 − s Integrating the
rth line of (29) along its characteristic lines and using the
boundary condition αr(t, 0) = 0, yields:

αr(t, x) =

∫ x
λr

0

n∑
p=r

ωrp(x− λrν)αp(t− ν, x− λrν)

+

m∑
p=1

γrp(x− λrν)h[arp,1](x− λrν)βp(t− ν, x− λrν)dν

(34)

with x ∈ [0, 1] and t ≥ x
λr

. Consequently, ∀p > r:

t ≥ x

λr
⇒ (1− λr

λp
)
x

λr
≤ t− x

λp

⇒ (1− λr
λp

)ν ≤ t− x

λp
∀ν ∈ [0,

x

λr
]

⇒ t− ν ≥ x− λrν
λp

⇒ αp(t− ν, x− λrν) = 0 (35)

The last implication uses the fact that P (s− 1) is true. Let
us now consider the following property P1(q) defined for all
1 ≤ q ≤ m

P1(q) : ∀x > arq, ∀t ≥ 1− x
µq

, βq(t, x) = 0

Initialization: The initialization can be proved using a similar
technique than the one presented bellow in the induction and
is not detailed here.
Induction: Let us assume that the property P1(q − 1) (1 <
q ≤ m) is true. Integrating the qth line of (30) along
its characteristic lines and using the boundary condition
βq(t, 0) = 0, yields:

βq(t, x) =

∫ 1−x
µq

0

n∑
p=q

ω̄qp(µqν + x)βp(t− ν, µqν + x)

+

n∑
p>r

γ̄qp(µqν + x)h[0,apq ](µqν + x)αp(t− ν, µqν + x)dν

(36)

with 1 ≥ x > arq , and t ≥ 1−x
µq

(this explains why the last
sum starts at p > r). Consequently, ∀p ≥ q and ∀ν ∈ [0, 1−x

µq
]

such that µqν+x ≤ apq (in order to have h[0,apq ](µqν+x) 6=
0):

t ≥ 1− x
µq

⇒t− x

λp
≥ (

λp
µq(λp + µq)

− x

µq
)(1 +

µq
λp

)

⇒t− x

λp
≥ (

apq
µq
− x

µq
)(1 +

µq
λp

)

⇒t− x

λp
≥ (1 +

µq
λp

)ν

⇒t− ν ≥ x+ µqν

λp

Consequently, using the fact that P (s − 1) is true, it yields
∀ν ∈ [0, 1−x

µq
] such that µqν + x ≥ apq

αp(t− ν, µqν + x) = 0 (37)

Consequently the second sum in (36) is always null for t ≥
1−x
µq

. Moreover, using the fact that P1(q− 1) is true, we can
simplify the first sum removing most of the terms. We can
rewrite (36) as:

βq(t, x) =

∫ 1−x
µq

0

ω̄qq(µqν + x)βq(t− ν, µqν + x)dν (38)

with 1 ≥ x > arq, and t ≥ 1−x
µq

. Consequently βq(t, x) = 0

and P1(q) is true. This achieves the proof of P1(q) for all
1 ≤ q ≤ m.
For a given p we now focus on the following term of (34)

γrp(x− λrν)h[arp,1](x− λrν)βp(t− ν, x− λrν) (39)

This term can be non null only if

x− λrν ≥ arp ∀ν ∈ [0,
x

λr
] (40)

It yields
µq + λr
λr

x− (µq + λr)ν ≥ 1⇔ µq
λr
x+ x− 1 ≥ (µq + λr)ν

(41)

Since t ≥ x
λr

it yields

µqt+ x− 1 ≥ (µq + λr)ν ⇒ µq(t− ν) ≥ 1− x+ λrν
(42)

Using P1 we can deduce that (39) is always null. Conse-
quently, combining this result with (35), we can rewrite (34)
as

αs(t, x) =

∫ x
λr

0

ωrr(x− λrν)αr(t− ν, x− λrν) (43)

with x ∈ [0, 1] and t ≥ x
λr

. Consequently it yields

∀x ∈ [0, 1], t ≥ x

λp
⇒ αp(x, t) = 0 (44)

It achieves the recursion. It is then quite straightforward to
prove a similar result for β. Consequently we have

∀t ≥ 1

λ1
, α(x, t) = 0 (45)

∀t ≥ 1

µ1
, β(x, t) = 0 (46)



This concludes the proof.
Using an operator framework, system (19)-(20) rewrites

as
d

dt

(
α
β

)
= A0

(
α
β

)
(47)

The operator A0 is defined by

A0 : D(A0) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
α
β

)
7−→

(
−Λ+αx + Ωα+ Γβ
Λ−βx + Ω̄β + Γ̄α

)
(48)

with

D(A0) = {(α, β) ∈ (H1(0, 1))2|α(0) = β(1) = 0} (49)

A0 is well defined and its adjoint A∗0 is

A∗0 : D(A∗0) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
α
β

)
7−→

(
αTxΛ+ + αTΩ + βT Γ̄
−βTx Λ− + βT Ω̄ + αTΓ

)T
(50)

with

D(A∗0) = {(α, β) ∈ (H1(0, 1))2|α(1) = β(0) = 0} (51)

B. Fredholm transformation

1) Definition of the transformation: In order to map the
original system (1)-(3) to the target system (19)-(21), we use
the following transformation

α(t, x) = u(t, x)

+ h[0,ā](x)

∫ − µ̄
λ̄
x+1

x

(K(x, ξ)u(t, ξ) + L(x, ξ)v(t, ξ))dξ

+ h]ā,1](x)

∫ x

λ̄
µ̄ (1−x)

(M(x, ξ)u(t, ξ) +N(x, ξ)v(t, ξ))dξ

(52)
β(t, x) = v(t, x)

+ h[0,ā](x)

∫ − µ̄
λ̄
x+1

x

(K̄(x, ξ)u(t, ξ) + L̄(x, ξ)v(t, ξ))dξ

+ h]ā,1](x)

∫ x

λ̄
µ̄ (1−x)

(M̄(x, ξ)u(t, ξ) + N̄(x, ξ)v(t, ξ))dξ

(53)

where we recall that for any interval I, hI(x) is defined by

hI(x) =

{
1 if x ∈ I
0 else (54)

We define the following triangular domains, depicted in
Figure 1:

T0 = {(x, ξ)| x ∈ [0, ā], x ≤ ξ ≤ − µ̄
λ̄
x+ 1} (55)

T̄1 = {(x, ξ)| x ∈ [ā, 1],
λ̄

µ̄
(1− x) < ξ ≤ x} (56)

The kernels K,L, K̄ and L̄ are defined on T0. The kernels
M,N, M̄ and N̄ are defined on T̄1. They are assumed

continuous in their domains of definition. They all have yet
to be defined.

Remark 6: One may think that due to the use of the h-
functions, the transformation presents a discontinuity in x =
ā. Nevertheless, one can check that the right and left limits
are equal since the integrals vanish and that consequently we
do not have any discontinuity.

Remark 7: Since α(0) = β(1) = 0 the two control laws
U and V can be computed as functions of (u, v).

Remark 8: This transformation is a Fredholm transforma-
tion and can be rewritten using integrals between 0 and 1 as
follows

α(t, x) = u(t, x)−
∫ 1

0

Q11(x, ξ)u(t, ξ) +Q12(x, ξ)v(t, ξ)dξ

(57)

β(t, x) = v(t, x)−
∫ 1

0

Q21(x, ξ)u(t, ξ) +Q22(x, ξ)v(t, ξ)dξ

(58)

with

Q11(x, ξ) = −K(x, ξ)h[x,− µ̄
λ̄
x+1](ξ)h[0,ā](x)

−M(x, ξ)h[ λ̄µ̄ (1−x),x](ξ)h]ā,1](x) (59)

Q12(x, ξ) = −L(x, ξ)h[x,− µ̄
λ̄
x+1](ξ)h[0,ā](x)

−N(x, ξ)h[ λ̄µ̄ (1−x),x](ξ)h]ā,1](x) (60)

Q21(x, ξ) = −K̄(x, ξ)h[x,− µ̄
λ̄
x+1](ξ)h[0,ā](x)

− M̄(x, ξ)h[ λ̄µ̄ (1−x),x](ξ)h]ā,1](x) (61)

Q22(x, ξ) = −L̄(x, ξ)h[x,− µ̄
λ̄
x+1](ξ)h[0,ā](x)

− N̄(x, ξ)h[ λ̄µ̄ (1−x),x](ξ)h]ā,1](x) (62)
Remark 9: Since α(0) = β(1) = 0 the two control laws

U and V can be computed as functions of (u, v).
2) Kernel equations: We now differentiate the Fredholm

transformation (52)-(53) with respect to time and space to
compute the equations satisfied by the kernels. We start
with the α-transformation (52).

If x ≤ ā: Differentiating (52) with respect to space
and using the Leibniz rule yields

αx(t, x) = ux(t, x)−K(x, x)u(t, x)− L(x, x)v(t, x)

− µ̄

λ̄
K(x,− µ̄

λ̄
x+ 1)u(− µ̄

λ̄
x+ 1)

− µ̄

λ̄
L(x,− µ̄

λ̄
x+ 1)v(− µ̄

λ̄
x+ 1)

+

∫ − µ̄
λ̄
x+1

x

(Kx(x, ξ)u(t, ξ) + Lx(x, ξ)v(t, ξ))dξ (63)



Differentiating (52) with respect to time, using (1), (2) and
integrating by parts yields

αt(t, x) = −Λ+ux(t, x) + Σ++u(t, x) + Σ+−v(t, x)

+K(x, x)Λ+u(t, x)− L(x, x)Λ−v(t, x)

−K(x,− µ̄
λ̄
x+ 1)Λ+u(t,− µ̄

λ̄
x+ 1)

+ L(x,− µ̄
λ̄
x+ 1)Λ−v(t,− µ̄

λ̄
x+ 1)

+

∫ − µ̄
λ̄
x+1

x

(Kξ(x, ξ)Λ
+u(t, ξ) + Lξ(x, ξ)Λ

−v(t, ξ))dξ

(64)

Plugging these expressions into the target system (19)-(20)
yields the following system of kernel equations

0 =Σ++ − Λ+K(x, x) +K(x, x)Λ+ − Ω(x) (65)
0 =Σ+− − Λ+L(x, x)− L(x, x)Λ− − Γ(x) (66)

0 =− µ̄

λ̄
Λ+L(x,− µ̄

λ̄
x+ 1) + L(x,− µ̄

λ̄
x+ 1)Λ− (67)

0 =
µ̄

λ̄
Λ+K(x,− µ̄

λ̄
x+ 1) +K(x,− µ̄

λ̄
x+ 1)Λ+ (68)

0 =Λ+Kx(x, ξ) +Kξ(x, ξ)Λ
+ +K(x, ξ)Σ++

+ L(x, ξ)Σ−+ − Ω(x)K(x, ξ)− Γ(x)K̄(x, ξ) (69)

0 =Λ+Lx(x, ξ)− Lξ(x, ξ)Λ− +K(x, ξ)Σ+−

+ L(x, ξ)Σ−− − Ω(x)L(x, ξ)− Γ(x)L̄(x, ξ) (70)

if x > ā: Similarly we get

0 =Σ++ + Λ+M(x, x)−M(x, x)Λ+ − Ω(x) (71)

0 =Σ+− + Λ+N(x, x) +N(x, x)Λ− − Γ(x) (72)

0 =− λ̄

µ̄
Λ+N(x,− λ̄

µ̄
(x− 1)) +N(x,− λ̄

µ̄
(x− 1))Λ−

(73)

0 =
λ̄

µ̄
Λ+M(x,− λ̄

µ̄
(x− 1)) +M(x,− λ̄

µ̄
(x− 1))Λ+ (74)

0 =Λ+Mx(x, ξ) +Mξ(x, ξ)Λ
+ +M(x, ξ)Σ++

+N(x, ξ)Σ−+ − Ω(x)M(x, ξ)− Γ(x)M̄(x, ξ) (75)
0 =Λ+Nx(x, ξ)−Nξ(x, ξ)Λ− +M(x, ξ)Σ+−

+N(x, ξ)Σ−− − Ω(x)N(x, ξ)− Γ(x)N̄(x, ξ) (76)

We now compute the kernels for the β-transformation
if x ≤ ā: Differentiating (53) with respect to space and time
and then plugging into the target system (19)-(20) yields the
following system of kernel equations

0 =Σ−+ + Λ−K̄(x, x) + K̄(x, x)Λ+ − Γ̄(x) (77)
0 =Σ−− − Λ−L̄(x, x) + L̄(x, x)Λ− − Ω̄(x) (78)

0 =− K̄(x,− µ̄

λm
x+ 1)Λ+ +

µ̄

λ̄
Λ−K̄(x,− µ̄

λ̄
x+ 1) (79)

0 =
µ̄

λ̄
Λ−L̄(x,− µ̄

λ̄
x+ 1) + L̄(x,− µ̄

λm
x+ 1)Λ− (80)

0 =− Λ−K̄x(x, ξ) + K̄ξ(x, ξ)Λ
+ + K̄(x, ξ)Σ++

+ L̄(x, ξ)Σ−+ − Ω̄(x)K̄(x, ξ)− Γ̄(x)K(x, ξ) (81)

0 =− Λ−L̄x(x, ξ)− Λ−L̄ξ(x, ξ) + K̄(x, ξ)Σ+−

+ L̄(x, ξ)Σ−− − Ω̄(x)L̄(x, ξ)− Γ̄(x)L(x, ξ) (82)

if x > ā: Similarly, we get

0 =Σ−+ − Λ−M̄(x, x)− M̄(x, x)Λ+ − Γ̄(x) (83)
0 =Σ−− + Λ−N̄(x, x)− N̄(x, x)Λ− − Ω̄(x) (84)

0 =
λ̄

µ̄
Λ−N̄(x,− λ̄

µ̄
(x− 1)) + N̄(x,− λ̄

µ̄
(x− 1))Λ− (85)

0 =− λ̄

µ̄
Λ−M̄(x,− λ̄

µ̄
(x− 1)) + M̄(x,− λ̄

µ̄
(x− 1))Λ+

(86)
0 =− Λ−M̄x(x, ξ) + M̄ξ(x, ξ)Λ

+ + M̄(x, ξ)Σ++

+ N̄(x, ξ)Σ−+ − Ω̄(x)M̄(x, ξ)− Γ̄(x)M(x, ξ) (87)
0 =− Λ−N̄x(x, ξ)− Λ−N̄ξ(x, ξ) + M̄(x, ξ)Σ+−

+ N̄(x, ξ)Σ−− − Ω̄(x)N̄(x, ξ)− Γ̄(x)N(x, ξ) (88)

The well-posedness of all these kernel equations is assessed
in the following theorems

Theorem 1: Consider system (65)-(70) and (77)-(82).
There exists a unique solution K, L, K̄ and L̄ in L∞(T0)

Theorem 2: Consider system (71)-(76) and (83)-(88).
There exists a unique solution M , N , M̄ and N̄ in L∞(T1)
The proof of these theorems is described in the following
section and uses the cascade structure of the kernel equations
(which is due to the particular shapes of the matrices Ω, Ω̄,
Γ and Γ̄)

IV. WELL-POSEDNESS OF THE KERNEL EQUATIONS

In this section we prove Theorem 1. The proof of The-
orem 2 is quite similar and is not detailed here. The proof
follows three steps:
• First, we develop the kernel equations and the associated

boundary conditions.
• Then we define a particular sequence in which to solve

the equations using the properties of the matrices Γ and
Γ̄.

• Finally, this sequence is used in a recursive approach to
complete the proof.

For every iteration of the recursion we prove that the ith

line of the system of kernel PDEs Kij , Lij (resp. K̄ij , L̄ij) is
well-posed. This proof involves the following well-posedness
theorem.

Theorem 3: Consider the following system of hyperbolic
equations

εj∂xFj(x, ξ) + νj∂ξFj(x, ξ) = Σj(x, ξ)F (x, ξ) (89)

where F = (F1 . . . Fn+m) is defined on the triangle D:

D = {(x, ξ)|x ≤ ξ c1ξ ≤ c1 − c2x d1ξ ≥ d1 − d2x}
(90)

where the coefficients c1, c2, d1, d2 are all positive (examples
of such domains are given on Figure...). The corresponding
boundary conditions are defined on a closed subset Rj
included on the boundary of the domain ∂D

Fj|Rj = fj (91)

Assume



• that the homogeneous system, obtained by taking
Σ(x, ξ) = 0 in (89) along with boundary conditions
(91) is well-posed;

• that there exists αj > 0 such that the following
inequalities holds for all j = 1, . . . , n+m

∀(x, ξ) ∈ D αjεj(x) + νj(ξ) < −δ < 0 (92)

Then the system (89) with boundary conditions (91) has
an unique solution F ∈ L∞(D).
Proof: The proof of this theorem is given in Appendix.

Remark 10: A necessary and sufficient condition for the
first assumption to be satisfied is that, for every j = 1 . . . n+
m the characteristics defined by the εj , νj uniquely connect
each point of T0 to Dj .

A. Development of the kernel equations

We only focus on the kernels K,L, K̄ and L̄ defined
on T0 since the proof is similar for the remaining kernels.
Developing (65)-(70) and (77)-(82) we get the following set
of kernel PDEs:

for 1 ≤ i ≤ n, 1 ≤ j ≤ n

λi∂xKij(x, ξ) + λj∂ξKij(x, ξ) = −
n∑
k=1

σ++
kj Kik(x, ξ)

−
m∑
p=1

σ−+
pj Lip(x, ξ) +

∑
i≤p≤n

Kpj(x, ξ)ωip(x)

+
∑

1≤p≤m

K̄pj(x, ξ)Γip(x) (93)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m

λi∂xLij(x, ξ)− µj∂ξLij(x, ξ) = −
m∑
k=1

σ−−kj Lik(x, ξ)

−
n∑
p=1

σ+−
pj Kip(x, ξ) +

∑
i≤p≤n

Lpj(x, ξ)ωip(x)

+
∑

1≤p≤m

L̄pj(x, ξ)Γip(x) (94)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n

µi∂xK̄ij(x, ξ)− λj∂ξK̄ij(x, ξ) =

n∑
k=1

σ++
kj K̄ik(x, ξ)

+

m∑
p=1

σ−+
pj L̄ip(x, ξ)−

∑
i≤p≤m

K̄pj(x, ξ)ω̄ip(x)

−
∑

1≤p≤n

Kpj(x, ξ)Γ̄ip(x) (95)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂xL̄ij(x, ξ) + µj∂ξL̄ij(x, ξ) =

m∑
k=1

σ−−kj L̄ik(x, ξ)

+

n∑
p=1

σ+−
pj L̄ip(x, ξ)−

∑
i≤p≤m

L̄pj(x, ξ)ω̄ip(x)

−
∑

1≤p≤n

Lpj(x, ξ)Γ̄ip(x) (96)

with the following set of boundary conditions (in order to
make the whole content more readable we have removed the
domains of definition of the indices)

Kij(x, 1−
µ̄

λ̄
x) = 0 (97)

Kij(x, x) =
σ++

λi − λj
i > j (98)

L̄ij(x,−
µ̄

λ̄
x+ 1) = 0 (99)

L̄ij(x, x) =
σ−−

µi − µj
i > j (100)

(
µj
λi
− µ̄

λ̄
)Lij(x, 1−

µ̄

λ̄
x) = 0 (101)

(−λi + µi
µ̄

λ̄
)K̄ij(x,−

µ̄

λm
x+ 1) = 0 (102)

∀x < aij Lij(x, x) = −
σ+−
ij

λi + µj
(103)

if 1− aji ≥ ā K̄ij(x, x) = − σ−+

λj + µi
(104)

We add the following arbitrary boundary conditions (in order
to have a well-posed system)

if 1− aji < ā K̄ij(0, ξ) = 0 (105)

Besides, (65) imposes

∀i ≤ j ωij(x) = (λj − λi)Kij(x, x) + σ++
ij (106)

and (66) imposes

∀aij < x < 1 γij(x) = −(λi + µj)Lij(x, x) + σ+−
ij

(107)

Similarly (78) imposes

∀i ≤ j ω̄ij(x) = (µj − µi)L̄ij(x, x) + σ−−ij (108)

and (77) imposes

∀0 ≤ x ≤ aji γ̄ij(x) = (µi + λj)K̄ij(x, x) + σ−+
ij

(109)

This induces a coupling between the kernels through equa-
tions (93), (94), (95) and (96) that could appear as non linear
at first sight. However, the coupling has a linear cascade
structure due to the particular shapes of the matrices Ω, Ω̄,
Γ and Γ̄. We now define two sequences ri and r̄i that will
be used in a recursive proof of the well-posedness. Some of
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these equations with the corresponding characterisitc lines
are represented on Figure 1 and Figure 2.

Remark 11: The artificial boundary condition we add for
the kernel K̄ is not a degree of freedom since it has no
impact on the control law and on the stability of the target
system.

B. Definition of the sequences ri and r̄i

In this subsection we define two sequences ri and r̄i that
we are going to use in the recursive proof. Let us consider

the matrices ∆ and ∆̄ defined by the following relations

∀1 ≤ i ≤ n ∀1 ≤ j ≤ m ∆ij =

{
0 if aij ≥ ā
1 else

(110)

∀1 ≤ i ≤ m ∀1 ≤ j ≤ n ∆̄ij =

{
0 if aji < 1− ā
1 else

(111)

These matrices have exactly the same structure as the ma-
trices Γ and Γ̄. We have the following results (some of the
proofs are quite straightforward and are omitted there).

Lemma 2: ∆̄ = 1−∆T

Proof: The proof relies on the fact that due to the
definition of ā (Equation (10)), if aij > ā then aij > 1− ā.
Suppose that ∆ij = 0, then aij ≥ ā ⇒ aij ≥ 1 − ā (since
ā > 1

2 ). It yields ∆̄ji = 1.
Suppose now that ∆ij = 1, then aij < ā ⇒ aij < 1 − ā
(due to the definition of ā). It yields ∆̄ji = 0.

Lemma 3: If ∆ij = 0 then ∀k > i ∆kj = 0
Lemma 4: If ∆ij = 0 then ∀k < j ∆ik = 0

The two previous lemmas use the fact that aij < ai+1,j and
aij > ai,j+1. Same results hold for ∆̄.

Lemma 5: Either the last line of ∆ or the last line of ∆̄
is null.

Proof: Let us assume that the last line of ∆̄ is non-
null. Consequently, ∀j ∈ [1, n] ajm ≤ 1− ā and particularly
anm ≤ 1 − ā. This implies anm ≤ ā (due to the definition
of ā) and it yields ∆mn = 0. Using the previous Lemma
concludes the proof.
In the following we denote si (resp s̄i) the number of
coefficients which are equal to 1 in the ith line of ∆ (resp
∆̄). For 0 ≤ i ≤ n+m, we define the sequences ri and r̄i{

if r̄0 − r̄i ≥ sri−1 then ri+1 = ri − 1 r̄i+1 = r̄i
if r0 − ri ≥ s̄r̄i−1 then r̄i+1 = r̄i − 1 ri+1 = ri

where r0 = n + 1, r̄0 = m + 1. We use the convention
s0 = s̄0 =∞.

Theorem 4: The sequences ri, r̄i are well defined. More-
over rn+m = r̄n+m = 1

Proof: To prove that the sequences are well defined we
need to prove that for any 0 ≤ i ≤ n+m one and one only
of the following assumptions is true

r̄0 − r̄i ≥ sri−1 (112)
r0 − ri ≥ s̄r̄i−1 (113)

We start by proving that at least one of the two assumptions
is true. By contradiction let us assume that none of them
hold. Consequently we have, for some i

r̄0 − r̄i < sri−1 (114)
r0 − ri < s̄r̄i−1 (115)

• By definition of sri−1, we have exactly sri−1 coefficients
that are equal to 1 on the (ri − 1)th line of the matrix
∆. Using Lemma 2 yields that we have exactly m − sri−1

coefficients equal to 1 on the (ri − 1)th column of ∆̄



• By definition of s̄r̄i−1, we have exactly s̄r̄i−1 coefficients
that are equal to 1 on the (r̄i−1)th line of ∆̄. Consequently
∆̄r̄i−1,s̄r̄i−1 = 1. Adjusting Lemma 3 to ∆̄ yields that on
the (n+ 1− s̄r̄i−1)th column of ∆̄ we have at least r̄i − 1
coefficients equal to 1.
• Since n+1− s̄r̄i < ri we get n+1− s̄r̄i ≤ ri−1. It means
that the column n+ 1− s̄r̄i is located lefter than the column
ri−1. Consequently, using Lemma 3, we must have a larger
number of coefficients equal to 1 on the column ri− 1 than
on the column n+ 1− s̄r̄i . This implies

m− sri−1 ≥ r̄i − 1 (116)

which is a contradiction with (114). To achieve the proof of
the well posedness of the two sequences ri and r̄i, we need
to prove that the two assumptions (112)-(113) cannot both
be true. This is quite straightforward uses the same ideas. If
we assume that (113) holds, then n + 1 − s̄r̄i ≥ ri implies
that the column n + 1 − s̄r̄i of ∆̄ is located strictly righter
than the column ri − 1 and that consequently (Lemma 4),
the number of coefficients equal to 1 on the former column
is larger than the number on the later. This implies

m− sri−1 < r̄i − 1 (117)

and consequently (112) is false. The same holds when (112)
is true.
The following lemma makes the link between the matrices
∆, ∆̄, and Γ, Γ̄.

Lemma 6: The matrix Γ(x) has at least m − si null-
coefficients on its ith line. Similarly, the matrix Γ̄(x) has
at least n− s̄i null-coefficients on its ith line.

Corollary 1: ∀i ≤ n, ∀j ≤ m− si, Γ(x)ij = 0 and ∀i ≤
m,∀j ≤ n− s̄i, Γ̄(x)ij = 0

Proof: The proofs of this lemma and of this corollary
are quite straightforward noticing that the matrices Γ (resp.
Γ̄) and ∆ (resp. ∆̄) have exactly the same structure and that
consequently the properties described above can be easily
extended to Γ and Γ̄.

C. Induction hypothesis

By induction, let us consider the following property P (q)
defined for all 1 ≤ q ≤ m+ n:

∀rq ≤ i ≤ n, ∀r̄q ≤ ī ≤ m, ∀1 ≤ j ≤ n, ∀1 ≤ d ≤ m,
∀1 ≤ j̄ ≤ n, ∀1 ≤ d̄ ≤ m, the problem (93)-(104) where
Ω, Ω̄, Γ and Γ̄ are defined by (106)-(108) has an unique
solution Kij(·, ·), Lid(·, ·), K̄īj̄(·, ·), L̄īd̄(·, ·) ∈ L∞(T0).

Initialization : For q = 1, we have either (r1 = n
and r̄1 = m + 1) or (r1 = n + 1 and r̄1 = m) due to
Theorem 3. Assuming that r1 = n and r̄1 = m+ 1, system
(93)-(104) rewrites as follow

for 1 ≤ j ≤ n

λn∂xKnj(x, ξ) + λj∂ξKnj(x, ξ) = −
n∑
k=1

σ++
kj Knk(x, ξ)

−
m∑
p=1

σ−+
pj Lnp(x, ξ) +Knj(x, ξ)σ

++
nn

(118)

for 1 ≤ j ≤ m

λn∂xLnj(x, ξ)− µj∂ξLnj(x, ξ) = −
m∑
k=1

σ−−kj Lnk(x, ξ)

−
n∑
p=1

σ+−
pj Knp(x, ξ) + Lnj(x, ξ)σ

++
nn

(119)

with the corresponding set of boundary conditions. The
well-posedness of such system is quite straightforward
using [14] or Theorem 3. The initialization still holds for
r1 = n+ 1 and r̄1 = m.

Induction : Let us assume that the property P (q − 1)
(1 < q ≤ n + m − 1) is true. We consequently have that
∀rq−1 ≤ i ≤ n, ∀r̄q−1 ≤ ī ≤ n, ∀1 ≤ j ≤ n, ∀1 ≤ d ≤ m,
∀1 ≤ j̄ ≤ n, ∀1 ≤ d̄ ≤ m, Kij(·, ·), Lid(·, ·), K̄īj̄(·, ·), and
L̄īd̄(·, ·) are bounded.
In the following we assume that r̄q = r̄q−1 (and that
consequently rq = rq−1 − 1). The result still holds if
rq = rq−1 and the proof is similar. We denote i = rq .
Using the induction hypothesis yields that ∀1 ≤ j̄ ≤ n,
∀1 ≤ d̄ ≤ m, ∀r̄q = r̄q−1 ≤ ī ≤ n K̄īj̄(·, ·), and L̄īd̄(·, ·)
are well-posed.
Rewriting equation (93) yields

− λi∂xKij(x, ξ)− λj∂ξKij(x, ξ) =

n∑
k=1

σ++
kj Kik(x, ξ)

+

m∑
p=1

σ−+
pj Lip(x, ξ)−

∑
i≤p≤m

Kpj(x, ξ)

· ((λp − λi)Kip(x, x) + σ++
ip )

]
−
∑

1≤p≤m

K̄pj(x, ξ)h[aip,1](x)·((λi+µp)Lip(x, x)+σ+−
ip )

(120)

with the boundary conditions

Kij(x, 1−
µ̄

λ̄
x) = 0 Kij(x, x) =

σ++

λi − λj
i > j

The one-but-last sum uses the expression of Kpj for i ≤
p ≤ m. This term is known and bounded for p > i
(induction assumption). For p = i, λi = λp and the term
(λp − λi)Kip(xij(x, ξ, s), xij(x, ξ, s)) cancels.
Using Corollary 1 and relation (107) it is possible to rewrite



the last sum as∑
m+1−si≤p≤m

K̄pj(x, ξ)(σ
+−
ip + (λi + µp)Lip(x, ξ))h[aij ,1](x)

(121)

Using the definition of ri, we have

si ≤ si−1 = srq−1 ≤ m+ 1− r̄q
⇒ m− si ≥ r̄q − 1 (122)

Consequently, the last sum uses the expression of K̄pj for
r̄q ≤ p ≤ m which is known according to the induction as-
sumption. Therefore, all the non-linearites that could appear
at first sight of the kernel equations actually involve terms
that have been computed in the previous iterations and that
are bounded. We can rewrite (120) as

−λi∂xKij(x, ξ)− λj∂ξKij(x, ξ) =

n∑
k=1

C++
kj (x, ξ)Kik(x, ξ)

+

m∑
k=1

C−+
kj (x, ξ)Lik(x, ξ)ds (123)

where the coefficients C++
kj and C−+

kj are known and
bounded (since they are either constants or computed during
the previous iteration of the recursion).

Similarly, we can rewrite (94) as

−λi∂xLij(x, ξ) + µj∂ξLij(x, ξ) =

n∑
k=1

C−+
kj (x, ξ)Kik(x, ξ)

+

m∑
k=1

C−−kj (x, ξ)Lik(x, ξ)ds (124)

where the coefficients C−+
kj and C−−kj are known and

bounded. Moreover we have the boundary condition

(
µj
λi
− µ̄

λ̄
)Lij

(
x, 1− µ̄

λ̄
x
)

= 0 (125)

and

∀x < aij =
λi

λi + µj
Lij(x, x) =

σ+−
ij

λi + µj
(126)

Each Lij has a discontinuity line defined by ξ = 1−µj
λi
x. The

characteristics are integrated in opposite directions on each
side of the discontinuity: away from the ξ = x boundary
for ξ ≤ 1 − µj

λi
x and away from the line ξ = 1 − µ̄

λ̄
for ξ ≥ 1 − µj

λi
x. Therefore the parameters α and δ of

Theorem 3, which have to satisfy (92) for all Lij on the
domain on which the equations are considered, vary on each
side of the discontinuity of all the kernels. Therefore, in what
follows, we define a sequence of triangular domains, depicted
on Figure 3, on which there exists α and δ satisfying (92).
More precisely, assuming that ai1 ≥ ā (this specific case
will be presented in Remark XX), for all k ≤ m + 1 such

that aik < ā (with the convention ai(m+1) = 0), consider
the domains Tk:

Tk = {(x, ξ)|x ≤ ξ ξ ≤ 1− µk−1

λi
x ξ ≥ 1− µk

λi
x}

Tm+1 = {(x, ξ)|0 ≤ x ≤ ξ ξ ≤ 1− µm
λi
x} (127)

The equations can be solved successively on these triangles,
starting from the rightmost one. Their are represented on
Figure 3.
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The trace of the solution on the boundary of a given Tk
provides boundary conditions of the system considered on
Tk+1.
By induction, let us now consider the property Q(k) defined
for all k such that aik < ā by: The system (123)-(126) is
well-posed on Tk ∩ T0.

Initialization: Let k0 such that aik0
< ā ≤ ai(k0−1).

On Tk0
∩ T0, equations (123) and (124) can be simply

rewritten, for l = 1 . . . n+m as

εl∂xFl(x, ξ) + νl∂ξFl(x, ξ) = Σl(x, ξ)F (x, ξ) (128)

where F = (Ki,1 . . .Ki,n, Li,1, . . . Li,m)T . The functions εl
and νl are defined according to the location of the boundary
condition by

εl =

 −λi if l ≤ n
−λi if l > n and l − n < k0

+λi else
(129)

νl =

 −λl if l ≤ n
+µl if l > n and l − n < k0

−µl else
(130)



The homogeneous system, obtained by taking Σl(x, ξ) = 0
along with the corresponding boundary conditions is well-
posed. If we choose αk0 such that

µk0
− 1

λi
< αk0 =

µk0−1 + µk0

2λi
<
µk0

λi
(131)

we easily get

αk0
εl + νl =

 −αk0
λi − λl if l ≤ n

−αk0λi + µl if l > n and l − n < k0

+αk0λi − µl else

=


−µk0−1−µk0

2 − λl if l ≤ n
−µk0−1−µk0

2 + µl if l > n and l − n < k0
+µk0−1+µk0

2 − µl else
(132)

In the first case, the result is always negative. If l−n < k0,
µl < µk0 <

µk0
+µk0−1

2 . Consequently, for the second case
the result is still negative. The same holds for the third case.
Consequently, the two hypothesis of Theorem 3 are verified
and we can conclude to the well-posedness of the kernel
equations on Tk0

. This concludes the initialization.

Recursion If we assume that Q(k) holds (for k0 ≥ k < m)
we can easily prove using Theorem 3 that Q(k + 1) holds.
The well-posedness of the homogeneous system is direct
using Q(k) and one can easily check that the second
hypothesis of the theorem holds choosing αk+1:

αk+1 =
µk+1 + µk

2
(133)

with the convention µm+1 = µm+1. Moreover this iteration
provides us the boundary condition for the next triangle. This
concludes the proof.

Remark 12: If ai1 < ā, the previous result still holds
taking ai0 = ā.
This proves the well-posedness of the ith line of the kernels
K and J on T0. Consequently P (q) is true and the well-
posedness of the kernels K,L, K̄, L̄ on T0 is proved.

V. INVERTIBILITY OF THE FREDHOLM
TRANSFORMATION

Unlike the Volterra transformation, the Fredholm trans-
formation is not always invertible. In [8], the authors prove
the invertibility of such a transformation in the case of a
first-order integro-differential hyperbolic equation. In [3] the
invertibility of the transformation is proved in the scalar case.
In this section we use similar arguments (in particular we rely
on the Fredholm alternative) to prove the invertibility of our
transformation.

1) Operator formulation of the Fredholm transformation
and properties: In this subsection we rewrite the previous
Fredholm transformation using operators. This will lead to
some relations verified by the adjoint operators. The Fred-
holm transformation (57)-(58) can be written as an operator

P acting on
(
u
v

)
. More precisely we have

P = Id−Q (134)(
α
β

)
= P

(
u
v

)
(135)

where Q : (L2(0, 1))n+m → (L2(0, 1))n+m is the integral
operator defined by

Q

(
u
v

)
=

∫ 1

0

(
Q11(x, ξ)u(t, ξ) +Q12(x, ξ)v(t, ξ)
Q21(x, ξ)u(t, ξ) +Q22(x, ξ)v(t, ξ)

)
dξ

(136)

Its adjoint is:

Q∗
(
u
v

)
=

∫ 1

0

(
Q11(ξ, x)u(t, ξ) +Q21(ξ, x)v(t, ξ)
Q12(ξ, x)u(t, ξ) +Q22(ξ, x)v(t, ξ)

)
dξ

(137)

One can easily check that:

Q∗(D(A∗)) ⊂ D(A∗) (138)

The control
(
U
V

)
can also be rewritten using operators(

U
V

)
= Γ

(
u
v

)
(139)

with

Γ

(
u
v

)
=

∫ 1

0

(
Q11(0, ξ)u(t, ξ) +Q12(0, ξ)v(t, ξ)
Q21(1, ξ)u(t, ξ) +Q22(1, ξ)v(t, ξ)

)
dξ

(140)

Using (47) and (135) yields

d

dt

(
α
β

)
= A0

(
α
β

)
= A0P

(
u
v

)
(141)

Moreover using (11) and (135) we get

d

dt

(
α
β

)
=

d

dt
(P

(
u
v

)
)

= PA

(
u
v

)
+ PBΓ

(
u
v

)
(142)

Consequently P and Γ satisfy the following relation:

A0P = PA+ PBΓ (143)

Taking the adjoints, this is equivalent to

P ∗A∗0 = A∗P ∗ + Γ∗B∗P ∗ (144)

2) The Fredholm alternative: We give first the following
useful lemmas:

Lemma 7: ker P ∗ ⊂ D(A∗0) = D(A∗)
Proof: Let us consider z ∈ ker P ∗. Consequently we

have P ∗z = 0. We can rewrite it(
z1

z2

)
=

∫ 1

0

(
Q11(ξ, x)z1(t, ξ) +Q21(ξ, x)z2(t, ξ)
Q12(ξ, x)z1(t, ξ) +Q22(ξ, x)z2(t, ξ)

)
dξ

(145)



If we evaluate the first line for x = 1 and the second one
for x = 0, using the fact that Q11(ξ, 0) = Q21(ξ, 0) =
Q12(ξ, 1) = Q22(ξ, 1) = 0, we get

z1(1) = z2(0) = 0 (146)

Consequently z ∈ D(A∗0) and we can write

kerP ∗ ⊂ D(A∗0) (147)

Lemma 8: ker P ∗ ⊂ ker B∗

Proof: Let us consider z ∈ ker P ∗. Consequently we
have P ∗z = 0. We can rewrite it(

z1

z2

)
=

∫ 1

0

(
Q11(ξ, x)z1(t, ξ) +Q21(ξ, x)z2(t, ξ)
Q12(ξ, x)z1(t, ξ) +Q22(ξ, x)z2(t, ξ)

)
dξ

(148)

If we evaluate the first line for x = 0 and the second one
for x = 1, using the fact that Q11(ξ, 1) = Q21(ξ, 1) =
Q12(ξ, 0) = Q22(ξ, 0) = 0, we get

z1(0) = z2(1) = 0 (149)

Consequently z ∈ ker B∗ and we can write

kerP ∗ ⊂ kerB∗ (150)

Lemma 9: ∀λ ∈ < ker(λId−A∗0)∩ ker B∗ = {0}
Proof: Let us consider ν ∈ < and z ∈ ker(νId−A∗0)∩

ker B∗ = {0}. Consequently we have(
z1(t, x)TxΛ+ + z1(t, x)TΩ + z2(t, x)T Γ̄− νz1(t, x)T

−z2(t, x)TxΛ− + z2(t, x)T Ω̄ + z1(t, x)TΓ− νz2(t, x)T

)
=

(
0
0

)
(151)

with the boundary conditions

z1(0) = z2(0) = 0 (152)

Consequently (using the Cauchy-Lipschitz’ theorem) we

have z =

(
0
0

)
We can now state the following theorem
Theorem 5: The map P ∗ = Id−Q∗ is invertible

Proof: Since Q∗ is a compact operator we can use
the Fredholm alternative (e.g [5]): Id2 − Q∗ is either non-
injective or surjective. Consequently it suffices to prove that
P ∗ is injective. In addition, the Fredholm alternative also
gives [5]

dim ker(Id−Q∗) < +∞ (153)

By contradiction we assume that ker P ∗ 6= {0}. We first
prove that ker P ∗ is stable by A∗0. We have ker P ∗ ⊂ D(A∗0).
Let then consider z ∈ ker P ∗. Using (144) we can obtain

P ∗A∗0z = 0 (154)

We thus have A∗0z ∈ ker P ∗. Consequently the restriction
A∗0|kerP∗

of A∗0 to ker P ∗ is a linear operator from ker P ∗ to
ker P ∗. Since the dimension of ker P ∗ is finite we can find
at least one eigenvalue ν. Let e ∈ ker P ∗ be a corresponding

eigenvector (by definition e 6= 0). We have e ∈ ker P ∗ and
so e ∈ ker B∗. Moreover we have A∗0e = νe. Consequently

e ∈ ker(νId−A∗0) ∩ kerB∗ (155)

which contradicts Lemma 5 and concludes the proof.

VI. CONTROL LAW AND MAIN RESULTS

We now state the main stabilization result as follows:
Theorem 6: System (1)-(2) with the following feedback

control laws

U(t) = −
∫ 1

0

(K(0, ξ)u(t, ξ) + L(0, ξ)v(t, ξ))dξ (156)

V (t) = −
∫ 1

0

(M̄(1, ξ)u(t, ξ) + N̄(1, ξ)v(t, ξ))dξ (157)

where K,L and M̄, N̄ are defined by (65)-(70) and (83)-
(88), reaches its zero equilibrium in finite time tF , where
tF is given by (18). The zero equilibrium is exponentially
stable in the L2-sense.

Proof: Notice that evaluating (52) at x = 0 yields (156)
and evaluating (53) at x = 1 yields (157). Since the kernels
are invertible, there exists a unique operator S such that(

u
v

)
= S

(
α
β

)
(158)

Applying Lemma 2 implies that (α, β) go to zero in finite
time tF , therefore (u, v) converge to zero in finite time tF

VII. UNCOLLOCATED OBSERVER DESIGN AND OUTPUT
FEEDBACK CONTROLLER

In this section we design an observer that relies on the
measurements of u at the right boundary and v at the left
boundary, i.e we measure

y1(t) = u(t, 1) (159)
y2(t) = v(t, 0) (160)

Then, using the estimates given by our observer and the con-
trol law (156)-(157), we derive an output feedback controller.

A. Observer design

The observer equations reads as follows

ût(t, x) + Λ+ûx(t, x) = Σ++û(t, x) + Σ+−v̂(t, x)

− P11(x)(û(t, 1)− u(t, 1))− P12(v̂(t, 0)− v(t, 0)) (161)
v̂t(t, x) + Λ−v̂x(t, x) = Σ−+û(t, x) + Σ−−v̂(t, x)

− P21(x)(û(t, 1)− u(t, 1))− P22(v̂(t, 0)− v(t, 0)) (162)

with the boundary conditions

û(t, 0) = U(t), v̂(t, 1) = V (t) (163)



where P11(·), P21(·), P12(·) and P22(·) have yet to be
designed. This yield the following error system

ũt(t, x) + Λ+ũx(t, x) = Σ++ũ(t, x) + Σ+−ṽ(t, x)

− P11(x)ũ(t, 1)− P12(x)ṽ(t, 0) (164)
ṽt(t, x) + Λ−ṽx(t, x) = Σ−+ũ(t, x) + Σ−−ṽ(t, x)

− P21(x)ũ(t, 1)− P22(x)ṽ(t, 0) (165)

with the boundary conditions

ũ(t, 0) = 0, ṽ(t, 1) = 0 (166)

B. Target system design

We map the system (1)-(3) to the following system

αt(t, x) + Λ+αx(t, x) = Ω(x)α(t, x) + Γ(x)β(t, x) (167)
βt(t, x)− Λ−βx(t, x) = Ω̄(x)β(t, x) + Γ̄(x)α(t, x) (168)

with the following boundary conditions

α(t, 0) = 0 β(t, 1) = 0 (169)

while Ω and Ω̄ ∈ L∞(0, 1) are upper triangular matrices
with the following structure

Ω(x) =


ω1,1(x) ω1,2(x) . . . ω1,n(x)

0
. . . . . .

...
...

. . . ωn−1,n−1(x) ωn−1,n(x)
0 . . . 0 ωn,n(x)


(170)

Ω̄(x) =


ω̄1,1(x) ω̄1,2(x) . . . ω̄1,m(x)

0
. . . . . .

...
...

. . . ω̄m−1,m−1(x) ω̄m−1,m(x)
0 . . . 0 ω̄m,m(x)


(171)

The coefficients of the matrices Γ(x) and Γ̄(x) are defined
by

∀1 ≤ i ≤ n ∀1 ≤ j ≤ m

Γij(x) =

{
0 if aij ≥ 1− ā
γij(x)h[aij ,1](x) else

(172)

∀1 ≤ i ≤ m ∀1 ≤ j ≤ n

Γ̄ij(x) =

{
0 if aij < 1− ā
γ̄ij(x)h[0,aji](x) else

(173)

where, for any interval I , hI is defined by

hI(x) =

{
1 if x ∈ I
0 else (174)

We recall the following result
Lemma 10: The zero equilibrium of (167)-(168) with

boundary conditions (169) and initial conditions (α0, β0) ∈
L2([0, 1]) is exponentially stable in the L2 sense.

C. Fredholm transformation

1) Definition of the transformation: In order to map the
system (164)-(165) to the target system (167)-(169), we use
the following transformation

u(t, x) = α(t, x)

+ h[0,1−ā](x)(

∫ x

0

(K1(x, ξ)α(t, ξ) + L1(x, ξ)β(t, ξ))dξ

+

∫ 1

− µ̄
λ̄
x+1

M1(x, ξ)α(t, ξ) +N1(x, ξ)β(t, ξ))dξ

+ h[1−ā,1](x)(

∫ − λ̄µ̄ (x−1)

0

(K1(x, ξ)α(t, ξ) + L1(x, ξ)β(t, ξ))dξ

+

∫ 1

x

M1(x, ξ)α(t, ξ) +N1(x, ξ)β(t, ξ))dξ) (175)

v(t, x) = β(t, x)

+ h[0,1−ā](x)(

∫ x

0

(K̄1(x, ξ)α(t, ξ) + L̄1(x, ξ)β(t, ξ))dξ

+

∫ 1

− µ̄
λ̄
x+1

M̄1(x, ξ)α(t, ξ) + N̄1(x, ξ)β(t, ξ))dξ

+ h[1−ā,1](x)(

∫ − λ̄µ̄ (x−1)

0

(K̄1(x, ξ)α(t, ξ) + L̄1(x, ξ)β(t, ξ))dξ

+

∫ 1

x

M̄1(x, ξ)α(t, ξ) + N̄1(x, ξ)β(t, ξ))dξ) (176)

We define the following triangular domains

T ′0 = {(x, ξ)|0 < x < 1, 1 ≥ ξ ≥ x ξ ≥ − µ̄
λ̄
x+ 1}

(177)

T1 = {(x, ξ)|0 < x < 1, 0 ≤ ξ ≤ x ξ ≤ − λ̄
µ̄

(x− 1)}

(178)

The kernels K1, L1, K̄1 and L̄1 are defined on T ′1 .
M1, N1, M̄1 and N̄1 are defined on T̄ ′0 . They are continuous
in their domains of assumed definition. They all have yet to
be defined.

2) Kernel equations: Differentiating the Fredholm trans-
formation (175)-(176) with respect to time and space yields



the following system of equations.

0 =Σ++ − Λ+K1(x, x) +K1(x, x)Λ+ − Ω(x) (179)
0 =Σ+− − Λ+L1(x, x)− L1(x, x)Λ− − Γ(x) (180)
0 =Σ−+ + Λ−K̄1(x, x) + K̄1(x, x)Λ+ − Γ̄(x) (181)
0 =Σ−− + Λ−L̄1(x, x)− L̄1(x, x)Λ− − Ω̄(x) (182)

0 =− λ̄

µ̄
Λ+K1(x,− λ̄

µ̄
(x− 1))−K1(x,− λ̄

µ̄
(x− 1))Λ+

(183)

0 =− λ̄

µ̄
Λ+L1(x,− λ̄

µ̄
(x− 1))− L1(x,− λ̄

µ̄
(x− 1))Λ−

(184)

0 =
λ̄

µ̄
Λ−K̄1(x,− λ̄

µ̄
(x− 1))− K̄1(x,− λ̄

µ̄
(x− 1))Λ+

(185)

0 =
λ̄

µ̄
Λ−L1(x,− λ̄

µ̄
(x− 1)) + L̄1(x,− λ̄

µ̄
(x− 1))Λ−

(186)

0 =Λ+(K1)x(x, ξ) + (K1)ξ(x, ξ)Λ
+ − Σ++K1(x, ξ)

− Σ+−K̄1(x, ξ) +K1(x, ξ)Ω(x) + L1(x, ξ)Γ̄(x)
(187)

0 =Λ+(L1)x(x, ξ) + (L1)ξ(x, ξ)Λ
− − Σ++L1(x, ξ)

− Σ+−L̄1(x, ξ) + L1(x, ξ)Ω̄(x) +K1(x, ξ)Γ(x)
(188)

0 =− Λ−(K̄1)x(x, ξ) + (K̄1)ξ(x, ξ)Λ
+ − Σ−−K̄1(x, ξ)

− Σ−+K1(x, ξ) + K̄1(x, ξ)Ω(x) + L̄1(x, ξ)Γ̄(x)
(189)

0 =− Λ−(L̄1)x(x, ξ)− (L̄1)ξ(x, ξ)Λ
− − Σ−−L̄1(x, ξ)

− Σ−+L1(x, ξ) + L̄1(x, ξ)Ω(x) + K̄1(x, ξ)Γ(x)
(190)

A similar system can be obtained for the kernels M,N, M̄
and N̄ . Moreover the observer gains are given by

P11(x) = M1(1, x)Λ+ (191)

P11(x) = M̄1(1, x)Λ+ (192)

P12(x) = L1(0, x)Λ− (193)
P22(x) = L̄1(0, x)Λ− (194)

The complete proof of the well-posedness of system (179)-
(190) is not detailed here. However, one can notice that
considering the following alternatives variables (χ, y) =
(1−ξ, 1−x) the triangle T ′0 is mapped on T0 and the triangle
T ′1 is mapped on T1. The corresponding kernel equations (or
at least their transposed) are extremely similar to the ones
obtained in Section III and consequently the well-posedness
proof detailed in Section IV can easily be adjusted to assess
the well-posedness of system (179)-(190).

D. Output feedback controller

The estimates can be used in a observer-controller to
derive an output feedback law yielding finite-time stability
of the zero equilibrium

Lemma 11: Consider the system composed of (1)-(3) and
target system (161)-(163) with the following control law

U(t) = −
∫ 1

0

(K(0, ξ)û(t, ξ) + L(0, ξ)v̂(t, ξ))dξ (195)

V (t) = −
∫ 1

0

(M̄(1, ξ)û(t, ξ) + N̄(1, ξ)v̂(t, ξ))dξ (196)

where K,L and M̄, N̄ are defined by (65)-(70) and (83)-
(88). Its solutions (u, v, û, v̂) converge in finite time to zero

Proof: The convergence of the observer error states
ũ, ṽ to zero for tF ≤ t is ensured by Theorem 7, along
with the existence of the backstepping transformation. Thus,
once tF ≤ t, v(t, 0) = v̂(t, 0) and one can use Theorem 6.
Therefore for 2tF ≤ t, one has (ũ, ṽ, û, v̂) ≡ 0 which yields
(u, v) ≡ 0.

VIII. SIMULATION RESULTS

In this section we illustrate our results with simulations on
a toy problem. The algorithm we use follows the proof of
Theorem 1. It solves the equations (93)-(109) transforming
them into integral equations, computing the characteristic
lines and finding the fixed point, solution of the kernel
equations. These kernels are then used to compute the control
law. The numerical values of the parameters are as follow.

n = m = 2, λ1 = 2, λ2 = 4 µ1 = 2, µ2 = 5
(197)

Σ++ =

(
1 1
1 1

)
Σ+− =

(
1 1
1 1

)
(198)

Σ−+ =

(
2 2
2 2

)
Σ−− =

(
2 2
2 2

)
(199)

The parameters values are chosen such that

• the system is unstable, in particular not stabilizable by
a static feedback law, and

• there is a large benefit in using the presented re-
sult compared to [2] since the minimum time tF1

=

max(
1

λ1
,

1

µ1
= 0.5) is the half of tF2

=
1

λ1
+

1

µ1
= 1.

Figure 4 pictures the L2-norm of the state (u, v) in open
loop, using the control law (156)-(157) presented in this
paper and using only a one-sided control-law (with only
two actuators) based on the one developed in [2]. While
the system in open loop is unstable (the L2-norm diverges),
it converges in minimum time tF 1 = max{ 1

λ ,
1
µ} = 0.5

when controller (156)-(157) is applied, as expected from
Theorem 6 and in time tF 2 = 1

λ + 1
µ = 1 when the

controller from [2] is applied. Figure 5 pictures the total
control effort Ū(t) defined by Ū(t) = U2

1 (t) + U2
2 (t) in the

case we have only a one-boundary controller and defined by
Ū(t) = U2

1 (t) +U2
2 (t) + V 2

1 (t) + V 2
2 (t) in the case we have

a two-boundary controller. One can notice that the control
efforts are equivalent.
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Fig. 5. Controller dynamics

IX. CONCLUDING REMARK

Using a backstepping approach we have presented a stabi-
lizating boundary feedback law for a general class of linear
first-order system controlled in both boundaries. Moreover,
the zero equilibrium of the system is reached in minimum
time tF which is the largest time between the two transport
times in each direction.
Besides, the presented result narrows the gap with the
theoretical controllability results of [16]. These results, al-
though they do not provide explicit control law, ensure
exact minimum-time controllability with less control inputs
than what is currently achievable using backstepping. More
generally, this raises the question of the links between
controllability and stabilization by backstepping. In particular
future works will consider first-order systems with a smaller
number of controls in each boundary.

APPENDIX

In this appendix, we prove Theorem 3. Assume that
the assumptions of Theorem 3 hold then the system (89)
with boundary conditions (91) has an unique solution F ∈

L∞(D). Classically (see [15] and [21]), the proof follows
three steps:
• First, we compute the characteristic lines
• In each domain the equations are transformed into

integral equations.
• Finally, a method of successive approximations is used

to find a solution to the integral equations.

A. Transformation into integral equations
The first assumption of Theorem 3 yields the existence

and uniqueness of characteristic curves defined as follows.
For each 1 ≤ j ≤ n + m and (x, ξ) ∈ D, we now define
the following characteristic lines (xj(x, ξ, ·), ξj(x, ξ, ·)) cor-
responding to equation (89){

dxj
ds

(x, ξ, s) = εj s ∈ [0, sFj (x, ξ)]

xj(x, ξ, 0) = x0
j (x, ξ), xj(x, ξ, s

F
j (x, ξ)) = x

(200)

{
dξj
ds

(x, ξ, s) = νj s ∈ [0, sFj (x, ξ)]

ξj(x, ξ, 0) = ξ0
j (x, ξ), ξj(x, ξ, s

F
j (x, ξ)) = ξ

(201)

These lines originate at the point (x0
j (x, ξ), ξ

0
j (x, ξ)) located

on the boundary of the domain and terminate on (x, ξ).
Integrating (89) along these characteristics and using bound-
ary conditions (91) yields

Fj(x, ξ) = fj(M
0
j (x, ξ, s))+∫ sFj (x,ξ)

0

Σj(Mj(x, ξ, s))F (Mj(x, ξ, s))ds (202)

where we denote Mj(x, ξ, s) = (xj(x, ξ, s), ξj(x, ξ, s)) and
M0
j (x, ξ, s) = (x0

j (x, ξ, s), ξ
0
j (x, ξ, s))

B. Method of successive approximations
In order to solve (202) we use the method of successive

approximations. We define

Φj [F ](x, ξ) =

∫ sFj (x,ξ)

0

Σj(Mj(x, ξ, sj))F (Mj(x, ξ, sj))ds

(203)

We now construct the sequence F p defined by

F 0(x, ξ) = 0 (204)

F p+1(x, ξ) =

 f1(M0
1 (x, ξ, sj))

...
fn+m(M0

(n+m)(x, ξ, sj))


+

 Φ1[F p](x, ξ)
...

Φ(n+m)[F
p](x, ξ)

 (205)

Consequently, if the sequence F p has a limit, then this limit
is a solution of the integral equation and therefore of the
original system.
We define the increment ∆F p = F p − F p−1. Provided the
limit exists one has

F (x, ξ) = lim
p→+∞

F p(x, ξ) =

+∞∑
p=0

∆F p(x, ξ) (206)

We now prove the convergence of the series.



C. Convergence of the successive approximations series

The proof of convergence is based on the following
Lemmas.

Lemma 12: Assume that (92) holds. then for all j =
1 . . . n + 1, (x, ξ) ∈ D, the following function is strictly
increasing

φx,ξ : s ∈ [0, sFj (x, ξ)] 7−→ − αxj(x, ξ, s)− ξj(x, ξ, s)
+ (α+ 1) (207)

Proof: The proof is trivial. Recalling (92) yields

φ′x,ξ(s) = −αεj − νj > 0 (208)

This concludes the proof.
Lemma 13: For all j = 1 . . . n+m the following inequal-

ities hold∫ sFj (x,ξ)

0

(−αxij(x, ξ, s)− ξij(x, ξ, s) + (α+ 1))pds

≤ 1

δ

((α+ 1)− αx− ξ)p+1

p+ 1
(209)

Proof: Consider the following change of variables

τ = φx,ξ(s) (210)

It yields∫ sFj (x,ξ)

0

(−αxj(x, ξ, s)− ξj(x, ξ, s) + (α+ 1))pds

=

∫ −αx−ξ+2

−αx0
j (x,ξ)−ξ0

j (x,ξ)+2

τpdτ

−αεj − νj
(211)

Using (92) this yields∫ sFj (x,ξ)

0

(αxj(x, ξ, s) + ξj(x, ξ, s))
pds

<
(−αx− ξ + (α+ 1))p+1

δ(p+ 1)

−
(−αx0

j (x, ξ)− ξ0
j (x, ξ) + (α+ 1))p+1

δ(p+ 1)
(212)

Since (x0
j (x, ξ), ξ

0
j (x, ξ)) ∈ D and since α > 0, one has

−αx0
j (x, ξ)− ξ0

j (x, ξ) + α+ 1 ≥ 0 which yields the result.

Lemma 14: Let M > 0 be such that

M > Σ̄δ (213)

where Σ̄ is defined as

Σ̄ = max
(x,ξ)∈D

max
||F ||6=0

||Σ(x, ξ)F ||
||F ||

(214)

If for some 1 ≤ q and some f̄ > 0 one has, for all (x, ξ) ∈ T0

∀j = 1 . . .m+ n |∆F pj (x, ξ)| ≤ Mp(−αx− ξ + (α+ 1))p

p!
(215)

Then one has ∀j = 1 . . .m+ n

|∆F p+1
j (x, ξ)| ≤ Mp+1(−αx− ξ + (α+ 1))p+1

(p+ 1)!
(216)

Proof: Assume that (215) holds for some fixed 1 ≤ p.
Let us consider 1 ≤ j ≤ (m+ n).

|∆F p+1
j (x, ξ)| = |Φj [∆F p](x, ξ)|

<

∫ sFj (x,ξ)

0

|Σj(Mij(x, ξ, sj))∆F
p(Mj(x, ξ, sj))|ds

(217)

Using (215) this yields

|∆F p+1
j (x, ξ)| < Σ̄

∫ sFj (x,ξ)

0

f̄Mp

((α+ 1)− αxj(x, ξ, s)− ξj(x, ξ, s))p

p!
ds

< f̄
Σ̄Mp

δ

(−αx− ξ + (α+ 1))p+1

(p+ 1)!
(218)

which yields the result using (213)
Proof: We now prove the Initialization. Denoting

f̄ = max
(x,ξ)∈T0

max
j=1...n+m

|fj(x, ξ)| (219)

one has

∀j = 1 . . . n+m|∆F 0
j (x, ξ)| = |fj(M0

j (x, ξ))| < f̄ (220)

Then, using Lemma 10, one can prove by recursion that
+∞∑
p=0

|∆F p(x, ξ)| < f̄eM(−αx−ξ+(α+1)) (221)

Defining F as

F (x, ξ) =

+∞∑
p=0

∆F p(x, ξ) = lim
p→∞

F p(x, ξ) (222)

and taking the limit p→∞ in (205) yields the result.
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