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Two-sided boundary stabilization of two linear hyperbolic PDEs in
minimum time

Jean Auriol1 and Florent Di Meglio2

Abstract— We solve the problem of stabilizing two coupled
linear hyperbolic PDEs using actuation at both boundary of
the spatial domain in minimum time. We design a novel
Fredholm transformation similarly to backstepping approaches.
This yields an explicit full-state feedback law that achieves the
theoretical lower bound for convergence time to zero.

I. INTRODUCTION

This article solves the problem of boundary stabilization
of two coupled heterodirectional linear first-order hyperbolic
Partial Differential Equations (PDEs) in minimum time with
one PDE in each direction and with actuation applied on
both boundaries.

First-order hyperbolic PDEs are predominant in model-
ing of traffic flow [1], heat exchanger [26], open channel
flow [9], [12] or multiphase flow [13], [14], [15]. Re-
search on controllability and stability of hyperbolic systems
have first focused on explicit computation of the solution
along the characteristic curves in the framework of the C1

norm [16], [19], [23]. Later, Control Lyapunov Functions
methods emerged, enabling the design of dissipative bound-
ary conditions for nonlinear hyperbolic systems [7], [8].
In [11] control laws for a system of two coupled nonlinear
PDEs are derived, whereas in [6], [8], [21], [22], [24] suffi-
cient conditions for exponential stability are given for various
classes of quasilinear first-order hyperbolic system. These
conditions typically impose restrictions on the magnitude of
the coupling coefficients.

More recently, the backstepping approach has enabled
the design of stabilizing full-state feedback laws. These
controllers are explicit, in the sense that they are expressed
as a linear functional of the distributed state at each instant.
The (distributed) gains can be computed offline.

Comparing results obtained via backstepping design with
existence results for stabilizing controllers reveals a gap.
In [20], an extensive review of controllability results for
linear hyperbolic systems is given, along with the theoretical
lower bounds for convergence times. These bounds vary
according, mainly, to the number and location of available
actuators. Backstepping results have, until now, focused on
single-boundary actuation, see e.g. [11] for the case of two
coupled PDEs, [17] for an arbitrary number of PDEs or [2]
for a minimum-time result in the general (single boundary
actuation) case.
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When actuation is applied at both boundaries, the literature
usually focuses on design dissipative boundary conditions
to stabilize the system. This not guarantee stabilization in
the minimum theoretical time, and is only possible for small
coupling terms between PDEs, but can generally be achieved
using static boundary output feedback, which is much less
computationally intensive.

In this paper, we partially bridge the gap between the
existence results of [20] and the explicit control design
results. More precisely, the main contribution of this paper
is a minimum-time stabilizing controller in the case of two
heterodirectional hyperbolic PDEs with actuation at both
boundaries. A proposed boundary feedback law ensures
finite-time convergence of the two states to zero in minimum
time. The minimum time defined [20] is the largest time
between the two transport times in each direction.

Similarly to recent approaches [5], [10], using a Fredholm
transformation, the system is mapped to a target system
with desirable stability properties. This target system is a
copy of the original dynamics from which the coupling
terms are removed. The well-posedness of the Fredholm
transformation is a consequence of a clever choice of the
domain on which the kernels are defined. The proof of the
invertibility of this transformation is non-trivial and uses an
operator-approach inspired by the one developed in [10].

The paper is organized as follow. In Section II we
introduce the model equations and the notations. In Section
III we present the stabilization result: the target system and
its properties are presented in Section III-A. In Section III-B
we derive the integral transformation and we present the
domains on which the kernels are defined. Some arguments
about the well-posedness of the kernels are given in Section
III-C. Section IV contains the proof of the invertibility of
the Fredholm transformation. In Section V we present the
control feedback law and its properties. Finally in Section
VI we give some simulation results.

II. PROBLEM DESCRIPTION

A. System under consideration

We consider the following 2-states linear hyperbolic sys-
tem

ut(t, x) + λux(t, x) = σ+−v(t, x) (1)
vt(t, x)− µvx(t, x) = σ−+u(t, x) (2)



evolving in {(t, x)| t > 0, x ∈ [0, 1]}, with the following
linear boundary conditions

u(t, 0) = U(t), v(t, 1) = V (t) (3)

with constant coupling terms and constant speeds

0 < λ ≤ µ (4)

The initial conditions denoted u0 and v0 are assumed to
belong to L2([0, 1]).

Remark 1: The coupling terms are assumed constant here
but the results of this paper can be adjusted for spatially-
varying coupling terms.

Remark 2: System (1)-(2) is equivalent to the following
system

ut(t, x) + λux(t, x) = σ++u(t, x) + σ+−v(t, x) (5)
vt(t, x)− µvx(t, x) = σ−+u(t, x) + σ−−v(t, x) (6)

This can straightforwardly be proved using a variable change.
Remark 3: There is no loss of generality in assuming that

(4) holds.

B. Well-posedness

To study the invertibility of the Fredholm transformation
used for control design, it is necessary to introduce ele-
mentary concepts of operator theory. Thus, taking the scalar
product of (1)-(2) with a smooth test function ΦT = (φ1, φ2)
and integrating by parts leads to the following definition of
a solution.

Definition 1: Consider system (1)-(2) with initial condi-
tions u0, v0 ∈ L2 and control laws U(t) and V (t). We say

that
(
u
v

)
is a (weak) solution if for every τ ≥ 0 and every

function Φ = (φ1, φ2)T ∈ (C1([0, τ ] × [0, 1]))2 such that
φ1(·, 1) = φ1(·, 0) = 0 we have

0 =

∫ τ

0

∫ 1

0

−(φ1t(t, x) + λφ1x(t, x)+

σ−+φ2(t, x))u(t, x)− (φ2t(t, x)

− µφ2x(t, x) + σ+−φ1(t, x))v(t, x)dxdt

+

∫ 1

0

(u(τ, x)φ1(τ, x)− u(0, x)φ1(0, x)

+ v(τ, x)φ2(τ, x)− v(0, x)φ2(0, x))dx

−
∫ τ

0

[λU(t)φ1(t, 0) + µV (t)φ2(t, 1)] dt (7)

We can consequently rewrite the system in the abstract form

d

dt

(
u
v

)
= A

(
u
v

)
+B

(
U
V

)
(8)

where the operators A and B can be identified through their
adjoints. The operator A is thus defined by

A :D(A) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
u
v

)
7−→

(
−λux + σ+−v
µvx + σ−+u

)
(9)

with

D(A) = {(u, v) ∈ (H1(0, 1))2|u(0) = v(1) = 0} (10)

A is well defined and its adjoint A∗ is

A∗ :D(A∗) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
u
v

)
7−→

(
λux + σ−+v
−µvx + σ+−u

)
(11)

with

D(A∗) = {(u, v) ∈ (H1(0, 1))2|u(1) = v(0) = 0} (12)

The operator B is defined by

< B

(
U
V

)
,

(
z1
z2

)
>= λUz1(0) + µV z2(1) (13)

Its adjoint is

B∗
(
z1
z2

)
=

(
λz1(0)
µz2(1)

)
(14)

C. Control problem and previous results

The goal is to design feedback control inputs U(t) and
V (t) such that the zero equilibrium is reached in minimum
time t = tF , where

tF = max

{
1

µ
,

1

λ

}
=

1

λ
(15)

This “minimum time” is the time needed for the slowest
characteristic to travel the entire length of the spatial domain.
The existence of a control law reaching the null equilibrium
in time tF is proved in [20] using a method of characteris-
tics. To the best of our knowledge, no explicit feedback law
has been designed to achieve this goal. Previous approaches
yield
• exponential stability for small coupling terms when two-

sided static output feedback is used [3].
• finite-time stability in time 1

λ + 1
µ >

1
λ when one-sided

backstepping design is used, i.e with one controlled
boundary only.

In the latter case, the system is mapped to a target system that
has a cascade structure, which is natural for backstepping but
does not enable stabilization in minimum time tF .

III. CONTROL DESIGN

The control design is based on a modified backstepping
approach: using a specific transformation, we map the system
(1)-(3) to a target system with desirable properties of sta-
bility. However, unlike the classical backstepping approach
where a Volterra transformation is used, we use a Fredholm
transformation here.

A. Target system design

We map the system (1)-(3) to the following system

αt(t, x) + λαx(t, x) = Ω(x)β(t, x)h[ λ
λ+µ ,1]

(x) (16)

βt(t, x)− µβx(t, x) = 0 (17)

with the following boundary conditions

α(t, 0) = 0 β(t, 1) = 0 (18)



hI(x) (I is an interval) is defined by

hI(x) =

{
1 if x ∈ I
0 else (19)

while Ω ∈ L∞(0, 1) is a function that will be defined later.
This system is designed as a copy of the original dynamics,
from which most of the coupling terms of (2) are removed.

Lemma 1: The zero equilibrium of (16)-(17) with bound-
ary conditions (18) and initial conditions (α0, β0) ∈
L2([0, 1]) is exponentially stable in the L2 sense.

Proof: The proof, using a Lyapunov function, is quite
classical and is omitted here.
Besides, the following lemma assesses the finite-time con-
vergence of the target system.

Lemma 2: The system (16)-(17) reaches its zero equilib-
rium in finite-time tF = max{ 1λ ,

1
µ} = 1

λ .
Proof: Using the same arguments than the ones pre-

sented in [17, Lemma 3.1] (i.e the characteristic method),
we can easily prove that for t ≥ 1

λ+µ

β(t, x) = 0 if x ≥ λ

λ+ µ
(20)

α(t, x) = 0 if x ≤ λ

λ+ µ
(21)

Consequently, for t ≥ 1
λ+µ , the system (16)-(17) can be

rewritten

αt(t, x) + λαx(t, x) = 0 (22)
βt(t, x)− µβx(t, x) = 0 (23)

with the additional conditions

α(t,
λ

λ+ µ
) = 0 β(t,

λ

λ+ µ
) = 0 (24)

Once again, using the method of characteristics, we can
prove that ∀x ∈ [0, 1], α(t, x) = 0 for t ≥ λ

λ+µ+
1− λ

λ+µ

λ = 1
λ

and that β(t, x) = 0 for t ≥ λ
λ+µ +

λ
λ+µ

µ = 1
λ .

Therefore (16)-(17) reaches its zero equilibrium in finite-time
tF = 1

λ
Using an operator framework, system (16)-(17) rewrites as

d

dt

(
α
β

)
= A0

(
α
β

)
(25)

The operator A0 is defined by

A0 : D(A0) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
α
β

)
7−→

(−λαx + Ωβh[ λ
λ+µ ,1]

µβx

)
(26)

with

D(A0) = {(α, β) ∈ (H1(0, 1))2|α(0) = β(1) = 0} (27)

A0 is well defined and its adjoint A∗0 is

A∗0 : D(A∗0) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
α
β

)
7−→

(
λαx

−µβx + Ωαh[ λ
λ+µ ,1]

)
(28)

with

D(A∗0) = {(α, β) ∈ (H1(0, 1))2|α(1) = β(0) = 0} (29)

B. Fredholm transformation

1) Definition of the transformation: Without any loss of
generality we recall that λ ≤ µ. In order to map the original
system (1)-(3) to the target system (16)-(18), we use the
following transformation

α(t, x) = u(t, x)

+ h[0, λ
µ+λ ]

(x)

∫ −µλx+1

x

(K(x, ξ)u(t, ξ) + L(x, ξ)v(t, ξ))dξ

+ h] λ
µ+λ ,1]

(x)

∫ x

λ
µ (1−x)

(M(x, ξ)u(t, ξ) +N(x, ξ)v(t, ξ))dξ

(30)
β(t, x) = v(t, x)

+ h[0, λ
µ+λ ]

(x)

∫ λ
µ (1−x)

x

(K̄(x, ξ)u(t, ξ) + L̄(x, ξ)v(t, ξ))dξ

+ h] λ
µ+λ ,1]

(x)

∫ x

λ
µ (1−x)

(M̄(x, ξ)u(t, ξ) + N̄(x, ξ)v(t, ξ))dξ

(31)

where, for any interval I, hI(x) is defined by

hI(x) =

{
1 if x ∈ I
0 else (32)

We define the following triangular domains, depicted in
Figure 1 and Figure 2:

T0 = {(x, ξ)| x ∈ [0,
λ

λ+ µ
], x ≤ ξ ≤ µ

λ
(1− x)} (33)

T̄0 = {(x, ξ)| x ∈ [0,
λ

λ+ µ
], x ≤ ξ < λ

µ
(1− x)} (34)

T̄1 = {(x, ξ)| x ∈]
λ

λ+ µ
, 1],

λ

µ
(1− x) < ξ ≤ x} (35)

The kernels K,L are defined on T0, M,N are defined on T̄1.
The kernels K̄, L̄ are defined on T̄0 and M̄, N̄ are defined
on T̄1. They are continuous in their domains of assumed
definition. They all have yet to be defined.

Remark 4: One may think that due to the use of the h-
functions, the transformation presents a discontinuity in x =
λ

µ+λ . Nevertheless, one can check that the right and left limits
are equal since the integral vanishes and that consequently
we do not have any discontinuity.

Remark 5: This transformation is a Fredholm transforma-
tion and can be rewritten using integrals between 0 and 1 as
follows

α(t, x) = u(t, x)−
∫ 1

0

Q11(x, ξ)u(t, ξ) +Q12(x, ξ)v(t, ξ)dξ

(36)

β(t, x) = v(t, x)−
∫ 1

0

Q21(x, ξ)u(t, ξ) +Q22(x, ξ)v(t, ξ)dξ

(37)



with

Q11(x, ξ) = −K(x, ξ)h[x,−µλx+1](ξ)h[0, λ
λ+µ ]

(x)

−M(x, ξ)h[λµ (1−x),x]
(ξ)h] λ

λ+µ ,1]
(x) (38)

Q12(x, ξ) = −L(x, ξ)h[x,−µλx+1](ξ)h[0, λ
λ+µ ]

(x)

−N(x, ξ)h[λλ (1−x),x]
(ξ)h] λ

λ+µ ,1]
(x) (39)

Q21(x, ξ) = −K̄(x, ξ)h[x,λµ (1−x)]
(ξ)h[0, λ

λ+µ ]
(x)

− M̄(x, ξ)h[λµ (1−x),x]
(ξ)h] λ

λ+µ ,1]
(x) (40)

Q22(x, ξ) = −L̄(x, ξ)h[x,λµ (1−x)]
(ξ)h[0, λ

λ+µ ]
(x)

− N̄(x, ξ)h[λµ (1−x),x]
(ξ)h] λ

λ+µ ,1]
(x) (41)

Remark 6: Since α(0) = β(1) = 0 the two control laws
U and V can be computed as functions of (u, v).

2) Kernel equations: We now differentiate the Fredholm
transformation (30)-(31) with respect to time and space to
compute the equations satisfied by the kernels. We start
with the β-transformation (31)

if x ≥ λ
µ+λ : Differentiating (31) with respect to space and

using the Leibniz rule yields

βx(t, x) = vx(t, x) + M̄(x, x)u(t, x) + N̄(x, x)v(t, x)

+
λ

µ
M̄(x,

λ

µ
(1− x))u(t,

λ

µ
(1− x))

+
λ

µ
N̄(x,

λ

µ
(1− x))v(t,

λ

µ
(1− x))

+

∫ x

λ
µ (1−x)

M̄x(x, ξ)u(t, ξ) + N̄x(x, ξ)v(t, ξ)dξ (42)

Differentiating (31) with respect to time, using (1), (2) and
integrating by parts yields

βt(t, x) = µvx(t, x) + σ−+u(t, x)+

µN̄(x, x)v(t, x)− µN̄(x,
λ

µ
(1− x))v(t,

λ

µ
(1− x))

− λM̄(x, x)u(t, x) + λM̄(x,
λ

µ
(1− x))u(t,

λ

µ
(1− x))

+

∫ x

λ
µ (1−x)

λM̄ξ(x, ξ)u(t, ξ)− µN̄ξ(x, ξ)v(t, ξ)

+ σ−+N̄(x, ξ)u(t, ξ) + σ+−M̄(x, ξ)v(t, ξ)dξ (43)

Plugging these expressions into the target system (16)-(17)
yields the following system of kernel equations

0 = −µM̄x(x, ξ) + λM̄ξ(x, ξ) + σ−+N̄(x, ξ) (44)
0 = −µN̄x(x, ξ)− µN̄ξ(x, ξ) + σ+−M̄(x, ξ) (45)

0 = M̄(x, x)− σ−+

λ+ µ
(46)

0 = N̄(x,
λ

µ
(1− x)) (47)

if x < λ
µ+λ : Similarly we get

0 = −µK̄x(x, ξ) + λK̄ξ(x, ξ) + σ−+L̄(x, ξ) (48)
0 = −µL̄x(x, ξ)− µL̄ξ(x, ξ) + σ+−K̄(x, ξ) (49)

0 = K̄(x, x) +
σ−+

λ+ µ
(50)

0 = L̄(x,
λ

µ
(1− x)) (51)

The corresponding domains, characteristic lines and bound-
ary conditions in Figure 1 We now focus on the alpha-

λ/µ

ξ
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1

λ/(λ+µ)

x =
 ξ

x

µξ= λ(1-x)

_              
     L=0

_              
     N=0

  

_
    

   K
=-σ

−+ /(λ
+µ)

  

_
    

   M
=σ

−+ /(λ
+µ)

Fig. 1. Representation of the beta-kernels

transformation.
if x ≤ λ

µ+λ : As above, differentiating (30) with respect to
space and time and then plugging into the target system (16)-
(17) yields the following system of kernel equations

0 = λLx(x, ξ)− µLξ(x, ξ) + σ+−K(x, ξ) (52)
0 = λKx(x, ξ) + λKξ(x, ξ) + σ−+L(x, ξ) (53)

0 = L(x, x)− σ+−

λ+ µ
(54)

0 = K(x,
µ

λ
(1− x)) (55)



if x > λ
µ+λ : Similarly we get

0 = λMx(x, ξ) + λM̄ξ(x, ξ) + σ−+N(x, ξ)

− (λ+ µ)M̄(x, ξ)N(x, x)− σ+−M̄(x, ξ) (56)
0 = λNx(x, ξ)− µNξ(x, ξ) + σ+−M(x, ξ)

− (λ+ µ)N̄(x, ξ)N(x, x)− σ+−N̄(x, ξ) (57)

0 = N(x,
λ

µ
(1− x)) (58)

0 = M(x,
λ

µ
(1− x)) (59)

In order to have a well-posed system, we add the following
artificial boundary condition

N(1, ξ) = 0 (60)

The function Ω(x) is defined by

Ω(x) = σ+− + (µ+ λ)N(x, x) (61)

The corresponding domains, characteristic lines and bound-
ary conditions in Figure 2.

ξ

10

1

λ/(λ+µ)

x =
 ξ

x

µξ= λ(1-x)

             
     N=0

λξ= -µx+λ

 L=σ
+− /(λ

+µ)

             
     M=0

K=0

Fig. 2. Representation of the alpha-kernels

Remark 7: The artificial boundary condition we add for
the kernel N is not a degree of freedom since it has no
impact on the control law and on the stability of the target
system.

C. Well-posedness of the kernel equations

Theorem 1: Consider systems (44)-(47), (48)-(51), (52)-
(55), (56)-(60). There exists a unique solution K,L (defined
on L∞(T )), M,N (defined on L∞(T̄1)), K̄, L̄ (defined on
L∞(T̄0)), M̄, N̄ (defined on L∞(T̄1)).
Classically (see [17], [18] and [25]) the proof of this theorem
consists in transforming the kernel equations into integral
equations using the method of the characteristics. These
integral equations are then solved using the method of
successive approximations. We start with the systems (44)-
(47), (48)-(51),(52)-(55) and finish with the system (56)-(60)
since for this last one we need to use the fact that M̄(x, ξ)
and N̄(x, ξ) are bounded.

IV. INVERTIBILITY OF THE FREDHOLM
TRANSFORMATION

Unlike the Volterra transformation, the Fredholm transfor-
mation is not always invertible. In [10], the authors prove
the invertibility of such a transformation in the case of a
first-order integro-differential hyperbolic equation. In this
section we use similar arguments (in particular we rely on
the Fredholm alternative) to prove the invertibility of our
transformation.

1) Operator formulation of the Fredholm transformation
and properties: In this subsection we rewrite the previous
Fredholm transformation using operators. This will lead to
some relations verified by the adjoint operators. The Fred-
holm transformation (36)-(37) can be written as an operator

P acting on
(
u
v

)
. More precisely we have

P = Id2 −Q (62)(
α
β

)
= P

(
u
v

)
(63)

where Q : (L2(0, 1))2 → (L2(0, 1))2 is the integral operator
defined by

Q

(
u
v

)
=

∫ 1

0

(
Q11(x, ξ)u(t, ξ) +Q12(x, ξ)v(t, ξ)
Q21(x, ξ)u(t, ξ) +Q22(x, ξ)v(t, ξ)

)
dξ

(64)

Its adjoint is:

Q∗
(
u
v

)
=

∫ 1

0

(
Q11(ξ, x)u(t, ξ) +Q21(ξ, x)v(t, ξ)
Q12(ξ, x)u(t, ξ) +Q22(ξ, x)v(t, ξ)

)
dξ

(65)

One can easily check that:

Q∗(D(A∗)) ⊂ D(A∗) (66)

The control
(
U
V

)
can also be rewritten using operators(

U
V

)
= Γ

(
u
v

)
(67)

with

Γ

(
u
v

)
=

∫ 1

0

(
Q11(0, ξ)u(t, ξ) +Q12(0, ξ)v(t, ξ)
Q21(1, ξ)u(t, ξ) +Q22(1, ξ)v(t, ξ)

)
dξ

(68)



Using (25) and (63) yields

d

dt

(
α
β

)
= A0

(
α
β

)
= A0P

(
u
v

)
(69)

Moreover using (8) and (63) we get

d

dt

(
α
β

)
=

d

dt
(P

(
u
v

)
)

= PA

(
u
v

)
+ PBΓ

(
u
v

)
(70)

Consequently P and Γ satisfy the following relation:

A0P = PA+ PBΓ (71)

Taking the adjoints, this is equivalent to

P ∗A∗0 = A∗P ∗ + Γ∗B∗P ∗ (72)

2) The Fredholm alternative: We give first the following
useful lemmas:

Lemma 3: ker P ∗ ⊂ D(A∗0) = D(A∗)
Proof: Let us consider z ∈ ker P ∗. Consequently we

have P ∗z = 0. We can rewrite it(
z1
z2

)
=

∫ 1

0

(
Q11(ξ, x)z1(t, ξ) +Q21(ξ, x)z2(t, ξ)
Q12(ξ, x)z1(t, ξ) +Q22(ξ, x)z2(t, ξ)

)
dξ

(73)

If we evaluate the first line for x = 1 and the second one
for x = 0, using the fact that Q11(ξ, 0) = Q21(ξ, 0) =
Q12(ξ, 1) = Q22(ξ, 1) = 0, we get

z1(1) = z2(0) = 0 (74)

Consequently z ∈ D(A∗0) and we can write

kerP ∗ ⊂ D(A∗0) (75)

Lemma 4: ker P ∗ ⊂ ker B∗

Proof: Let us consider z ∈ ker P ∗. Consequently we
have P ∗z = 0. We can rewrite it(

z1
z2

)
=

∫ 1

0

(
Q11(ξ, x)z1(t, ξ) +Q21(ξ, x)z2(t, ξ)
Q12(ξ, x)z1(t, ξ) +Q22(ξ, x)z2(t, ξ)

)
dξ

(76)

If we evaluate the first line for x = 0 and the second one
for x = 1, using the fact that Q11(ξ, 1) = Q21(ξ, 1) =
Q12(ξ, 0) = Q22(ξ, 0) = 0, we get

z1(0) = z2(1) = 0 (77)

Consequently z ∈ ker B∗ and we can write

kerP ∗ ⊂ kerB∗ (78)

Lemma 5: ∀λ ∈ < ker(λId2 −A∗0)∩ ker B∗ = {0}
Proof: Let us consider ν ∈ < and z ∈ ker(νId2−A∗0)∩

ker B∗ = {0}. Consequently we have(
λz1x(t, x)− νz1(t, x)
−µz2x(t, x)− νz2(t, x)

)
=

(
0
0

)
(79)

with the boundary conditions

z1(0) = z2(0) = 0 (80)

Consequently we have z =

(
0
0

)
We can now state the following theorem
Theorem 2: The map P ∗ = Id2 −Q∗ is invertible

Proof: Since Q∗ is a compact operator we can use
the Fredholm alternative (e.g [4]): Id2 − Q∗ is either non-
injective or surjective. Consequently it suffices to prove that
P ∗ is injective. In addition, the Fredholm alternative also
gives [4]

dim ker(Id−Q∗) < +∞ (81)

By contradiction we assume that ker P ∗ 6= {0}. We first
prove that ker P ∗ is stable by A∗0. We have ker P ∗ ⊂ D(A∗0).
Let then consider z ∈ ker P ∗. Using (72) we can obtain

P ∗A∗0z = 0 (82)

We thus have A∗0z ∈ ker P ∗. Consequently the restriction
A∗0|kerP∗

of A∗0 to ker P ∗ is a linear operator from ker P ∗ to
ker P ∗. Since the dimension of ker P ∗ is finite we can find
at least one eigenvalue ν. Let e ∈ ker P ∗ be a corresponding
eigenvector (by definition e 6= 0). We have e ∈ ker P ∗ and
so e ∈ ker B∗. Moreover we have A∗0e = νe. Consequently

e ∈ ker(νId2 −A∗0) ∩ kerB∗ (83)

which contradicts Lemma 5 and concludes the proof.

V. CONTROL LAW AND MAIN RESULTS

We now state the main stabilization result as follows:
Theorem 3: System (1)-(2) with the following feedback

control laws

U(t) = −
∫ 1

0

(K(0, ξ)u(t, ξ) + L(0, ξ)v(t, ξ))dξ (84)

V (t) = −
∫ 1

0

(M̄(1, ξ)u(t, ξ) + N̄(1, ξ)v(t, ξ))dξ (85)

where K,L and M̄, N̄ are defined by (52)-(55) and (44)-
(47), reaches its zero equilibrium in finite time tF , where
tF is given by (15). The zero equilibrium is exponentially
stable in the L2-sense.

Proof: Notice that evaluating (30) at x = 0 yields (84)
and evaluating (31) at x = 1 yields (85). Since the kernels
are invertible, there exists a unique operator S such that(

u
v

)
= S

(
α
β

)
(86)

Applying Lemma 2 implies that (α, β) go to zero in finite
time tF , therefore (u, v) converge to zero in finite time tF



VI. SIMULATION RESULTS

In this section we illustrate our results with simulations
on a toy problem. The numerical values of the parameters
are as follow.

λ = 0.5, µ = 1, σ+− = 0.5, σ−+ = 1 (87)

Figure 3 pictures the L2-norm of the state (u, v) in open loop
and using the control law (84)-(85) presented in this paper.
While the system in open loop is unstable (the L2-norm
diverges), it converges in minimum time tF = max{ 1λ ,

1
µ} =

2 when controller (84)-(85) is applied, as expected from
Theorem 3.

Time [s]
0 0.5 1 1.5 2 2.5 3

L
2
n
or

m

0

5

10

15

Open loop
Minimum-time control

Fig. 3. Time evolution of the L2-norm in open loop and using the controler

VII. CONCLUDING REMARK

Using the backstepping approach we have presented a
stabilizating boundary feedback law for a system of first-
order hyperbolic linear PDEs controlled in both boundary.
The zero equilibrium of the system is reached in minimum
time tF which is the largest time between the two transport
times in each direction.
This result is a first step towards completely bridging the gap
between the theoretical results of [20] and explicit control
design. By combining the presented approach with the result
of [2], we believe it is possible to design a minimum-time
stabilizing controller for general heterodirectional hyperbolic
systems. The dual observer problem, crucial to envision
application of this method on an industrial problem in a
potential observer-controller structure, will also be the topic
of future contributions.
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