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Minimum time control of heterodirectional linear coupled hyperbolic
PDEs with controls in both sides

Jean Auriol1 and Florent Di Meglio2

I. INTRODUCTION

This article solves the problem of boundary stabilization
of two coupled heterodirectional linear first-order hyperbolic
Partial Differential Equations (PDEs) in minimum case with
one PDE in each direction and with actuation applied on
both boundaries.

The main contribution of this paper is a minimum
time stabilizing controller. More precisely a proposed
boundary feedback law ensures finite-time convergence of
the two states to zero in minimum time. The minimum time
defined [5] in is the largest time between the two transport
times in each direction.

Our approach is the following. Using a Fredholm
transformation, the system is mapped to a target system
with desirable stability properties. This target system is a
copy of the original dynamics from which the coupling
terms are removed. The well-posedness of the Fredholm
transformation is a consequence of a clever choice of the
domain on which the kernels are defined. The proof of the
invertibility of this transformation is non-trivial and uses an
operator-approach inspired by the one developed in [2].

The paper is organized as follow. In Section II we in-
troduce the model equations and the notations. In Section
III we present the stabilization result: the target system and
its properties are presented in Section III-A. In Section III-
B we derive the integral transformation and we present the
domains on which the kernels are defined. Some arguments
about the well-posedness of the kernels are given in Section
III-C. Section IV contains the proof of the invertibility of
the Fredholm transformation. In Section V we present the
control feedback law and its properties. Finally in Section
VI we give some simulation results.
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II. PROBLEM DESCRIPTION

A. System under consideration

We consider the following general linear hyperbolic sys-
tem

ut(t, x) + λux(t, x) = σ+−v(t, x) (1)
vt(t, x)− µvx(t, x) = σ−+u(t, x) (2)

with the following linear boundary conditions

u(t, 0) = U(t), v(t, 1) = V (t) (3)

with constant coupling terms and constant speeds

0 < λ ≤ µ (4)

The initial conditions are defined by

u(0, x) = u0(x), v(0, x) = v0(x) (5)

Remark 1: The coupling terms are assumed constant here
but the results of this paper can be adjusted for spatially-
varying coupling terms.

Remark 2: System (1)-(2) is equivalent to the following
system

ut(t, x) + λux(t, x) = σ++u(t, x) + σ+−v(t, x) (6)

vt(t, x)− µvx(t, x) = σ−+u(t, x) + σ−−v(t, x) (7)

This can straightforwardly be proved using an exponential
transformation.

Remark 3: The assumption λ ≤ µ can be done without
any loss of generality

B. Well-posedness

Taking the scalar product of (1)-(2) with a smooth test
function ΦT = (φ1, φ2) and integrating by parts leads to the
following definition of a solution.

Definition 1: Consider system (1)-(2) with initial condi-
tions u0, v0 ∈ L2 and control laws U(t) and V (t). We say

that
(
u
v

)
is a (weak) solution if for every τ ≥ 0 and every

function Φ = (φ1, φ2)T ∈ (C1([0, τ ] × [0, 1]))2 such that



φ1(·, 1) = φ1(·, 0) = 0 we have

0 =

∫ τ

0

∫ 1

0

−(φ1t(t, x) + λφ1x(t, x)+

σ−+φ2(t, x))u(t, x)− (φ2t(t, x)

− µφ2x(t, x) + σ+−φ1(t, x))v(t, x)dxdt

+

∫ 1

0

(u(τ, x)φ1(τ, x)− u(0, x)φ1(0, x)

+ v(τ, x)φ2(τ, x)− v(0, x)φ2(0, x))dx

−
∫ τ

0

[λU(t)φ1(t, 0) + µV (t)φ2(t, 1)] dt (8)

We can consequently rewrite the system in the abstract form

d

dt

(
u
v

)
= A

(
u
v

)
+B

(
U
V

)
(9)

where the operators A and B can be identified through their
adjoints. The operator A is thus defined by

A :D(A) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
u
v

)
7−→

(
−λux + σ+−v
µvx + σ−+u

)
(10)

with

D(A) = {(u, v) ∈ (H1(0, 1))2|u(0) = v(1) = 0} (11)

A is well defined and its adjoint A∗ is

A∗ :D(A∗) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
u
v

)
7−→

(
λux + σ−+v
−µvx + σ+−u

)
(12)

with

D(A∗) = {(u, v) ∈ (H1(0, 1))2|u(1) = v(0) = 0} (13)

The operator B is defined by

< B

(
U
V

)
,

(
z1
z2

)
>= Uz1(0) + V z2(1) (14)

Its adjoint is

B∗
(
z1
z2

)
=

(
z1(0)
z2(1)

)
(15)

C. Control problem

The goal is to design feedback control inputs U(t) and
V (t) such that the zero equilibrium is reached in minimum
time t = tF , where

tF = min

{
1

µ
,

1

λ

}
(16)

III. CONTROL DESIGN

The control design is based on a modified backstepping
approach: using a specific transformation, we map the system
(1)-(3) to a target system with desirable properties of sta-
bility. However, unlike the classical backstepping approach
where a Volterra transformation is used, we use a Fredholm
transformation here.

A. Target system design

We map the system (1)-(3) to the following system

αt(t, x) + λαx(t, x) = 0 (17)
βt(t, x)− µβx(t, x) = 0 (18)

with the following boundary conditions

α(t, 0) = 0 β(t, 1) = 0 (19)

This system is designed as a copy of the original dynamics,
from which the coupling terms of (1)-(2) are completely
removed.

Lemma 1: The zero equilibrium of (17),(18) with bound-
ary conditions (19) and initial conditions (α0, β0) ∈
L2([0, 1]) is exponentially stable in the L2 sense.

Proof: The proof, using a Lyapunov function, is quite
classical and is omitted here.
Besides, the following lemma assesses the finite-time con-
vergence of the target system.

Lemma 2: The system (17),(18) reaches its zero equilib-
rium in finite-time tF = max{ 1λ ,

1
µ}

Proof: The proof of this lemma is quite straightforward
and uses the same arguments than the proof of [3, Lemma
3.1]
Using operators, we can rewrite system (17)-(18) as

d

dt

(
α
β

)
= A0

(
α
β

)
(20)

The operator A0 is defined by

A0 : D(A0) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
α
β

)
7−→

(
−λαx
µβx

)
(21)

with

D(A0) = {(α, β) ∈ (H1(0, 1))2|α(0) = β(1) = 0} (22)

A0 is well defined and its adjoint A∗0 is

A∗0 : D(A∗0) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
α
β

)
7−→

(
λαx
−µβx

)
(23)

with

D(A∗0) = {(α, β) ∈ (H1(0, 1))2|α(1) = β(0) = 0} (24)

B. Fredholm transformation

1) Definition of the transformation: Without any loss of
generality we recall that λ ≤ µ. In order to map the original
system (1)-(3) to the target system (17)-(19), we use the
following transformation



α(t, x) = u(t, x)

+

D∑
i=1

hJi(x)

∫ −µλx+bi
x

(Ki(x, ξ)u(t, ξ) + Li(x, ξ)v(t, ξ))dξ

+ h[ µ
µ+λ ,1]

(x)

∫ x

µ
λ (1−x)

(M(x, ξ)u(t, ξ) +N(x, ξ)v(t, ξ))dξ

(25)
β(t, x) = v(t, x)

+ h[0, λ
µ+λ [

(x)

∫ λ
µ (1−x)

x

(K̄(x, ξ)u(t, ξ) + L̄(x, ξ)v(t, ξ))dξ

+ h[ λ
µ+λ ,1]

(x)

∫ x

λ
µ (1−x)

(M̄(x, ξ)u(t, ξ) + N̄(x, ξ)v(t, ξ))dξ

(26)

where hI(x) (I is an interval) is defined by

hI(x) =

{
1 if x ∈ I
0 else (27)

The sequence bi with i ∈ N is defined by

bn+1 = (1 +
µ

λ
)an (28)

an =
λ

µ
(bn − 1) (29)

b1 =
µ

λ
(30)

The parameter D is defined as follow

D = min{n|an < 0} (31)

One can readily prove that D is well defined.
Finally the sequence Ji is defined by

Ji = [max{ai, 0}, ai−1[ (32)

with the convention a0 = µ
λ+µ . All the Ji are disjoint and

are a partition of [0, µ
λ+µ [. We define the following domains:

T0 = {(x, ξ)|x ∈ [
µ

λ+ µ
, 1],

µ

λ
(1− x) < ξ ≤ x} (33)

Ti = {(x, ξ)|x ∈ Ji, x ≤ ξ < µ

λ
x+ bi} (34)

T̄0 = {(x, ξ)|x ∈ [0,
λ

λ+ µ
[, x ≤ ξ < λ

µ
(1− x)} (35)

T̄1 = {(x, ξ)|x ∈ [
λ

λ+ µ
, 1],

λ

µ
(1− x) < ξ ≤ x} (36)

The kernels Ki, Li are defined on Ti, M,N are defined on
T0. The kernels K̄, L̄ are defined on T̄0 and M̄, N̄ defined
on T̄1. They all have yet to be defined.

Remark 4: This transformation is a Fredholm transforma-
tion and can be rewritten using integrals between 0 and 1:

α(t, x) = u(t, x) +

∫ 1

0

Q11(x, ξ)u(t, ξ) +Q12(x, ξ)v(t, ξ)dξ

(37)

β(t, x) = v(t, x) +

∫ 1

0

Q21(x, ξ)u(t, ξ) +Q22(x, ξ)v(t, ξ)dξ

(38)

with

Q11(x, ξ) =

D∑
i=1

Ki(x, ξ)h[x,−µλx+bi](ξ)hJi(x)

+M(x, ξ)h[µλ (1−x),x](ξ)h[
µ

λ+µ ,1]
(x) (39)

Q12(x, ξ) =

D∑
i=1

Li(x, ξ)h[x,−µλx+bi](ξ)hJi(x)

+N(x, ξ)h[µλ (1−x),x](ξ)h[
µ

λ+µ ,1]
(x) (40)

Q21(x, ξ) = K̄(x, ξ)h[x,λµ (1−x)]
(ξ)h[0, λ

λ+µ [
(x)

+ M̄(x, ξ)h[λµ (1−x),x]
(ξ)h[ λ

λ+µ ,1]
(x) (41)

Q22(x, ξ) = L̄(x, ξ)h[x,λµ (1−x)]
(ξ)h[0, λ

λ+µ [
(x)

+ N̄(x, ξ)h[λµ (1−x),x]
(ξ)h[ λ

λ+µ ,1]
(x) (42)

Remark 5: Since α(0) = β(1) = 0 the two control laws
U and V can be computed as functions of (u, v).

2) Operator formulations and properties: In this subsec-
tion we rewrite the previous Fredholm transformation using
operators. This will lead to some relations verified by the
adjoint operators.
The Fredholm transformation (37)-(38) can be written as an

operator P acting on
(
u
v

)
. More precisely we have

P = Id2 −Q (43)(
α
β

)
= P

(
u
v

)
(44)

where Q : (L2(0, 1))2 → (L2(0, 1))2 is the integral operator
defined by

Q

(
u
v

)
=

∫ 1

0

(
Q11(x, ξ)u(t, ξ) +Q12(x, ξ)v(t, ξ)
Q21(x, ξ)u(t, ξ) +Q22(x, ξ)v(t, ξ)

)
dξ

(45)

Its adjoint is:

Q∗
(
u
v

)
=

∫ 1

0

(
Q11(ξ, x)u(t, ξ) +Q21(ξ, x)v(t, ξ)
Q12(ξ, x)u(t, ξ) +Q22(ξ, x)v(t, ξ)

)
dξ

(46)

One can easily check that:

K∗(D(A∗)) ⊂ D(A∗) (47)



The control
(
U
V

)
can also be rewritten using operators

(
U
V

)
= Γ

(
u
v

)
(48)

with

Γ

(
u
v

)
=

∫ 1

0

(
Q11(0, ξ)u(t, ξ) +Q12(0, ξ)v(t, ξ)
Q21(1, ξ)u(t, ξ) +Q22(1, ξ)v(t, ξ)

)
dξ

(49)

Using (20) and (44) yields

d

dt

(
α
β

)
= A0

(
α
β

)
= A0P

(
u
v

)
(50)

Moreover using (9) and (44) we get

d

dt

(
α
β

)
=

d

dt
(P

(
u
v

)
)

= PA

(
u
v

)
+ PBΓ

(
u
v

)
(51)

Consequently P and Γ satisfy the following relation:

A0P = PA+ PBΓ (52)

Taking the adjoints, this is equivalent to

P ∗A∗0 = A∗P ∗ + Γ∗B∗P ∗ (53)

3) Kernel equations: We now differentiate the Fredholm
transformation (25)-(26) with respect to time and space to
compute the equations satisfied by the kernels.

if x ≥ λ
µ+λ : Differentiating (26) with respect to space

and using the Leibniz rule yields

βx(t, x) = vx(t, x) + M̄(x, x)u(t, x) + N̄(x, x)v(t, x)

+
λ

µ
M̄(x,

λ

µ
(1− x))u(t,

λ

µ
(1− x))

+
λ

µ
N̄(x,

λ

µ
(1− x))v(t,

λ

µ
(1− x))

+

∫ x

λ
µ (1−x)

M̄x(x, ξ)u(t, ξ) + N̄x(x, ξ)v(t, ξ)dξ (54)

Differentiating (26) with respect to time, using (1), (2) and
integrating by parts yields

βt(t, x) = µvx(t, x) + σ−+u(t, x)+

µN̄(x, x)v(t, x)− µN̄(x,
λ

µ
(1− x))v(t,

λ

µ
(1− x))

− λM̄(x, x)u(t, x) + λM̄(x,
λ

µ
(1− x))u(t,

λ

µ
(1− x))

+

∫ x

λ
µ (1−x)

λM̄ξ(x, ξ)u(t, ξ)− µN̄ξ(x, ξ)v(t, ξ)

+ σ−+N̄(x, ξ)u(t, ξ) + σ+−M̄(x, ξ)v(t, ξ)dξ (55)

Plugging these expressions into the target system (17)-(18)
yields the following system of kernel equations

0 = −µM̄x(x, ξ) + λM̄ξ(x, ξ) + σ−+N̄(x, ξ) (56)
0 = −µN̄x(x, ξ)− µN̄ξ(x, ξ) + σ+−M̄(x, ξ) (57)

0 = M̄(x, x)− σ−+

λ+ µ
(58)

0 = N̄(x,
λ

µ
(1− x)) (59)

if x < λ
µ+λ : Similarly we get

0 = −µK̄x(x, ξ) + λK̄ξ(x, ξ) + σ−+L̄(x, ξ) (60)
0 = −µL̄x(x, ξ)− µL̄ξ(x, ξ) + σ+−K̄(x, ξ) (61)

0 = K̄(x, x) +
σ−+

λ+ µ
(62)

0 = L̄(x,
λ

µ
(1− x)) (63)

The corresponding domains, characteristic lines and
boundary conditions in Figure 1 We now focus on the

λ/µ

ξ

10

1

λ/(λ+µ)

x =
 ξ

x

µξ= λ(1-x)

_              
     N=0

_              
     L=0

_              
     N=0

  

_
    

    
    

  K
=-σ

−+ /(λ
+µ)

  

_
    

    
    

 M
=σ

−+ /(λ
+µ)

Fig. 1. Representation of the beta-kernels

alpha-transformation

if x ≥ µ
µ+λ : As above, differentiating (25) with respect to

space and time and then plugging into the target system
(17)-(18) yields the following system of kernel equations

0 = λNx(x, ξ)− µNξ(x, ξ) + σ+−M(x, ξ) (64)
0 = λMx(x, ξ) + λMξ(x, ξ) + σ−+N(x, ξ) (65)

0 = N(x, x) +
σ+−

λ+ µ
(66)

0 = M(x,
µ

λ
(1− x)) (67)



if x ∈ Ji As above we get the following kernel equations

0 = λLix(x, ξ)− µLiξ(x, ξ) + σ+−Ki(x, ξ) (68)

0 = λKi
x(x, ξ) + λKi

ξ(x, ξ) + σ−+Li(x, ξ) (69)

0 = Li(x, x)− σ+−

λ+ µ
(70)

0 = Ki(x,−µ
λ
x+ bi) (71)

ξ

10

1

x =
 ξ

x
λξ= -µx+µ

a1 µ/(µ+λ)

 L=σ
+− /(λ

+µ)

 N=-σ
+− /(λ

+µ)

              

   M
=0

λξ= -µx+λb
2

Fig. 2. Representation of the alpha-kernels

C. Well-posedness of the kernel equations

Theorem 1: Consider systems (56)-(59), (60)-(63), (64)-
(67), (68)-(71). There exists a unique solution Ki, Li (de-
fined on L∞(Ti)), Mi, Ni (defined on L∞(T0)), K̄, L̄ (de-
fined on L∞(T̄0)), M̄, N̄ (defined on L∞(T̄1))
Classically (see [3], [4] and [6]) the proof of this theorem
consists in transforming the kernel equations into integral
equations using the method of the characteristics. These
integral equations are then solved using the method of
successive approximations.

IV. INVERTIBILITY OF THE FREDHOLM
TRANSFORMATION

Unlike the Volterra transformation, the Fredholm transfor-
mation is not always invertible. In [2], the authors prove the

invertibility of such a transformation in the case of a first-
order integro-differential hyperbolic equation. In this section
we use similar arguments to prove the invertibility of our
transformation. We give first the following useful lemmas:

Lemma 3: ker P ∗ ⊂ D(A∗0) = D(A∗)
Proof: Let us consider z ∈ ker P ∗. Consequently we

have P ∗z = 0. We can rewrite it(
z1
z2

)
=

∫ 1

0

(
Q11(ξ, x)z1(t, ξ) +Q21(ξ, x)z2(t, ξ)
Q12(ξ, x)z1(t, ξ) +Q22(ξ, x)z2(t, ξ)

)
dξ

(72)

If we evaluate the first line for x = 1 and the second one
for x = 0, using the fact that Q11(ξ, 0) = Q21(ξ, 0) =
Q12(ξ, 1) = Q22(ξ, 1) = 0, we get

z1(1) = z2(0) = 0 (73)

Consequently z ∈ D(A∗0) and we can write

kerP ∗ ⊂ D(A∗0) (74)

Lemma 4: ker P ∗ ⊂ ker B∗

Proof: Let us consider z ∈ ker P ∗. Consequently we
have P ∗z = 0. We can rewrite it(

z1
z2

)
=

∫ 1

0

(
Q11(ξ, x)z1(t, ξ) +Q21(ξ, x)z2(t, ξ)
Q12(ξ, x)z1(t, ξ) +Q22(ξ, x)z2(t, ξ)

)
dξ

(75)

If we evaluate the first line for x = 0 and the second one
for x = 1, using the fact that Q11(ξ, 1) = Q21(ξ, 1) =
Q12(ξ, 0) = Q22(ξ, 0) = 0, we get

z1(0) = z2(1) = 0 (76)

Consequently z ∈ ker B∗ and we can write

kerP ∗ ⊂ kerB∗ (77)

Lemma 5: ∀λ ∈ < ker(λId2 −A∗0)∩ ker B∗ = {0}
Proof: Let us consider λ ∈ < and z ∈ ker(λId2−A∗0)∩

ker B∗ = {0}. Consequently we have(
λz1x(t, x) + σ++z1(t, x)− λz1(t, x)
−µz2x(t, x) + σ−−z2(t, x)− λz2(t, x)

)
=

(
0
0

)
(78)

with the boundary conditions

z1(0) = z2(0) = 0 (79)

Consequently we have z =

(
0
0

)
We can now state the following theorem
Theorem 2: The map P ∗ = Id2 −Q∗ is invertible

Proof: Since Q∗ is a compact operator we can use
the Fredholm alternative (e.g [1]): Id2 − Q∗ is either non-
injective or surjective. Consequently it suffices to prove that
P ∗ is injective. In addition, the Fredholm alternative also
gives [1]

dim ker(Id−Q∗) < +∞ (80)



By contradiction we assume that ker P ∗ 6= {0}. We first
prove that ker P ∗ is stable by A∗0. We have ker P ∗ ⊂ A∗0.
Let then consider z ∈ ker P ∗. Using (53) we can obtain

P ∗A∗0z = 0 (81)

We thus have A∗0Z ∈ ker P ∗. Consequently the restriction
A∗0|kerP∗

of A∗0 to ker P ∗ is a linear operator from ker P ∗ to
ker P ∗. Since the dimension of ker P ∗ is finite we can find
at least one eigenvalue λ. Let e ∈ ker P ∗ be a corresponding
eigenvector (by definition e 6= 0). We have e ∈ ker P ∗ and
so e ∈ ker B∗. Moreover we have A∗0e = λe. Consequently

e ∈ ker(λ−A∗0) ∩ kerB∗ (82)

which contradicts Lemma 5 and concludes the proof.

V. CONTROL LAW AND MAIN RESULTS

We now state the main stabilization result as follows:
Theorem 3: System (1)-(2) with the following feedback

control laws

U(t) =

∫ −µλx+bD
0

(KD(0, ξ)u(t, ξ) + LD(0, ξ)v(t, ξ))dξ

(83)

V (t) =

∫ 1

µ
λ (1−x)

(M̄(1, ξ)u(t, ξ) + N̄(1, ξ)v(t, ξ))dξ (84)

reaches its zero equilibrium in finite time tF , where tF is
given by (16). The zero equilibrium is exponentially stable
in the L2-sense.

Proof: Notice that evaluating (25) at x = 0 yields (83)
and evaluating (26) at x = 1 yields (84). Since the kernels
are invertible, there exists a unique function S such that(

u(t, x)
v(t, x)

)
=

(
α(t, x)
β(t, x)

)
−
∫ 1

0

S(x, ξ)

(
α(t, ξ)
β(t, ξ)

)
dξ (85)

Applying Lemma 2 implies that (α, β) go to zero in finite
time tF , therefore (u, v) converge to zero in finite time tF

Remark 6: One can notice that the control laws use only
four kernels. Consequently from a practical point of view it
is not necessary to compute all the kernels.

VI. SIMULATION RESULTS

In this section we illustrate our results with simulations
on a tou problem. The numerical values of the parameters
are as follow.

λ = 0.5, µ = 1, σ+− = 0.5, σ−+ = 1 (86)

Figure 3 pictures the L2-norm of the state (u, v) in open loop
and using the control law (83)-(84) presented in this paper.
While the system in open loop is unstable the (L2-norm
diverges), it converges in minimum time tF = max{ 1λ ,

1
µ} =

2 when controller (83)-(84) is applied as expected from
Theorem 3

Time [s]
0 0.5 1 1.5 2 2.5 3

L
2
n
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m

0

5

10

15

Open loop
Minimum-time control

Fig. 3. Time evolution of the L2-norm in open loop and using the controler

VII. UNCOLLOCATED OBSERVER DESIGN AND OUTPUT
FEEDBACK CONTROLLER

In this section we design an observer that relies on the
measurements of u at the right boundary and of v at the left
boundary, i.e we measure

y(t) =

(
u(t, 1)
v(t, 0)

)
(87)

Then using the estimates given by our observer and the con-
trol law (83)-(84), we derive an output feedback controller.

A. Observer design

The observer equations read as follows

ût(t, x) + λûx(t, x) =σ+−v̂(t, x)− p11(x)(û(t, 1)− u(t, 1))

− p12(x)(v̂(t, 0)− v(t, 0)) (88)

v̂t(t, x)− µv̂x(t, x) =σ−+û(t, x)− p21(x)(û(t, 1)− u(t, 1))

− p22(x)(v̂(t, 0)− v(t, 0)) (89)

with the boundary conditions

û(t, 0) = U(t), v̂(t, 1) = V (t) (90)

where p11, p12, p21 and p22 are the observer gains and have
yet to be designed. This yields the following error system

ũt(t, x) + λũx(t, x) = σ+−ṽ(t, x)

− p11(x)ũ(t, 1)− p12(x)ṽ(t, 0) (91)
ṽt(t, x)− µṽx(t, x) = σ−+ũ(t, x)

− p21(x)ũ(t, 1)− p22(x)ṽ(t, 0) (92)

with the boundary conditions

ũ(t, 0) = 0, ṽ(t, 1) = 0 (93)

B. Target system

We map the system (91)-(92) to the following system

α̃t(t, x) + λα̃x(t, x) = 0 (94)

β̃t(t, x)− µβ̃x(t, x) = 0 (95)



with the following boundary conditions

α̃(t, 0) = 0, β̃(t, 1) = 0 (96)

Lemma 6: The system (94)-(95) reaches its zero equilib-
rium in a finite time tF where tF is defined by (16).

Proof: The proof of this lemma is straightforward and
is omitted here.

C. Fredholm transformation
We use the following transformation

ũ(t, x) = α̃(t, x)

+ h[0, 12 ](x)

∫ x

0

K(x, ξ)α̃(t, ξ) + L(x, ξ)β̃(t, ξ)

+ h] 12 ,1](x)

∫ 1

x

M(x, ξ)α̃(t, ξ) +N(x, ξ)β̃(t, ξ)dξ (97)

ṽ(t, x) = β̃(t, x)

+ h[0, 12 ](x)

∫ x

0

K̄(x, ξ)α̃(t, ξ) + L̄(x, ξ)β̃(t, ξ)dξ

+ h] 12 ,1](x)

∫ 1

x

M̄(x, ξ)α̃(t, ξ) + N̄(x, ξ)β̃(t, ξ)dξ (98)

Remark 7: We do have α̃(t, 0) = ũ(t, 0) = ṽ(t, 1) =
β̃(t, 1). Moreover α̃(t, 1) = ũ(t, 1) and ṽ(t, 0) = β̃(t, 0)

if x ≤ 1
2 Differentiating the equations (97)-(98) with re-

spect to time and space yields

0 =λKx(x, ξ) + λKξ(x, ξ)− σ+−K̄(x, ξ) (99)

0 =− µK̄x(x, ξ) + λK̄ξ(x, ξ)− σ−+K(x, ξ) (100)

0 =λLx(x, ξ)− µLξ(x, ξ)− σ+−L̄(x, ξ) (101)

0 =− µL̄x(x, ξ)− µλL̄ξ(x, ξ)− σ−+L(x, ξ) (102)

0 = + (λ+ µ)L(x, x)− σ+− (103)

0 =− (µ+ λ)K̄(x, x)− σ−+ (104)
0 =− µL(x, 0) + p12(x) (105)
0 =p11(x) (106)
0 =p21(x) (107)
0 =− µL̄(x, 0) + p22(x) (108)

if x > 1
2 Similarly we get

0 =λMx(x, ξ) + λMξ(x, ξ)− σ+−M̄(x, ξ) (109)
0 =− µM̄x(x, ξ) + λM̄ξ(x, ξ)− σ−+M(x, ξ) (110)

0 =λNx(x, ξ)− µNξ(x, ξ)− σ+−N̄(x, ξ) (111)
0 =− µN̄x(x, ξ)− µλN̄ξ(x, ξ)− σ−+N(x, ξ) (112)
0 = + (λ+ µ)M̄(x, x)− σ−+ (113)

0 =− (µ+ λ)N(x, x)− σ+− (114)
0 =− λM̄(x, 1) + p21(x) (115)
0 =− λM(x, 1) + p11(x) (116)
0 =p12(x) (117)
0 =p22(x) (118)

All those kernels equations seem well-posed.
Question : Is the transformation invertible ?
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