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a b s t r a c t 

In this paper we introduce a posteriori error estimator based on the concept of error in the

constitutive relation to verify parametric models computed with a reduced basis approxima- 

tion. We develop a global error estimator which leads to an upper bound for the exact error

and takes into account all the error sources: the error due to the reduced basis approximation

as well as the error due to the finite element approximation. We propose an error indicator to

measure the quality of the reduced basis approximation and we deduce an error indicator on

the finite element approximation.

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction

Finite Element Method is a common tool used to analyze and design parametrized mechanical systems. However, when a

large set of parameters needs to be introduced in the model the computational effort increases drastically and many authors have

recently shown interest in developing model reduction methods that exploit the fact that the response of complex models can

often be approximated by the projection of the initial model on a low-dimensional reduced basis [1–4] . Reduced basis methods

aim at speeding up the computational time for complex numerical models. They are based on an offline/online computational

strategy which consist in determining in a first step a set of snapshots or a reduced basis (offline computations) that will be

able to represent accurately the solutions for the problem studied. Different techniques are used to generate this basis, the more

commonly found in the literature are the proper orthogonal decomposition and the greedy sampling approach [2,5] . In both case,

the number of terms in the reduced basis is assumed to be very small compared to the number of degree of freedom of the finite

element computation. Then, the approximate solutions of the parametrized problem are computed via performing a Galerkin

projection onto the reduced basis space (online computations). 

However, the accuracy of the obtained solutions depends on the quality of the mesh used as well as on the quality of the

chosen reduced basis. If we denote by μ the vector of parameters, the global error e g is defined for any μ by 

e g ( μ) = u ( μ) − u rb ( μ) , (1)
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where u ( μ) is the exact solution of the parametrized problem and u rb ( μ) is its reduced basis approximation. This global error

can be split into two parts: 

e g ( μ) = u ( μ) − u h ( μ) + u h ( μ) − u rb ( μ) = e h ( μ) + e rb ( μ) (2)

where u h ( μ) is the finite element solution of the parametrized problem and e rb ( μ) = u h ( μ) − u rb ( μ) (resp. e h ( μ) = u ( μ) −
u h ( μ) ) is the error due to the projection of the finite element solution in the reduced basis space (resp. the error due to the finite

element approximation). Within the framework and reduced basis approximations based on proper orthogonal decomposition

or greedy sampling methods, many works have been devoted to the computation of a posteriori error estimators to measure the

error due to the projection of the finite element solution in the reduced basis space. An error estimator is proposed for elliptic

partial differential equations in [1,6] , for parabolic problems in [7,8] , for computational homogenization in [9] , for stochastic

computations [10] . However, the proposed error estimators are focused on the estimation of the error due to the reduced basis

approximation e rb and assume that the error due to the finite element approximation e h is negligible. Within the framework of

the proper generalized decomposition, a global error estimator based on the concept of error in the constitutive relation [11] ,

has been recently proposed for transient thermal problems in [12] , and for linear elastic problems in [13] . This error estimator

requires to develop a double reduced basis approximation during the offline step, a kinematic approach and a static approach,

for solving the parametrized problem. 

In this paper, we focus on parametrized linear elastic models where the parametric bilinear form a is depending on

parameters-dependent functions in an affine manner. The objective of this paper is to extend the constitutive relation error

estimator to reduced basis approximations based on greedy sampling. The use of the constitutive relation error (CRE) requires

the computation of an admissible pair ( ̂  u , ̂  σ) for any parameter μ during the online computations. Unlike the approach proposed

in [12,13] , we use directly the initial reduced basis (i.e. the reduced basis used to compute the solution u rb ) to build the admissible

pair ( ̂  u , ̂  σ) and we do not need to compute a second reduced basis by a greedy sampling algorithm. Additionally, two error indi-

cators are developed to separate in the global error estimator the part of the error due to the finite element approximation from

the part due to the reduced basis approximation. This family of error estimators allows to construct error bounds of the energy

norm and has been applied to separate the contribution of the different sources of error in finite element computations for non-

linear problems [14–16] , for domain decomposition problems [17,18] . We show that the global error estimator and the reduced

basis error estimator are upper bounds of the corresponding exact errors. To compute efficiently the error estimates within the

framework of an offline/online reduced basis method we need a further assumption, and we assume that the complementary

energy is, as well as the bilinear form a , depending on parameters-dependent functions in an affine manner. 

The paper is organized as follows: In Section 2 , we introduce parametric problem to be solved, we briefly recall the reduced

basis methodology, and we define the approximation errors introduced. The formulation of the global error estimator, the fi-

nite element error indicator and the reduced basis error indicator, as well as the offline/online strategy to compute them, are

described in Section 3 . Finally, in Section 4 the different errors are analyzed through a numerical example. 

2. Problem to be solved

2.1. Linear elastic model 

Let us consider an elastic structure defined in a domain � bounded by �. The external actions on the structure are repre-

sented by a surface force density T defined over a subset �N of the boundary and a body force density b defined in �. We assume

that a prescribed displacement u = u d is imposed on �D = ∂� − �N . The material is assumed to be linear elastic, being C the

Hooke tensor. We consider that the problem is dependent of a set of parameters μ ∈ D ⊂ R 

p . The problem can be formulated

as: find a displacement field u ( μ) ∈ U and a stress field σ( μ) defined in � which verify: 

• the kinematic constraints:

u ( μ) = u d on �D (3) 

• the equilibrium equations:

div σ( μ) + b ( μ) = 0 in � and σ( μ) n = T ( μ) in �N (4) 

• the constitutive equation:

σ( μ) = C ( μ) ε (u ( μ)) in � (5) 

n denotes the outgoing normal to �. U is the space in which the displacement field is being sought, U 0 the space of the

fields in U which are zero on �D , and ε ( u ) denotes the linearized deformation associated with the displacement: [ ε (u )] i j =
1 / 2 (u i, j + u j,i ) . 

The strong form of the problem ( 3 - 5 ) is equivalent to the classical weak form formulation: find u ∈ { v ∈ U; v | �D 
= u d } such

that: 

a (u ( μ) , u 

∗;μ) = f (u 

∗;μ) ∀ u 

∗ ∈ U 

0 (6)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 

a (u ( μ) , u 

∗;μ) = 

∫ 
�

C ( μ) ε (u ( μ)) : ε (u 

∗) d� and f (u 

∗;μ) = 

∫ 
�

b ( μ) . u 

∗ d� + 

∫ 
�N

T ( μ) . u 

∗d�

Following [1] , we assume that the parametric bilinear form a and the loading f are affinely dependent of functions of the param-

eter μ, by which we shall mean: 

a (u , u 

∗;μ) = 

Q ∑ 

q =1

�q ( μ) a q (u , u 

∗) and f (u 

∗;μ) = 

Q ′∑
q =1

H 

q ( μ) f q (u 

∗) (7)

where �q ( μ) ( q ∈ {1, … , Q }) and H 

q ( μ) ( q ∈ {1, … , Q 

′ }) are known functions of μ, a q ( q ∈ {1, … , Q }) are bilinear forms independent

of μ and f q ( q ∈ {1, … , Q 

′ }) are linear functions independent of μ. 

Remark. This ‘affine’ decomposition has been successfully applied by Rozza et al. for different kind of parametrization: geometry,

load intensity and direction, material properties, and multi subdomains for modular structures (see [2] for more details). 

2.2. Finite element approximation 

To compute the solution u ( μ) of Eq. (6) , we introduce a finite element approximation u h of u in a finite element space U h .
The finite-dimension space U h is associated with a finite element mesh of characteristic size h . Let P h be a partition of � into

elements E k . This partition formed by the union of all elements, is assumed to coincide exactly with the domain � and any two

elements are either disjoint or share a common edge. We assume that u d can be represented by a displacement field in U h . The

discretized problem is: find u h ∈ { v ∈ U h ; v | �D 
= u d } such that:

a (u h ( μ) , u 

∗
h ;μ) = f (u 

∗
h ;μ) ∀ u 

∗
h ∈ U 

0 
h (8)

where U 0 
h 

= { v ∈ U h ; v | �D
= 0 } . 

The corresponding stress field is calculated using the constitutive equation: 

σh ( μ) = C ( μ) ε (u h ( μ)) (9)

2.3. Reduced basis approximation 

Let u dir ∈ U h be a displacement field such that u dir| �D 
= u d . Let us introduce a set of samples in the parameter space S N s =

{ μ1 , . . . , μN s } , where μi ∈ D, and for each μn compute a finite element solution u 

0 
h 
( μn ) in U 0 

h 
described by the corresponding

vector of nodal values q 

n . 

a (u 

0 
h ( μ

n ) , u 

∗
h ;μn ) = f (u 

∗
h ;μn ) − a (u dir , u 

∗
h ;μn ) ∀ u 

∗
h ∈ U 

0 
h (10)

The reduced basis space is then defined by 

U 

0 
rb = span { u 

0 
h ( μ

1 ) , . . . , u 

0 
h ( μ

N s ) } ⊂ U 

0
h (11)

The choice of the samples in the parameter space S N s and of the associated reduced basis U rb depends on the sampling strategy

(see [1] for more details). In this paper, as detailed in Section 2.5 , we use the Greedy approach proposed in [1,2] . The reduced

basis approximation consists in solving Eq. (6) in U 0 
rb

+ { u dir } . A key point to justify the use of the reduced basis approximation is

that N s is assumed to be much smaller than N fe (i.e. N s << N fe ). 

a (u 

0 
rb ( μ) , u 

∗
rb ;μ) = f (u 

∗
rb ;μ) − a (u dir , u 

∗
rb ;μ) ∀ u 

∗
rb ∈ U 

0 
rb (12)

Remark. The computation of u dir is performed offline. The simplest choice is, for a given μ̄ ∈ D, to find u dir ∈ { v ∈ U h ; v | �D 
= u d }

such that 

a (u dir , u 

∗
h ; μ̄) = 0 ∀ u 

∗
h ∈ U 

0 
h

The corresponding stress field is calculated using the constitutive equation: 

σdir = C ( ̄μ) ε (u dir ) (13)

σdir is equilibrated to zero in the FE sense: ∫ 
�

σdir : ε (u 

∗
h ) d� = 0 , ∀ u 

∗
h ∈ U 

0 
h

Let us denote by �i 
rb 

the displacement fields u 

0 
h 
( μi ) for i ∈ { 1 , . . . , N s } . The reduced basis solution writes

u rb ( μ) = u dir + 

N s ∑ 

i =1

αi �
i 
rb (14)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The corresponding stress is defined using the constitutive equation 

σrb ( μ) = C ( μ) ε (u dir ) + 

N s ∑ 

i =1

αi C ( μ) ε (�i 
rb ) (15) 

by introducing Eq. (14) in Eq. (12) we build the algebraic system 

[ K ( μ) ] [ α] = [ F ( μ) ] (16) 

The elements of [ K ( μ)] and of [ F ( μ)] are defined by 

K i j ( μ) = a (�i 
rb , �

j 

rb 
;μ) and F i ( μ) = f (�i 

rb ;μ) (17)

Thanks to the ‘affine’ decomposition of a and f, K ij and F i can be written as a linear combination of the functions �q ( μ) ( q ∈ {1, …

, Q }) and H 

q ( μ) ( q ∈ {1, … , Q 

′ }).

K i j ( μ) = 

Q ∑ 

q =1

�q ( μ) a q (�i 
rb , �

j 

rb 
) and F i ( μ) =

Q ′∑
q =1

H 

q ( μ) f q (�i 
rb ) (18)

A crucial point in reduced basis approximations is the separation of the computational procedure in two parts: an offline part

devoted to the computation of parameters independent terms and performed only once, and an online part devoted to the

computation of parameters dependent terms and performed many times. The computational complexity of the offline stage is

great and depends on N fe (the size of the finite element approximation), while the computational complexity of the online stage

is small and depends on N s , Q, Q 

′ . We summarize the two parts of the computation (a more detailed description can be found in

[1] ) 

• offline: N s finite element solutions �i 
rb 

= u 

0 
h 
( μi ) as well as the scalars quantities a q (�i 

rb 
, � j 

rb 
) and f q (�i 

rb 
) are computed and

stored. 
• online: the matrix [ K ( μ)] and the right hand side [ F ( μ)] are assembled from Eq. (17) , the system [ K ( μ) ] [ α] = [ F ( μ) ] is solved

and the displacement field u rb ( μ) is computed from Eq. (14) .

All the online operations are independent of dimension N fe and depend only on N s , Q and Q 

′ . 

2.4. Approximation errors 

Two approximation errors are introduced in the computation of the reduced basis approximation 

• an error due to the projection in the reduced basis space,
• an error due to the finite element approximation.

The global error e g is defined by

e g ( μ) = u ( μ) − u rb ( μ) (19) 

This global error can be split in two parts 

e g ( μ) = e h ( μ) + e rb ( μ) (20) 

where e h and e rb are respectively the error introduced by the finite element approximation and the error introduced by the

reduced basis approximation. 

e h ( μ) = u ( μ) − u h ( μ) and e rb ( μ) = u h ( μ) − u rb ( μ) (21)

The energy norm is a classical way to measure these errors 

‖ e •( μ) ‖ 

2 
μ = a (e •( μ) , e •( μ) ;μ) =

∫ 
�

C ( μ) ε (e •( μ)) : ε (e •( μ)) d� (22)

where • = g, h or rb . The following equality holds for the energy norm: 

‖ e g ( μ) ‖ 

2 
μ = ‖ e h ( μ) ‖ 

2 
μ + ‖ e rb ( μ) ‖ 

2 
μ (23)

2.5. Choice of the snapshots 

The choice of the elements u h ( μ
i ) of the reduced basis (often called snapshots) is performed following the Greedy approach

proposed in [1,2] . We denote by D train ⊂ D the set of the samples which will be used to generate our reduced basis approximation

and N train the number of elements of D train . Typically N train is chosen such that N s << N train . The generation of the snapshots is

performed by an iterative greedy procedure. We begin with a first point μ1 and a first reduced basis space U 1 
rb

= span { u 

0 
h 
( μ1 ) } ,

then, for N = 2 , . . . , N s , we compute u rb ( μ) in U N−1
rb 

+ { u dir } for all μ ∈ D train and we find

μN = argmax μ∈D train 
‖ e rb ( μ) ‖ μ and u 

0 
h ( μ

N ) = u h ( μ
N ) − u dir (24)

set S N = S N−1 ∪ μN , and update U N 
rb 

= U N−1 
rb

+ span { u 

0 
h 
( μN ) } . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark. For practical purpose it is necessary to replace ‖ e rb ( μ) ‖ μ by an inexpensive a posteriori error bound as proposed in [1] .

In this paper, we use an error bound based on the concept of error in the constitutive relation that will be developed in Section

(3.5) . 

3. Error in the constitutive relation

In this section, we propose an error estimation method based on the concept of error in the constitutive relation. We show

that this error estimator is an upper bound of the error in the energy norm. An important point to develop an efficient error

estimator for reduced basis approximations is that the cost of construction of the error estimators is independent on N fe , and

we need to introduce as a further assumption that the complementary energy is also affinely dependent of functions of the

parameter μ. ∫ 
�

C ( μ) −1 σ1 : σ2 d� = 

Q ′′ ∑ 

q =1 

�q 
σ ( μ) 

∫
�

S q σ1 : σ2 d� (25)

where �q 
σ ( μ) are known scalar functions and S q are fourth order tensor fields defined on �.

3.1. Definition of the error estimator 

The approach based on the constitutive relation error [11] relies on a partition of the equations of the problem to be solved

into two groups. In linear elasticity, the first group consists of the kinematic constraints and the equilibrium equations; the

constitutive equation constitutes the second group. For a given μ ∈ D, let us consider an approximate solution of the problem,

denoted by ( u 

c , σe ), which verifies the first group of equations (3) and ( 4 ). This solution will be said admissible . If ( u 

c , σe ) verifies

the constitutive equation ( Eq. (5 )) in � then (u 

c , σe ) = (u ( μ) , σ( μ)) . If ( u 

c , σe ) does not verify the constitutive equation, the

quality of this admissible solution is measured by the error in the constitutive relation ηg which is defined with respect to the

constitutive equation 

ηg = e cr (u 

c , σe ) = ‖| σe − C ( μ) ε (u 

c )) ‖| μ (26)

where 

‖| σe − C ( μ) ε (u 

c )) ‖| μ = 

[ ∫
�
( σe − C ( μ) ε (u 

c )) : C 

−1 ( μ)( σe − C ( μ) ε (u 

c )) d�
] 1 / 2

(27)

The Prager–Synge theorem gives a relationship between the exact and admissible solution [19] 

e 2 cr (u 

c , σe ) = ‖| σ − σe ‖| 2 μ + ‖ u − u 

c ‖ 

2 
μ (28)

3.2. Admissible solution 

A key point to develop the error estimator is the construction, for a given μ ∈ D, of an admissible solution ( u 

c , σe ) from the

reduced basis solution u rb ( μ) and the data. Since the reduced basis solution verifies the kinematic constraints, one takes: 

u 

c = u rb ( μ) in � (29)

A method to recover equilibrated stress fields σe from the finite element solution and the data have been under development

for several years [19–21] . In classical linear elasticity finite element computation, the admissible stress field can be constructed

directly from the finite element stress field [19] because the finite element stress field verifies the equilibrium equations of the

finite element model. In the case of a reduced basis the construction of an admissible stress field σe requires two distinct steps. 

• In a first offline step, the reduced basis U rb is used to build an admissible reduced basis for the stresses. This reduced basis is

built with a recovery technique for constructing equilibrated stresses in star patches proposed in [20] .
• In a second online step, the admissible stress is computed by a minimization of an energy norm.

3.3. Construction of an admissible stress field 

The first step (offline) consists in building an admissible reduced basis for the stresses. 

Let μ0 denote a particular set of parameters such that μ0 / ∈ { μ1 , . . . μN s } , and let us introduce a set of displacement fields

u 

q 

h 
( μ0 ) ∈ U 0 

h
, for q ∈ { 1 , . . . , Q 

′ } , such that 

a (u 

q 

h 
( μ0 ) , u 

∗
h ;μ0 ) = f q (u 

∗
h ) ∀ u 

∗
h ∈ U 

0 
h (30)

where f q is the q th element of the affine decomposition of the loading ( Eq. (7 )). The stress fields σq 

f 
= C ( μ0 ) ε (u 

q 

h 
( μ0 )) verify an

equilibrium equation in the FE sense ( Eq. (31 )) ∫ 
σq 

f 
: ε (u 

∗
h ) d� = f q (u 

∗
h ) ∀ u 

∗
h ∈ U 

0 
h (31)
�



 

 

 

 

 

 

 

 

 

For each q ∈ { 1 , . . . , Q 

′ } , a recovery technique [20] is used to build a stress field 

ˆ σq 

f 
that verifies the equilibrium equation defined

by the following equation: ∫ 
�

ˆ σ
q 

f : ε (u 

∗) d� = f q (u 

∗) ∀ u 

∗ ∈ U 

0 (32) 

Similarly, a stress field 

ˆ σdir equilibrated to zero is built from the stress field σdir ( Eq. (13 )) such that ∫ 
�

ˆ σdir : ε (u 

∗) d� = 0 ∀ u 

∗ ∈ U 

0 (33) 

The set of stresses ˆ σq 

f 
is used to build an admissible stress field 

ˆ σ f ( μ) for any loading f ( u 

∗; μ). Let us define the stress field

ˆ σ f ( μ) , which depends explicitly on μ by 

ˆ σ f ( μ) = 

Q ′∑
q =1

H 

q ( μ) ̂  σ
q 

f + 

ˆ σdir (34) 

where H 

q ( μ) are known functions of μ defined in Eq. (7) . If we introduce Eq. (32) in Eq. (7) , thanks to the ‘affine’ decomposition,

we obtain 

∀ u 

∗ ∈ U 

0 f (u 

∗;μ) =
Q ′∑

q =1

H 

q ( μ) 
(∫

�

ˆ σ
q 

f : ε (u 

∗) d�
)

= 

∫ 
�

(
Q ′∑

q =1

H 

q ( μ) ̂  σ
q

f

)
: ε (u 

∗) d� (35)

Hence, the stress field 

ˆ σ f ( μ) is admissible for the loading f ( u 

∗; μ). Similarly σ f ( μ) defined by Eq. (36) is an equilibrated stress

field for the finite element model. 

σ f ( μ) = 

Q ′∑
q =1

H 

q ( μ) σq 

f 
+ σdir (36) 

The stress field 

ˆ σ f ( μ) could be used directly to compute an upper bound of the error, however it is easy to improve this upper

bound adapting the technique proposed in [12] for a proper generalized decomposition method, to a reduced basis approach. Let

us consider the set of stress fields computed from the snapshot solutions U rb 

σ i 
rb = C ( μi ) ε (u h ( μ

i )) for i ∈ { 1 , . . . , N s } (37)

The stress field σ i 
rb 

is equilibrated in the FE sense for the loading f (u 

∗
h 
;μi ) . The recovery technique [20] is again used to compute

admissible stress fields ˆ σ i 
rb ( i ∈ { 1 , . . . , N s } ) such that∫ 

�

ˆ σ
i 
rb : ε (u 

∗) d� = f (u 

∗;μi ) ∀ u 

∗ ∈ U 

0 (38) 

For a fixed μi Eq. (34) leads to ∫ 
�

ˆ σ f ( μ
i ) : ε (u 

∗) d� = f (u 

∗;μi ) ∀ u 

∗ ∈ U 

0 (39)

By subtracting Eq. (39) from Eq. (38) we obtain ∫ 
�


 ˆ σ
i 
rb : ε (u 

∗) d� = 0 ∀ u 

∗ ∈ U 

0 (40) 

where 
 ˆ σ i 
rb = 

ˆ σ i 
rb − ˆ σ f ( μ

i ) ( i ∈ { 1 , . . . , N s } ) is a set of stress fields equilibrated to zero. Similarly,we can build a set of stress fields

equilibrated to zero in the FE sense by setting 
σ i 
rb 

= σ i 
rb 

− σ f ( μ
i ) .

The second step of the construction is performed during the online procedure. For each parameter μ an admissible stress

field σe is sought in the reduced basis of equilibrated stress fields 

σe = 

ˆ σ f ( μ) + 

N s ∑ 

i =1

βi 
 ˆ σ
i 
rb (41) 

From Eqs. (40) and (34) it follows that σe is equilibrated with the loading f ( u 

∗; μ) for all βi ∈ R .

The coefficients β i are computed in order to minimize the “distance” between the stress field computed in the reduced basis

σrb ( μ) = C ( μ) ε (u rb ) and a stress field equilibrated in the FE sense ˜ σ(β1 , . . . , βN s ) 

J(β1 , . . . , βN s ) = ‖| C ( μ) ε (u rb ) − ˜ σ(β1 , . . . , βN s ) |‖ μ (42)

where 

˜ σ(β1 , . . . , βN s ) = σ f ( μ) + 

N s ∑ 

i =1

βi 
σ i 
rb (43) 



 

 

 

 

 

 

 

 

 

 

 

 

The minimization of Eq. (42) leads to the algebraic system 

[ A ( μ) ] 
[
β
]

= [ G ( μ) ] (44)

where 

A i j = 

∫ 
�

C 

−1 ( μ)
σ j 

rb 
: 
σ i 

rb d� (45)

and 

G j = 

∫ 
�


σ j 

rb 
: ( ε (u rb ) − C 

−1 ( μ) σ f ( μ)) d� (46)

Remark. The equilibrated stress field σe could also be used in Eq. (42) instead of the weakly equilibrated stress field 

˜ σ, to obtain

a better effectivity index for the global error estimator. However, the use of the weakly equilibrated stress field leads to minimize

the error estimator on the reduced basis approximation (as shown in Eq. (61) ) which is used to build the snapshots. 

3.4. Computation of the error estimator and upper bound property 

A direct application of the Prager–Synge theorem ( Eq. (28 )) with u 

c = u rb and σe defined by Eq. (41) leads to the following

upper bound property for the energy norm 

‖ e g ( μ) ‖ μ = ‖ u − u rb ‖ μ ≤ ηg = e cr (u rb , σ
e ) (47)

From Eq. (26) the expression of the global error estimator is given by 

e 2 cr (u rb , σ
e ) = 

∫ 
�

C 

−1 ( μ) σe : σe d� + 

∫ 
�

C ( μ) ε (u rb ) : ε (u rb ) d� − 2

∫ 
�

σe : ε (u rb ) d� (48)

The computation of the global error estimator is done by an offline–online procedure 

• During the offline procedure the stress fields ˆ σq 

f 
( q ∈ { 1 , . . . , Q 

′ } ) and 
 ˆ σ i 
rb ( i ∈ { 1 , . . . , N s } ) are computed and stored, as well

as the following scalar quantities for (i, j) ∈ { 1 , . . . , N s } ,p ∈ { 1 , . . . , Q 

′ } and r ∈ { 1 , . . . , Q 

′′ }
a ri j = 

(∫
�

S r 
σ i 
rb : 
σ j 

rb 
d�

)
a 0 rp j = 

(∫
�

S r σ p 
0 

: 
σ j 

rb 
d�

)
c i j = 

(∫
�


σ i 
rb : ε (� j 

rb 
) d�

)
(49)

and 

ˆ a ri j = 

∫ 
�

S r 
 ˆ σ
i 
rb : 
 ˆ σ

j 

rb d�

ˆ a 0 rpi = 

∫ 
�

S r ˆ σ
p 

f : 
 ˆ σ
i 
rb d�

ˆ a 00 
rpq = 

∫ 
�

S r ˆ σ
p 

f : ˆ σ
q 

f d�

ˆ b si j = 

∫ 
�

C 

s ε (�i 
rb ) : ε (� j 

rb 
) d�

ˆ c i j = 

∫ 
�


 ˆ σ
i 
rb : ε (� j 

rb 
) d�

ˆ c 0 pi = 

∫ 
�

ˆ σ
p 

f : ε (�i 
rb ) d� (50)

• During the online procedure for each parameter μ, thanks to the ‘affine’ decomposition ( Eq. (25 )), we compute the coefficients

of matrix [ A ( μ)] and [ G ( μ)] by introducing the coefficients defined by Eq. (49) in Eqs. (45 ) and ( 46 ):

A i j = 

Q ′′∑
r=1

�q 
σ ( μ) a ri j and G j =

N s ∑ 

i =1

αi ( μ) c i j −
Q ′∑ 

p=1

Q ′′∑
r=1

H 

p ( μ)�r 
σ ( μ) a 0 rp j (51)

then, the system [ A ( μ) ] 
[
β
]

= [ G ( μ) ] is solved. 

The error estimator e cr is computed during the online procedure from the coefficients β i , and the coefficients in Eq. (50) are

computed during the offline procedure. 

e 2 cr (u rb , σ
e ) =

Q ′′ ∑ 

r=1

Q ′ ∑ 

p=1 

Q ′ ∑ 

q =1

�r 
σ H 

p H 

q ˆ a 00 
rpq + 

Q ′′ ∑ 

r=1

Q ′ ∑ 

p=1

N s ∑ 

i =1

�r 
σ H 

p βi ̂  a 0 rpi



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 

Q ′′ ∑ 

r=1 

N s ∑ 

i =1 

N s ∑ 

j=1 

�r 
σβi β j ̂  a ri j + 

Q ∑ 

s =1 

N s ∑ 

i =1 

N s ∑
j=1

�s αi α j ̂
 b si j 

− 2 

Q ′ ∑ 

p=1 

N s ∑ 

i =1 

H 

p αi ̂  c 0 pi − 2 

N s ∑ 

i =1 

N s ∑ 

j=1

βi α j ̂  c i j (52) 

All the online computations are independent on N fe and depend only on Q, Q 

′ , Q 

′ ′ , and N s 

3.5. Error indicators 

The error estimator in the constitutive relation e cr ( u 

c , σe ) defined in Section 3.4 is a global error estimator which takes into

account the errors due to the projection in the reduced basis space as well as the error due to the finite element approximation.

In order to control the global error, it is important to separate in this global error the different error contributions and to build

error indicators which can measure separately the error contributions from the reduced basis approximation and the error con-

tributions from the finite element approximation. A first approach to build error indicators based on the error in the constitutive

relation was proposed for separating time integration error from finite element spatial error in elasto-plasticity [14,16,22,23] ,

the same idea was applied to domain decomposition algorithms in [17,18] . Within the framework of the proper generalized

decomposition separated error indicators were proposed in [12] . 

To estimate the contribution to the global error due to the reduced basis approximation, we define a new reference model

that is the finite element model: Find a displacement field u h ( μ) ∈ U h and a stress field σh ( μ) defined in � which verify: 

• the kinematic constraints:

u h ( μ) = u d on �D (53) 

• the finite element equilibrium equations:∫ 
�

σh ( μ) : ε (u 

∗
h ) d� = 

∫ 
�

b ( μ) . u 

∗
h d� + 

∫ 
�N

T ( μ) . u 

∗
h d� ∀ u 

∗
h ∈ U 

0 
h (54)

• the constitutive equation:

σh ( μ) = C ( μ) ε (u h ( μ)) in � (55) 

Let us consider an approximate solution of the problem, denoted by ( u 

cef , σeef ) which verifies the first group of equations

( Eqs. (53) and ( 54 ). This solution will be said to be FE-admissible . If ( u 

cef , σeef ) verifies the constitutive equation ( Eq. 55 ) in � then

(u 

ce f , σee f ) = (u h ( μ) , σh ( μ)) . If ( u 

cef , σeef ) does not verify the constitutive equation, the quality of this admissible solution is

measured by the error in the constitutive relation ηrb which is defined with respect to the constitutive equation 

ηrb = e cr (u 

ce f , σee f ) = ‖| σee f − C ( μ) ε (u 

ce f )) ‖| μ (56)

The FE-admissible fields can be constructed straightforwardly from the previous computations. Since the reduced basis solution

u rb ( μ) verifies the kinematic constraints and since the stress field 

˜ σ(β1 , . . . , βN s ) computed by Eq. (43) is equilibrated in the FE

sense (i.e. verifies Eq. (54) ), one takes (u 

ce f , σee f ) = (u rb ( μ) , ̃  σ(β1 , . . . , βN s )) . 

The application of the Prager–Synge theorem to ηrb = e cr (u rb ( μ) , ̃  σ) shows that ηrb is an upper bound of the error for the

reduced basis approximation. Let us consider 

η2 
rb = |‖ ̃

 σ − C ε (u rb )) ‖| 2 μ (57) 

As σh − C ε (u h ) = 0 , we have 

η2 
rb = |‖ ̃

 σ − σh + C ε (u h ) − C ε (u rb ) ‖| 2 μ (58) 

This expression can be developed in 

η2 
rb = |‖ ̃

 σ − σh ‖| 2 μ + ‖ u h − u rb ‖ 

2 
μ + 2

∫ 
�
( ̃  σ − σh ) : ε (u h − u rb ) d� (59)

As σh and 

˜ σ verify Eq. (54) and u h − u rb ∈ U 0 
h
, we have ∫ 

�
( ̃  σ − σh ) : ε (u h − u rb ) d� = 0 (60) 

and 

η2 
rb = e 2 cr (u rb , ̃  σ) = ‖| σh − ˜ σ‖| 2 μ + ‖ u h − u rb ‖ 

2 
μ (61)

As a consequence ηrb is an upper bound of the error for the reduced basis approximation 

‖ e rb ( μ) ‖ μ = ‖ u h − u rb ‖ μ ≤ ηrb (62) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

It will be shown in the numerical examples that the computed upper bound is very sharp. This error indicator is used to replace

‖ e rb ( μ) ‖ μ in Eq. (24) for the choice of the snapshots.

The error indicator on the reduced basis error ηrb is computed by an online/offline procedure similar to the procedure used

in Section 3.4 to compute the global error estimator. 

To estimate the part of the error due to the finite element discretization ‖ e h ‖ μ, we introduce an error indicator ηfe which

can be directly deduced from ηg and ηrb . This error indicator is not an upper bound of ‖ e h ‖ μ, however it provides a pertinent

estimate of the discretization error. This error indicator is based on the following equality: 

η2 
g = η2 

rb + ‖| σh − σe ‖| 2 μ − ‖| σh − ˜ σ‖| 2 μ (63)

This result is deduced from the properties of the F E − admissible stress field 

˜ σ and the admissible stress field σe . As u h − u rb ∈ U 0
h

we have the following Galerkin orthogonality relation ∫ 
�
( σe − ˜ σ) : ε (u h − u rb ) d� = 0 (64)

and 

‖| σe − σh |‖ 

2 
μ = ‖| σe − ˜ σ|‖ 

2 
μ + ‖| ̃  σ − σh |‖ 

2 
μ

+ 2 

∫ 
�
( σe − ˜ σ) : C −1 ( μ)( ̃  σ − σh ) d� (65)

From Eqs. (65) and (64) we can deduce that 

2 

∫ 
�
( σe − ˜ σ) : C −1 ( μ)( ̃  σ − σrb ) d� = ‖| σe − σh |‖ 

2 
μ

− ‖| σe − ˜ σ|‖ 

2 
μ − ‖| ̃  σ − σh |‖ 

2 
μ (66)

Moreover 

η2 
g = ‖| σe − ˜ σ|‖ 

2 
μ + ‖| ̃  σ − σrb |‖ 

2 
μ

+ 2 

∫ 
�
( σe − ˜ σ) : C −1 ( μ)( ̃  σ − σrb ) d� (67)

By introducing Eq. (66) in Eq. (67) we obtain 

η2 
g = ‖| ̃  σ − σrb |‖ 

2 
μ + ‖| σh − σe |‖ 

2 
μ − ‖| σh − ˜ σ|‖ 

2 
μ (68)

which concludes the proof. 

Under the assumption that ‖| σh − ˜ σ‖| μ < ‖| σh − σe ‖| μ, we can estimate the contribution to the global error due to the finite

element approximation by defining the following error indicator ηfe 

η f e = 

√
η2 

g − η2 
rb

(69)

As far we know we cannot prove that ‖| σh − ˜ σ‖| μ < ‖| σh − σe ‖| μ, however in practical computation we can observe that ηrb <

ηg . The relation between ηfe and ‖ e h ‖ μ is given by

η2 
f e = ‖ e h ‖ 

2 
μ + ‖| σ − σe ‖| 2 μ − ‖| σh − σee f ‖| 2 μ (70)

σ being the “exact” stress defined by Eqs. (3 - 5) . This equality is easily obtained by using the Prager–Synge theorem on ( u h , σ
e ) 

‖| σe − σh |‖ 

2 
μ = ‖| σ − σe |‖ 

2 
μ + ‖| σ − σh |‖ 

2 
μ = ‖| σ − σe |‖ 

2 
μ + ‖ e h ‖ 

2 
μ (71)

and introducing Eq. (71) in Eq. (63) . 

Eq. (70) shows that ηfe is not an upper bound of ‖ e h ‖ μ. However, it can be used as an error indicator for the part of the error

due to the FE computation when the mesh is not too coarse, as it will be shown in the numerical examples. 

4. Numerical results

This section is devoted to the numerical study of the error estimates and bounds presented in previous sections. We consider

the case where the structure � is composed of N different subdomains �i , and where each subdomain is made of a homogeneous

elastic material. The components of the vector of parameters μ are the coefficients of the elastic tensors C 

i . 

� = 

N ⋃ 

i =1

�i 

The bilinear form a is decomposed in 

a (u , v ;μ) = 

N ∑ 

i =1

C 

i ( μ) 

∫
�i

ε (u ) : ε (v ) dV 



Fig. 1. Thin plate studied.

Fig. 2. Mesh M3: 326 DoF .

 

 

 

 

 

 

 

 

 

 

The complementary energy is decomposed in 

∫ 
�

C 

−1 ( μ) σ1 : σ2 d V =
N ∑ 

i =1

(
C 

i ( μ) 
)−1

∫ 
�i

σ1 : σ2 d V. 

4.1. Description of the studied problem 

The studied structure is a thin plate with two rectangular holes proposed in [24] . Normal traction is applied along the vertical

edge and the plate is considered to be composed of two different materials. The symmetry of the problem allows to study

only one fourth of the plate as shown on Fig. (1 ). The Young modulus E 1 is fixed to 200 GPa and E 2 varies from 0.1 E 1 to 10 E 1 . The

Poisson ratios are fixed ν1 = ν2 = 0 . 30 . The problem depends on one parameter μ = (μ) ∈ D ⊂ R , with D = [0 . 1 , 10] . We choose

the set D train ⊂ D such that D train = { μi = c min (c max /c min ) 
(i/n train ) ; i = 0 , . . . , N train } , with c min = 0 . 1 ,c max = 10 , and N train = 100 .

The first point in the parameter set used to build the reduced basis is μ1 = 1 . 

4.2. Computation of the error estimators 

In this section the reduced basis solution is computed for different values of the parameters μ = 0 . 2 , 0 . 5 , 2 ., 8 . 0 ∈ D, and we

present the evolution of the error estimators as the mesh and the size of the reduced basis vary. 6-nodes triangular elements are

used to mesh the structure. We first study the evolution of the error estimators ηg , ηrb and ηh for a fixed mesh ( Fig. 2 ) when the

number of snapshots N s increases. The generation of the snapshots is performed by the iterative greedy procedure described in

Section 2.5 for N s = 6 . The successive values of the μ parameter are: {1.00, 0.10, 10.0, 0.23, 3.98, 0.46}. 

The computed error estimators are given in Fig. (3 ). It is interesting to note that the reduced basis error indicator converges

rapidly toward zero. We see also that η provides a good assessment of the finite element error even when N s is small. The global
h 
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Fig. 3. Evolution of the error estimators ηg , ηrb , ηh as a function of the number of snapshots for (a) μ = 0 . 125 , (b) μ = 0 . 50 , (c) μ = 2 . 0 , (d) μ = 8 . 0 . 
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Fig. 4. Evolution of the error estimators ηg , ηrb , ηh as a function of the number DoF for N s = 2 and (a) μ = 0 . 125 , (b) μ = 0 . 50 , (c) μ = 2 . 0 , (d) μ = 8 . 0 . 
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Fig. 5. Evolution of the error estimators ηg , ηrb , ηh as a function of the number DoF for N s = 3 and (a) μ = 0 . 125 , (b) μ = 0 . 50 , (c) μ = 2 . 0 , (d) μ = 8 . 0 . 
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Fig. 6. Evolution of the effectivity indexes θ g , θ rb , θ h as a function of the number of snapshots for (a) μ = 0 . 125 , (b) μ = 0 . 50 , (c) μ = 2 . 0 , (d) μ = 8 . 0 . 
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Fig. 7. Evolution of the effectivity indexes θ g , θ rb , θ h as a function of the number DoF for N s = 3 and (a) μ = 0 . 125 , (b) μ = 0 . 50 , (c) μ = 2 . 0 , (d) μ = 8 . 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

error tends to a horizontal asymptote which is the finite element discretization error, and it can be seen that increasing the

number of snapshots above 4 does not improve the quality of the solution. Fig. (4 ) shows the evolution of the error estimators

for uniformly-refined meshes when the number of snapshots is fixed to N s = 2 . The reduced basis error indicator ηrb , is very

little sensitive to the mesh. For parameter μ = 0 . 125 it can be seen that the reduced basis indicator is very small. For parameters

μ = 0 . 50 , 2 . 00 and 8.00 the reduced basis error indicator is greater and the global error estimator tends rapidly to a horizontal

asymptote which means that it is not necessary to refine the mesh if the reduced basis is not improved. Nevertheless the finite

element error indicator ηh decreases with the number of degree of freedom (DoF). Fig. (5 ) shows the evolution of the error

estimators for uniformly-refined meshes when the number of snapshots if fixed to N s = 3 . The reduced basis error indicator ηrb

is very small, and the mesh refinement increases the quality of the computation. 

4.3. Computation of the effectivity indexes 

The quality of the error estimators is measured with the effectivity index 

θ = 

estimated error norm

“true” error norm 

(72)

where the “true” error norm is either the exact error if available, or a reference error computed from a refined mesh if the true

error is unavailable. In this paper we consider three different effectivity indexes com puted from the error fields defined in Eqs.

( 19 - 21 ). 

θg = 

ηg 

‖ e g ‖ μ
, θrb =

ηrb 

‖ e rb ‖ μ
and θh =

ηh 

‖ e h ‖ μ
(73)

Three displacement fields are necessary to compute these errors for a given μ: u ( μ), u h ( μ), u rb ( μ). u rb ( μ) is obtained directly

from the reduced basis computation, u h ( μ) is computed exactly by performing a finite element computation, and an approxima-

tion u ref ( μ) of u ( μ) is computed on a refined mesh. We get 

‖ e g ‖ μ ≈ ‖ u re f ( μ) − u rb ( μ) | μ, ‖ e rb ‖ μ = ‖ u h ( μ) − u rb ( μ) ‖ μ and ‖ e h ‖ μ ≈ ‖ u re f ( μ) − u h ( μ) ‖ μ (74)

Fig. (6 ) shows the evolution of the effectivity indexes for a fixed mesh ( Fig. 2 ) when the number of snapshots N s increases. θ g and

θ rb are greater than 1, which illustrates the upper bound property for the global error estimator ηg and the reduced basis error

indicator ηrb . Moreover the computed bounds are, on this example, rather sharp with values in [1., 1.2]. ( Fig. 6 (d)) illustrates

that ηh is not necessarily an upper bound of the finite element error ( θh < 1 when the number of snapshots is lesser that 2),

nevertheless θh becomes greater than 1 when the number of snapshots increases. Fig. (7 ) shows the evolution of the effectivity

indexes for a fixed number of snapshots when the number of Dof increases. 



 

 

 

 

 

 

 

 

 

5. Conclusions

This paper introduces an error estimator based on the constitutive relation which provides an upper bound of the global error

for parametric linear elastic models computed with a reduced basis approximation. This error estimator takes into account all

the errors due to the approximations introduced (i.e. both the finite element and the reduced basis approximations). Two error

indicators are developed to estimate the contributions of each source of error. The reduced basis error indicator is defined in

the same way as the global error, except that the reference problem is different, and provides an upper bound for the reduced

basis error. The finite element error indicator is defined by using the orthogonality property between the finite element error

and the reduced basis error. With these tools, the next step, which is under consideration is to use these error estimators to

compute bounds for outputs of interest. The extension of this error estimator to parametrized geometries (see [1] ) would allow

to consider a larger class of problems of interest. 

References 

[1] G. Rozza , D.B.P. Huynh , A.T. Patera , Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differ-

ential equations, Arch. Comput. Methods Eng. 15 (2008) 229–275 .

[2] R. Milani, A. Quarteroni, G. Rozza, Reduced basis method for linear elasticity problems with many parameters, Comput. Methods Appl. Mech. Eng. 197
(51-52) (2008) 4 812–4 829. http://dx.doi.org/10.1016/j.cma.2008.07.002 .

[3] S. Boyaval , C. Le Bris , Y. Maday , N.C. Nguyen , A.T. Patera , Reduced basis approach for variational problems with stochastic parameters: application to heat
conduction with variable robin coefficient, Comput. Methods Appl. Mech. Eng. 198 (41–44) (2009) 3187–3206 .

[4] A. Ammar , B. Mokdada , F. Chinesta , R. Keunings , A new family of solvers for some classes of multidimensional partial differential equations encountered in
kinetic theory modeling of complex fluids, J. Non-Newton. Fluid Mech. 139 (2006) 153–176 .

[5] J. Artwell , B. King , Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations, Math. Comput. Model. 33 (1–3) (2001)
1–19 .

[6] L. Machiels , Y. Maday , A. Patera , Output bounds for reduced-order approximations of elliptic partial differential equations, Com put. Methods Appl. Mech.

Eng. 190 (2001) 3413–3426 .
[7] M.A . Grepl , A .T. Patera , A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, Model. Math.

Anal. Numer. 39 (1) (2005) 157–181 .
[8] D. Rovas , L. Machiels , Y. Maday , Reduced-basis output bound methods for parabolic problems, IMA J. Numer. Anal. 26 (3) (2006) 423–445 .

[9] P. Kerfriden , J.J. Rodenas , S.P.A. Bordas , Certification of projection-based reduced order modeling in computational homogenization by the constitutive
relation error, Int. J. Numer. Methods Eng. 97 (6) (2014) 395–422 .

[10] E. Florentin , P. Dìez , Adaptive reduced basis strategy based on goal oriented error assessment for stochastic problems, Comput. Methods Appl. Mech. Eng.

225-228 (2012) 116–127 .
[11] P. Ladevèze , D. Leguillon , Error estimate procedure in the finite element method and application, SIAM J. Numer. Anal. 20 (3) (1983) 485–509 .

[12] P. Ladevèze , L. Chamoin , On the verification of model reduction methods based on the proper generalized decomposition, Comput. Methods Appl. Mech.
Eng. 200 (2011) 2032–2047 .

[13] J.P.M. de Almeida , A basis for bounding the errors of proper generalized decomposition in solids mechanics, Int. J. Numer. Methods Eng. 94 (2013) 961–984 .
[14] L. Gallimard , P. Ladevèze , J. Pelle , Error estimation and adaptivity in elastoplasticity, Int. J. Numer. Methods Eng. 39 (1996) 189–217 .

[15] P. Ladevèze , N. Moës , A new a posteriori error estimation for nonlinear time-dependent finite element analysis, Comput. Methods Appl. Mech. Eng. 157

(1997) 45–68 .
[16] J. Pelle , D. Ryckelynck , An efficient adaptive strategy to master the global quality of viscoplastic analysis, Comput. Struct. 78 (20 0 0) 169–183 .

[17] L. Gallimard, T. Sassi, A posteriori error analysis of a domain decomposition algorithm for unilateral contact problem, Comput. Struct. 88 (13–14) (2010)
879–888. http://dx.doi.org/10.1016/j.compstruc.2010.04.007 .

[18] V. Rey, C. Rey, P. Gosselet, A strict error bound with separated contributions of the discretization and of the iterative solver in non-overlapping domain
decomposition methods, Comput. Methods Appl. Mech. Eng. 270 (0) (2014) 293–303. http://dx.doi.org/10.1016/j.cma.2013.12.001 .

[19] P. Ladevèze , J. Pelle , P. Rougeot , Error estimation and mesh optimization for classical finite elements, Eng. Comput. 8 (1991) 69–80 .

[20] L. Gallimard , A constitutive relation error estimator based on traction-free recovery of the equilibrated stress, Int. J. Numer. Methods Eng. 78 (2009) 460–482 .
[21] P. Ladevèze, L. Chamoin, E. Florentin, A new non-intrusive technique for the construction of admissible stress fields in model verification, Comput. Methods

Appl. Mech. Eng. 199 (9–12) (2010) 766–777. http://dx.doi.org/10.1016/j.cma.20 09.11.0 07 .
[22] L. Gallimard , P. Ladevèze , J. Pelle , Error estimation and time-space parameters optimization for fem non-linear computation, Comput. Struct. 64 (1997)

145–156 .
[23] P. Ladevèze , N. Moës , Adaptive control for finite element analysis in plasticity, Comput. Struct. 73 (1999) 45–60 .

[24] J. Peraire , A. Patera , Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement, in: P. Ladevèze,

J. Oden (Eds.), Advances in Adaptive Computational Methods, Elsevier, 1998, pp. 199–216 .

http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0001
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0001
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0001
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0001
http://dx.doi.org/10.1016/j.cma.2008.07.002
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0003
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0003
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0003
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0003
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0003
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0003
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0004
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0004
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0004
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0004
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0004
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0005
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0005
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0005
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0006
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0006
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0006
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0006
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0007
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0007
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0007
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0008
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0008
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0008
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0008
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0009
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0009
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0009
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0009
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0010
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0010
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0010
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0011
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0011
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0011
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0012
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0012
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0012
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0013
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0013
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0014
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0014
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0014
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0014
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0015
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0015
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0015
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0016
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0016
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0016
http://dx.doi.org/10.1016/j.compstruc.2010.04.007
http://dx.doi.org/10.1016/j.cma.2013.12.001
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0019
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0019
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0019
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0019
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0020
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0020
http://dx.doi.org/10.1016/j.cma.2009.11.007
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0022
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0022
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0022
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0022
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0023
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0023
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0023
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0024
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0024
http://refhub.elsevier.com/S0307-904X(15)00730-1/sbref0024

	A posteriori global error estimator based on the error in the constitutive relation for reduced basis approximation of parametrized linear elastic problems
	1 Introduction
	2 Problem to be solved
	2.1 Linear elastic model
	2.2 Finite element approximation
	2.3 Reduced basis approximation
	2.4 Approximation errors
	2.5 Choice of the snapshots

	3 Error in the constitutive relation
	3.1 Definition of the error estimator
	3.2 Admissible solution
	3.3 Construction of an admissible stress field
	3.4 Computation of the error estimator and upper bound property
	3.5 Error indicators

	4 Numerical results
	4.1 Description of the studied problem
	4.2 Computation of the error estimators
	4.3 Computation of the effectivity indexes

	5 Conclusions
	 References


