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Two-sided boundary stabilization of two linear hyperbolic PDEs in minimum time

We solve the problem of stabilizing two coupled linear hyperbolic PDEs using actuation at both boundary of the spatial domain in minimum time. We design a novel Fredholm transformation similarly to backstepping approaches. This yields an explicit full-state feedback law that achieves the theoretical lower bound for convergence time to zero.

I. INTRODUCTION

This article solves the problem of boundary stabilization of two coupled heterodirectional linear first-order hyperbolic Partial Differential Equations (PDEs) in minimum time with one PDE in each direction and with actuation applied on both boundaries.

First-order hyperbolic PDEs are predominant in modeling of traffic flow [START_REF] Amin | On stability of switched linear hyperbolic conservation laws with reflecting boundaries[END_REF], heat exchanger [START_REF] Xu | Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems[END_REF], open channel flow [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], [START_REF] De Halleux | Boundary feedback control in networks of open channels[END_REF] or multiphase flow [START_REF] Di | Dynamics and control of slugging in oil production[END_REF], [START_REF] Djordjevic | Boundary actuation structure of linearized two-phase flow[END_REF], [START_REF] Dudret | Stability and asymptotic observers of binary distillation processes described by nonlinear convection/diffusion models[END_REF]. Research on controllability and stability of hyperbolic systems have first focused on explicit computation of the solution along the characteristic curves in the framework of the C1 norm [START_REF] James | The effect of boundary damping for the quasilinear wave equation[END_REF], [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF], [START_REF] Hu | Global smooth solutions of dissipative boundary-value problems for 1st order quasilinear hyperbolic systems[END_REF]. Later, Control Lyapunov Functions methods emerged, enabling the design of dissipative boundary conditions for nonlinear hyperbolic systems [START_REF] Coron | Control and nonlinearity[END_REF], [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF]. In [START_REF] Coron | Local exponential hˆ2 stabilization of a 2\times2 quasilinear hyperbolic system using backstepping[END_REF] control laws for a system of two coupled nonlinear PDEs are derived, whereas in [START_REF] Castillo Buenaventura | Dynamic boundary stabilization of hyperbolic systems[END_REF], [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF], [START_REF] Prieur | Iss-lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF], [START_REF] Prieur | Robust boundary control of systems of conservation laws[END_REF], [START_REF] Valérie | Boundary control of open channels with numerical and experimental validations[END_REF] sufficient conditions for exponential stability are given for various classes of quasilinear first-order hyperbolic system. These conditions typically impose restrictions on the magnitude of the coupling coefficients.

More recently, the backstepping approach has enabled the design of stabilizing full-state feedback laws. These controllers are explicit, in the sense that they are expressed as a linear functional of the distributed state at each instant. The (distributed) gains can be computed offline.

Comparing results obtained via backstepping design with existence results for stabilizing controllers reveals a gap. In [START_REF] Li | Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems[END_REF], an extensive review of controllability results for linear hyperbolic systems is given, along with the theoretical lower bounds for convergence times. These bounds vary according, mainly, to the number and location of available actuators. Backstepping results have, until now, focused on single-boundary actuation, see e.g. [START_REF] Coron | Local exponential hˆ2 stabilization of a 2\times2 quasilinear hyperbolic system using backstepping[END_REF] for the case of two coupled PDEs, [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic pdes[END_REF] for an arbitrary number of PDEs or [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic pdes[END_REF] for a minimum-time result in the general (single boundary actuation) case.

When actuation is applied at both boundaries, the literature usually focuses on design dissipative boundary conditions to stabilize the system. This not guarantee stabilization in the minimum theoretical time, and is only possible for small coupling terms between PDEs, but can generally be achieved using static boundary output feedback, which is much less computationally intensive.

In this paper, we partially bridge the gap between the existence results of [START_REF] Li | Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems[END_REF] and the explicit control design results. More precisely, the main contribution of this paper is a minimum-time stabilizing controller in the case of two heterodirectional hyperbolic PDEs with actuation at both boundaries. A proposed boundary feedback law ensures finite-time convergence of the two states to zero in minimum time. The minimum time defined [START_REF] Li | Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems[END_REF] is the largest time between the two transport times in each direction.

Similarly to recent approaches [START_REF] Bribiesca | Backsteppingforwarding control and observation for hyperbolic pdes with fredholm integrals[END_REF], [START_REF] Coron | Stabilization and controllability of first-order integro-differential hyperbolic equations[END_REF], using a Fredholm transformation, the system is mapped to a target system with desirable stability properties. This target system is a copy of the original dynamics from which the coupling terms are removed. The well-posedness of the Fredholm transformation is a consequence of a clever choice of the domain on which the kernels are defined. The proof of the invertibility of this transformation is non-trivial and uses an operator-approach inspired by the one developed in [START_REF] Coron | Stabilization and controllability of first-order integro-differential hyperbolic equations[END_REF].

The paper is organized as follow. In Section II we introduce the model equations and the notations. In Section III we present the stabilization result: the target system and its properties are presented in Section III-A. In Section III-B we derive the integral transformation and we present the domains on which the kernels are defined. Some arguments about the well-posedness of the kernels are given in Section III-C. Section IV contains the proof of the invertibility of the Fredholm transformation. In Section V we present the control feedback law and its properties. Finally in Section VI we give some simulation results.

II. PROBLEM DESCRIPTION

A. System under consideration

We consider the following 2-states linear hyperbolic system

u t (t, x) + λu x (t, x) = σ +-v(t, x) (1) v t (t, x) -µv x (t, x) = σ -+ u(t, x) (2) 
evolving in {(t, x)| t > 0, x ∈ [0, 1]}, with the following linear boundary conditions

u(t, 0) = U (t), v(t, 1) = V (t) (3) 
with constant coupling terms and constant speeds

0 < λ ≤ µ (4) 
The initial conditions denoted u 0 and v 0 are assumed to belong to L 2 ([0, 1]).

Remark 1: The coupling terms are assumed constant here but the results of this paper can be adjusted for spatiallyvarying coupling terms.

Remark 2: System (1)-( 2) is equivalent to the following system

u t (t, x) + λu x (t, x) = σ ++ u(t, x) + σ +-v(t, x) (5) v t (t, x) -µv x (t, x) = σ -+ u(t, x) + σ --v(t, x) (6)
This can straightforwardly be proved using a variable change.

Remark 3: There is no loss of generality in assuming that (4) holds.

B. Well-posedness

To study the invertibility of the Fredholm transformation used for control design, it is necessary to introduce elementary concepts of operator theory. Thus, taking the scalar product of ( 1)-( 2) with a smooth test function Φ T = (φ 1 , φ 2 ) and integrating by parts leads to the following definition of a solution.

Definition 1: Consider system (1)-( 2) with initial conditions u 0 , v 0 ∈ L 2 and control laws U (t) and V (t). We say that u v is a (weak) solution if for every τ ≥ 0 and every

function Φ = (φ 1 , φ 2 ) T ∈ (C 1 ([0, τ ] × [0, 1])) 2 such that φ 1 (•, 1) = φ 1 (•, 0) = 0 we have 0 = τ 0 1 0 -(φ 1t (t, x) + λφ 1x (t, x)+ σ -+ φ 2 (t, x))u(t, x) -(φ 2t (t, x) -µφ 2x (t, x) + σ +-φ 1 (t, x))v(t, x)dxdt + 1 0 (u(τ, x)φ 1 (τ, x) -u(0, x)φ 1 (0, x) + v(τ, x)φ 2 (τ, x) -v(0, x)φ 2 (0, x))dx - τ 0 [λU (t)φ 1 (t, 0) + µV (t)φ 2 (t, 1)] dt (7) 
We can consequently rewrite the system in the abstract form

d dt u v = A u v + B U V (8) 
where the operators A and B can be identified through their adjoints. The operator A is thus defined by

A :D(A) ⊂ (L 2 (0, 1)) 2 → (L 2 (0, 1)) 2 u v -→ -λu x + σ +-v µv x + σ -+ u (9) 
with

D(A) = {(u, v) ∈ (H 1 (0, 1)) 2 |u(0) = v(1) = 0} (10) 
A is well defined and its adjoint A * is

A * :D(A * ) ⊂ (L 2 (0, 1)) 2 → (L 2 (0, 1)) 2 u v -→ λu x + σ -+ v -µv x + σ +-u (11) 
with

D(A * ) = {(u, v) ∈ (H 1 (0, 1)) 2 |u(1) = v(0) = 0} (12)
The operator B is defined by

< B U V , z 1 z 2 >= λU z 1 (0) + µV z 2 (1) (13) 
Its adjoint is

B * z 1 z 2 = λz 1 (0) µz 2 (1) (14) 

C. Control problem and previous results

The goal is to design feedback control inputs U (t) and V (t) such that the zero equilibrium is reached in minimum time t = t F , where

t F = max 1 µ , 1 λ = 1 λ (15) 
This "minimum time" is the time needed for the slowest characteristic to travel the entire length of the spatial domain.

The existence of a control law reaching the null equilibrium in time t F is proved in [START_REF] Li | Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems[END_REF] using a method of characteristics. To the best of our knowledge, no explicit feedback law has been designed to achieve this goal. Previous approaches yield

• exponential stability for small coupling terms when twosided static output feedback is used [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF]. • finite-time stability in time 1 λ + 1 µ > 1 λ when one-sided backstepping design is used, i.e with one controlled boundary only. In the latter case, the system is mapped to a target system that has a cascade structure, which is natural for backstepping but does not enable stabilization in minimum time t F .

III. CONTROL DESIGN

The control design is based on a modified backstepping approach: using a specific transformation, we map the system (1)-( 3) to a target system with desirable properties of stability. However, unlike the classical backstepping approach where a Volterra transformation is used, we use a Fredholm transformation here.

A. Target system design

We map the system (1)-(3) to the following system

α t (t, x) + λα x (t, x) = Ω(x)β(t, x)h [ λ λ+µ ,1] (x) (16) 
β t (t, x) -µβ x (t, x) = 0 (17) 
with the following boundary conditions

α(t, 0) = 0 β(t, 1) = 0 (18) 
h I (x) (I is an interval) is defined by

h I (x) = 1 if x ∈ I 0 else (19) 
while Ω ∈ L ∞ (0, 1) is a function that will be defined later. This system is designed as a copy of the original dynamics, from which most of the coupling terms of (2) are removed. Lemma 1: The zero equilibrium of ( 16)-( 17) with boundary conditions [START_REF] John | Continuous dependence on data for solutions of partial differential equations with a prescribed bound[END_REF] and initial conditions (α 0 , β 0 ) ∈ L 2 ([0, 1]) is exponentially stable in the L 2 sense.

Proof: The proof, using a Lyapunov function, is quite classical and is omitted here. Besides, the following lemma assesses the finite-time convergence of the target system.

Lemma 2: The system ( 16)-( 17) reaches its zero equilibrium in finite-time t F = max{ 1 λ , 1 µ } = 1 λ . Proof: Using the same arguments than the ones presented in [17, Lemma 3.1] (i.e the characteristic method), we can easily prove that for t ≥ 1 λ+µ

β(t, x) = 0 if x ≥ λ λ + µ (20) α(t, x) = 0 if x ≤ λ λ + µ (21) 
Consequently, for t ≥ 1 λ+µ , the system ( 16)-( 17) can be rewritten

α t (t, x) + λα x (t, x) = 0 (22) β t (t, x) -µβ x (t, x) = 0 (23) 
with the additional conditions

α(t, λ λ + µ ) = 0 β(t, λ λ + µ ) = 0 (24) 
Once again, using the method of characteristics, we can prove that ∀x ∈ [0, 1], α(t, x) = 0 for t ≥ λ λ+µ +

1-λ λ+µ λ = 1 λ
and that β(t, x) = 0 for t ≥ λ λ+µ + λ λ+µ µ = 1 λ . Therefore ( 16)-( 17) reaches its zero equilibrium in finite-time t F = 1 λ Using an operator framework, system ( 16)-( 17) rewrites as

d dt α β = A 0 α β (25) 
The operator A 0 is defined by

A 0 : D(A 0 ) ⊂ (L 2 (0, 1)) 2 → (L 2 (0, 1)) 2 α β -→ -λα x + Ωβh [ λ λ+µ ,1] µβ x (26) 
with

D(A 0 ) = {(α, β) ∈ (H 1 (0, 1)) 2 |α(0) = β(1) = 0} (27)
A 0 is well defined and its adjoint

A * 0 is A * 0 : D(A * 0 ) ⊂ (L 2 (0, 1)) 2 → (L 2 (0, 1)) 2 α β -→ λα x -µβ x + Ωαh [ λ λ+µ ,1] (28) with D(A * 0 ) = {(α, β) ∈ (H 1 (0, 1)) 2 |α(1) = β(0) = 0} (29) 
B. Fredholm transformation 1) Definition of the transformation: Without any loss of generality we recall that λ ≤ µ. In order to map the original system (1)-(3) to the target system ( 16)-( 18), we use the following transformation

α(t, x) = u(t, x) + h [0, λ µ+λ ] (x) -µ λ x+1 x (K(x, ξ)u(t, ξ) + L(x, ξ)v(t, ξ))dξ + h ] λ µ+λ ,1] (x) x λ µ (1-x) (M (x, ξ)u(t, ξ) + N (x, ξ)v(t, ξ))dξ (30) β(t, x) = v(t, x) + h [0, λ µ+λ ] (x) λ µ (1-x) x ( K(x, ξ)u(t, ξ) + L(x, ξ)v(t, ξ))dξ + h ] λ µ+λ ,1] (x) x λ µ (1-x) ( M (x, ξ)u(t, ξ) + N (x, ξ)v(t, ξ))dξ (31) 
where, for any interval I, h I (x) is defined by

h I (x) = 1 if x ∈ I 0 else (32) 
We define the following triangular domains, depicted in Figure 1 and Figure 2: The kernels K, L are defined on T 0 , M, N are defined on T1 . The kernels K, L are defined on T0 and M , N are defined on T1 . They are continuous in their domains of assumed definition. They all have yet to be defined. Remark 4: One may think that due to the use of the hfunctions, the transformation presents a discontinuity in x = λ µ+λ . Nevertheless, one can check that the right and left limits are equal since the integral vanishes and that consequently we do not have any discontinuity.

Remark 5: This transformation is a Fredholm transformation and can be rewritten using integrals between 0 and 1 as follows α(t, x) = u(t, x) - 

T 0 =

 0 {(x, ξ)| x ∈ [0, λ λ + µ ], x ≤ ξ ≤ µ λ (1 -x)} (33) T0 = {(x, ξ)| x ∈ [0, λ λ + µ ], x ≤ ξ < λ µ (1 -x)} (34) T1 = {(x, ξ)| x ∈] λ λ + µ , 1], λ µ (1 -x) < ξ ≤ x} (35)

1 0Q

 1 11 (x, ξ)u(t, ξ) + Q 12 (x, ξ)v(t, ξ)dξ

1 0Q

 1 (36)β(t, x) = v(t, x) -21 (x, ξ)u(t, ξ) + Q 22 (x, ξ)v(t, ξ)dξ (37)
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with

) Remark 6: Since α(0) = β(1) = 0 the two control laws U and V can be computed as functions of (u, v).

2) Kernel equations: We now differentiate the Fredholm transformation (30)-(31) with respect to time and space to compute the equations satisfied by the kernels. We start with the β-transformation (31) if x ≥ λ µ+λ : Differentiating (31) with respect to space and using the Leibniz rule yields

Differentiating (31) with respect to time, using (1), (2) and integrating by parts yields

Plugging these expressions into the target system ( 16)-( 17) yields the following system of kernel equations

The corresponding domains, characteristic lines and boundary conditions in Figure 1 We now focus on the alpha- if x ≤ λ µ+λ : As above, differentiating (30) with respect to space and time and then plugging into the target system ( 16)-(17) yields the following system of kernel equations

if x > λ µ+λ : Similarly we get

In order to have a well-posed system, we add the following artificial boundary condition

The function Ω(x) is defined by

The corresponding domains, characteristic lines and boundary conditions in Figure 2.

. Representation of the alpha-kernels

Remark 7: The artificial boundary condition we add for the kernel N is not a degree of freedom since it has no impact on the control law and on the stability of the target system.

C. Well-posedness of the kernel equations

Theorem 1: Consider systems (44)-( 47), ( 48)-( 51), ( 52)-( 55), ( 56)-(60). There exists a unique solution K, L (defined on L ∞ (T )), M, N (defined on L ∞ ( T1 )), K, L (defined on L ∞ ( T0 )), M , N (defined on L ∞ ( T1 )). Classically (see [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic pdes[END_REF], [START_REF] John | Continuous dependence on data for solutions of partial differential equations with a prescribed bound[END_REF] and [START_REF] Beresford | Linear and nonlinear waves[END_REF]) the proof of this theorem consists in transforming the kernel equations into integral equations using the method of the characteristics. These integral equations are then solved using the method of successive approximations. We start with the systems (44)-( 47), ( 48)-( 51),( 52)-( 55) and finish with the system (56)-(60) since for this last one we need to use the fact that M (x, ξ) and N (x, ξ) are bounded.

IV. INVERTIBILITY OF THE FREDHOLM

TRANSFORMATION Unlike the Volterra transformation, the Fredholm transformation is not always invertible. In [START_REF] Coron | Stabilization and controllability of first-order integro-differential hyperbolic equations[END_REF], the authors prove the invertibility of such a transformation in the case of a first-order integro-differential hyperbolic equation. In this section we use similar arguments (in particular we rely on the Fredholm alternative) to prove the invertibility of our transformation.

1) Operator formulation of the Fredholm transformation and properties: In this subsection we rewrite the previous Fredholm transformation using operators. This will lead to some relations verified by the adjoint operators. The Fredholm transformation (36)-(37) can be written as an operator P acting on u v . More precisely we have

where Q : (L 2 (0, 1)) 2 → (L 2 (0, 1)) 2 is the integral operator defined by

Its adjoint is:

One can easily check that:

The control U V can also be rewritten using operators

with

Using ( 25) and (63) yields

Moreover using ( 8) and (63) we get

Consequently P and Γ satisfy the following relation:

Taking the adjoints, this is equivalent to

2) The Fredholm alternative: We give first the following useful lemmas:

Lemma 3: ker P * ⊂ D(A * 0 ) = D(A * ) Proof: Let us consider z ∈ ker P * . Consequently we have P * z = 0. We can rewrite it

If we evaluate the first line for x = 1 and the second one for x = 0, using the fact that

Consequently z ∈ D(A * 0 ) and we can write

Lemma 4: ker P * ⊂ ker B * Proof: Let us consider z ∈ ker P * . Consequently we have P * z = 0. We can rewrite it

If we evaluate the first line for x = 0 and the second one for x = 1, using the fact that 

with the boundary conditions

Consequently we have z = 0 0 We can now state the following theorem Theorem 2: The map

Proof: Since Q * is a compact operator we can use the Fredholm alternative (e.g [START_REF] Brezis | Functional analysis, sobolev spaces and partial differential equations[END_REF]): Id 2 -Q * is either noninjective or surjective. Consequently it suffices to prove that P * is injective. In addition, the Fredholm alternative also gives [START_REF] Brezis | Functional analysis, sobolev spaces and partial differential equations[END_REF] dim ker(Id

By contradiction we assume that ker P * = {0}. We first prove that ker P * is stable by A * 0 . We have ker P * ⊂ D(A * 0 ). Let then consider z ∈ ker P * . Using (72) we can obtain

We thus have A * 0 z ∈ ker P * . Consequently the restriction A * 0 |kerP * of A * 0 to ker P * is a linear operator from ker P * to ker P * . Since the dimension of ker P * is finite we can find at least one eigenvalue ν. Let e ∈ ker P * be a corresponding eigenvector (by definition e = 0). We have e ∈ ker P * and so e ∈ ker B * . Moreover we have A * 0 e = νe. Consequently

which contradicts Lemma 5 and concludes the proof.

V. CONTROL LAW AND MAIN RESULTS

We now state the main stabilization result as follows: Theorem 3: System (1)-( 2) with the following feedback control laws

where K, L and M , N are defined by ( 52)-( 55) and ( 44)-(47), reaches its zero equilibrium in finite time t F , where t F is given by [START_REF] Dudret | Stability and asymptotic observers of binary distillation processes described by nonlinear convection/diffusion models[END_REF]. The zero equilibrium is exponentially stable in the L 2 -sense.

Proof: Notice that evaluating (30) at x = 0 yields (84) and evaluating (31) at x = 1 yields (85). Since the kernels are invertible, there exists a unique operator S such that

Applying Lemma 2 implies that (α, β) go to zero in finite time t F , therefore (u, v) converge to zero in finite time t F

VI. SIMULATION RESULTS

In this section we illustrate our results with simulations on a toy problem. The numerical values of the parameters are as follow. λ = 0.5, µ = 1, σ +-= 0.5, σ -+ = 1 (87) Using the backstepping approach we have presented a stabilizating boundary feedback law for a system of firstorder hyperbolic linear PDEs controlled in both boundary. The zero equilibrium of the system is reached in minimum time t F which is the largest time between the two transport times in each direction. This result is a first step towards completely bridging the gap between the theoretical results of [START_REF] Li | Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems[END_REF] and explicit control design. By combining the presented approach with the result of [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic pdes[END_REF], we believe it is possible to design a minimum-time stabilizing controller for general heterodirectional hyperbolic systems. The dual observer problem, crucial to envision application of this method on an industrial problem in a potential observer-controller structure, will also be the topic of future contributions.