

Measurement of Henry's Law Constant and Infinite Dilution Activity Coefficient of Isopropyl Mercaptan and Isobutyl Stripping Method

Rohani Mohd Zin, Christophe Coquelet, Alain Valtz, Mohamed I. Abdul Mutalib, Khalik Mohamad Sabil

▶ To cite this version:

Rohani Mohd Zin, Christophe Coquelet, Alain Valtz, Mohamed I. Abdul Mutalib, Khalik Mohamad Sabil. Measurement of Henry's Law Constant and Infinite Dilution Activity Coefficient of Isopropyl Mercaptan and Isobutyl Stripping Method. Journal of Chemical Thermodynamics, 2016, 10.1016/j.jct.2015.10.005. hal-01260151

HAL Id: hal-01260151 https://minesparis-psl.hal.science/hal-01260151

Submitted on 21 Jan 2016 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Measurement of Henry's Law Constant and Infinite Dilution
2	Activity Coefficient of Isopropyl Mercaptan and Isobutyl
3	Mercaptan in Methyldiethanolamine (1) + Water (2) with $w_1 =$
4	0.25 and 0.50 at temperature of 298 to 348K using Inert Gas
5	Stripping Method
6	
7	Rohani Mohd Zin ^{1,2,3} , Christophe Coquelet ^{1*} , Alain Valtz ¹ , Mohamed I. Abdul Mutalib ³ ,
8	Khalik Mohamad Sabil ⁴
9	¹ Mines ParisTech PSL Research Université CTP-Centre of Thermodynamic of Processes 35
10	Rue Saint Honorè, 77305 Fontainebleau, France
11	² Chemical Engineering Faculty, Universiti Teknologi MARA, 40700 Shah Alam, Selangor,
12	Malaysia
13	³ PETRONAS Ionic Liquids Center, Chemical Engineering Department, Universiti Teknologi
14	Petronas, 31750 Tronoh, Perak, Malaysia
15	⁴ School of Energy, Geosciences, Infrastructure and Society, Heriot-Watt University
16	Malaysia, 62200 Putrajaya, Malaysia
17	
18	Abstract: In this study, the Henry's Law Constant and the activity coefficients in infinite
19	dilution in a mass fraction of 25%, and 50% of methyldiethanolamine (MDEA) aqueous
20	solution within the temperature range of 298-348 K at atmospheric pressure, were measured.
21	An inert gas stripping method was used to perform all the measurements. The new values of
22	Henry's Law Constant and the activity coefficients in infinite dilution correlation with solute
23	molecular size were explained. The influence of the solvent is discussed taking into

- consideration the heat of absorptions for different MDEA concentrations. Experimental
 results are compared to literature data wherever available.
- *Keywords:* solubility, limiting activity coefficient, heat of solution
- 6 Corresponding author: Christophe.coquelet@mines-paristech.fr Tel: +33164694962 Fax:
- 7 +33164695968

2 **1. Introduction**

3 Raw natural gas produced from gas fields always contains contaminants or other 4 unacceptable substances including carbon dioxide, hydrogen sulfide, water, carbonyl sulfide, 5 mercaptans (thiols), heavy hydrocarbons and mercury [1]. Removals of these contaminants 6 are achieved through the acid gas treating/sweetening or gas purification process before it can 7 be marketable. Currently, aqueous alkanolamine systems (amine systems) have been used 8 extensively for the removal of acid gases from gas mixtures and it is considered as the most 9 established technology [2-4]. The use of methyldiethanolamine (MDEA) for sour gas 10 treatment is preferred due to its high equilibrium loading capacity and low heat of reaction 11 with CO_2 , hence lowering the energy requirement for regeneration [5-6].

12 Mercaptans are one of the contaminants found in sour gas which has to be removed in view 13 of its toxicity which was reported to be similar to hydrogen sulfide [4]. In the context of 14 growing concern on environmental issues, regulatory limits on gas emissions have been 15 progressively reduced in line with the global trend towards more stringent specifications on 16 gas impurities emissions from natural gas processing facilities. Huguet et al. [7] reported the 17 specification of typical treated gas containing minor amounts of contaminants is as low as 2% CO₂, 2–4 ppm H₂S and 5–30 ppm total sulfur (mercaptans and COS). Furthermore, any 18 19 mercaptans that are not absorbed from sour gas through the amine purification units 20 complicate the process scheme for downstream liquid treatment units [8].

In response the trend, gas preconditioning upstream, or final step(s) for gas conditioning downstream of the gas-treating unit, are increasingly being considered as the better options to comply with the more stringent regulations [9]. Hence the study of solubility of sulfur components (in this study, mercaptans is considered) in amine systems will undoubtedly become increasingly important for the process designers and operators in order to conform to the regulatory limits. According to Pellegrini, et al. [10], and Langè et al.[11], these
restrictions have also led engineering companies to investigate the effects of these substances
on the performances of amine systems.

4 Therefore it is crucial to understand the thermodynamic behaviour of mercaptans in amine 5 solutions which will enable for selection to be made for the best solvent. This can be realized 6 by considering the limiting activity coefficient (or Henry's law constant) and the activity 7 coefficient at infinite dilution for mercaptans in amine solutions. These thermodynamic 8 quantities served as important parameters for the design of separation process. Krummen et al 9 [12] mentioned in his work that the separation of the final traces of components requires 10 significant effort as the region within infinite dilution gives the least favourable values of the 11 separation factor.

12 This work is the continuation of the previous works [13,14] in which we have determined the limiting activity coefficient of n-propylmercaptan, n-butyl mercaptan and dimethylsulfide 13 14 in pure water and in 25 and 50 wt% concentration of methyldiethanolamine (MDEA) aqueous 15 solution. The study focuses on the measurement of the Henry's law constant and the infinite 16 dilution activity coefficient of isopropyl mercaptan and isobutyl mercaptan in a mass fraction 17 of 25%, and 50% concentration in methyldiethanolamine (MDEA) aqueous solution within 18 the temperature range of 298-348 K. The study of the mentioned systems will be able to 19 evaluate the existence possibility of either physical or chemical absorption.

20

21 **2. Experimental Section**

22 2.1 Henry's Law Coefficient Measurements

For the determination of Henry's Law Constant and the Infinite Dilution Activity Coefficient, the experimental works were carried out in Mines ParisTech laboratory. The experiment employed the Gas Stripping method using a specially designed apparatus using

1 dilutor and saturator cell. This method is based on the evolution of vapor phase composition 2 when the highly diluted solute of the liquid mixture in an equilibrium cell is stripped from the 3 solution by a flow of inert gas (helium). The composition of the gas leaving the cell is 4 periodically sampled and analyzed using gas chromatography. The peak area of the solute 5 decreases exponentially with the volume of inert gas flowing out from the cell. Detailed 6 descriptions of the principles and experimental apparatus have been discussed previously by 7 Richon et al. [15, 16] and Krummen et al. [12]. Hence, only salient features will be 8 highlighted in the paper.

9

10 2.2 Chemicals

For this study, the chemicals used are as presented in Table 1. No further purification of the chemicals were made. Ultra pure water was used which was purified and distilled through a Millipore (Direct Q5) osmosis membrane.

14

15 **Table 1.** Chemical sample

16 [INSERT TABLE 1 HERE]

17

Water and MDEA were degassed independently. Aqueous MDEA solutions of 25 wt% and wt% were prepared under vacuum: respective masses of water and MDEA were determined by differential weighing to prepare a mass fraction (*w*) of 25 % and 50 % MDEA aqueous solution (mass fraction uncertainty lower than 0.001%).

22

23 2.3 Equipment

In this gas stripping method, two cells are immersed inside a liquid bath regulated to within 0.01 K. A platinum probe, in contact with the liquid phase of the "dilutor cell" connected to

an electronic display, is used for temperature readings. Temperature uncertainty of the probe
was estimated; u(T) = 0.2 K. Analytical work was carried out using a gas chromatograph
(PERICHROM model PR2100, France) equipped with a flame ionization detector (FID)
connected to a data software system. The reference of the analytical column is: 15%
APIEZON L, 80/100 Mesh (Silcosteel, length 1.2 m, diameter 2 mm) from RESTEK, France.
Helium is used as the carrier gas in this experiment. The simplified flow diagram apparatus is
as per shown in our previous paper [13].

In this experiment, a 40 cm³ of pure solvent was introduced into the "saturator cell (S)" in upstream section, while about 25 cm³ of the solute-solvent mixture was introduced into the "dilutor cell (D)"in the downstream section. A constant stripping gas "helium" flow adjusted to a given value by means of a mass flow regulator was bubbled through the stirred liquid phase and stripped the volatile solute into the vapor phase. The gas leaving the dilutor cell was periodically sampled and analyzed by gas chromatography using a rotating gas sampling valve [13].

Equilibrium must be reached between the gas leaving the cell and the liquid phase in the cell. This can be checked by verifying the measured activity coefficient value which does not depend on the eluting gas flow-rate. The peak area of solute decreased exponentially with time if the analysis is made within the linear range of the detector.

19 The Henry's Law coefficient, H_i (Pa), of solute *i* was calculated by means of equation 1 20 with assumption that the equilibrium has been reached between the gas leaving the cell and 21 the liquid phase residing inside the cell. Equation 1 is obtained considering mass balance 22 around the equilibrium cell concerning the solute.

23
$$H_{i} = -\frac{1}{t} \ln\left(\frac{S_{i}}{(S_{i})_{t=0}}\right) \cdot \frac{RTN}{\frac{D}{1-\frac{PSalt}{P}} + \frac{V_{G}}{t} \ln\left(\frac{S_{i}}{(S_{i})_{t=0}}\right)}$$
24 (1)

where D is the carrier gas flow rate $(m^3 \cdot s^{-1})$; N is the total number of moles of solvent inside 1 the dilutor cell; V_{G} (m³) is the volume of the vapor phase inside the dilutor cell; S_{i} is the 2 chromatograph solute *i* peak area; t (s) is the time; T (K) is the temperature inside the cell; P3 (101 300 Pa) is the pressure inside the cell (around 1 atm); P^{sat}_{solv} (Pa) is the saturation 4 pressure of the solvent (see Appendix); and R (J \cdot mol⁻¹ \cdot K⁻¹) is the ideal gas constant. 5 6 Uncertainty concerning the Henry's law coefficient is estimated to be within 15 %. This 7 estimation comes from propagation of errors on the uncertainty of the solute *i* peak area 8 determination, the uncertainties on the flow, the uncertainties related to the temperature and 9 pressure, number of moles of solvent and accuracy of the approach (mass balance and 10 hypothesis, see Krummen et al. [11]). It can be noticed that the expression given in the paper of Krummen et al. is wrong but only valid for measurement in non volatile solvent (Eq. 2). 11

12
$$H_i = -\frac{1}{t} \ln\left(\frac{S_i}{(S_i)_{t=0}}\right) \cdot \frac{RTN}{D\left(1 + \frac{P_{SOIV}}{P}\right) + \frac{V_G}{t} \ln\left(\frac{S_i}{(S_i)_{t=0}}\right)}$$
(2)

13 with $\frac{1}{1 - \frac{P_{solv}^{sat}}{p}} \approx \left(1 + \frac{P_{solv}^{sat}}{p}\right)$ for non volatile solvent (saturated pressure is very low, i.e.

14 $\frac{p_{solv}^{sat}}{p} \ll 1$. The measurement for this work complied within very low saturated pressure 15 condition where the range of $\frac{p_{solv}^{sat}}{p}$ for this work is within 0.03 -0.37).

This uncertainty is a consequence of the difficulty determining accurately the slope of the
solute *i* peak area as a function of time [13]. The slope is determined by linear regression of
area logarithms.

19

20 **3. Experimental Results and Discussion.**

21 3.1 Henry's Law Constant and Limiting Activity Coefficient in Infinite Dilution

22 Results tabulated in Tables 2 and 3 show the values of Henry's law constants for the isopropyl

and isobutyl mercaptans in pure water and in aqueous solutions with MDEA concentration of

1 25% and 50% mass fraction of MDEA. In specific, Table 2 shows the data on isopropyl
2 mercaptan whereas Table 3 on isobutyl mercaptan.

Figures 1 and 2 show the temperature dependence of the logarithm of the limiting activity coefficient as a function of inverse temperature for n-propyl mercaptan, isopropyl mercaptan n-butyl mercaptan and isobutyl mercaptan, in pure water and in aqueous solutions having similar concentrations as above i.e., mass fraction of 25% and 50% of MDEA. The limiting activity coefficient is calculated through equation 3. Details concerning the calculation of the saturation pressure are presented in the table shown in the Appendix.

9
$$\gamma_i^{\infty} = \frac{H_i^{p_{solv}^{sat}}}{P_i^{sat}}$$
 (3)

10

Whilst Figures 5 and 6 show the temperature dependence of the logarithm of the Henry's law
constants for isopropyl mercaptan and isobutyl mercaptan in pure water and in the same two
MDEA aqueous solutions bearing the same concentrations.

The values of the Henry's law constants and limiting activity coefficient for n-propyl
mercaptan and n-butyl mercaptan presented in these figures are taken from our previous work
[13, 14].

17

Table 2. Temperature Dependence of Henry's Law Constant for in Isopropyl Mercaptan and
n-propyl Mercaptan in Water and in (25 and 50) wt % MDEA aqueous Solutions:

20 u(T) =0.2K, u(H) = 15% of H (MPa)

21 [INSERT TABLE 2 HERE]

22

23 Table 3. Temperature Dependence of Henry's Law Constant for Isobutyl Mercaptan and n-

24 butyl Mercaptan in Water and in (25 and 50) wt % MDEA aqueous Solutions :

25 u(T) = 0.2K, u(H) = 15% of H (MPa)

3 [INSERT FIGURE 1 HERE]

Figure 1. Logarithm of limiting activity coefficient of n-propyl mercaptan and isopropyl
mercaptan in water and in various MDEA weight fractions of 25 %; and 50 % as a function of
inverse temperature (▲ water-iPM; × water-nPM; ◆ 25 wt% MDEA-iPM; ■ 25 wt% MDEAnPM ; x 50 wt% MDEA-iPM; • 50 wt% MDEA-nPM)

9

10 [INSERT FIGURE 2 HERE]

Figure 2. Logarithm of limiting activity coefficient of n-butyl mercaptan and isobutyl
mercaptan in water and in various MDEA weight fractions of 25 %; and 50 % as a function of
inverse temperature. (▲ water-iBM; × water-nBM; ◆ 25 wt% MDEA-iBM; ■ 25 wt%
MDEA-nBM; x 50 wt% MDEA-iBM; • 50 wt% MDEA-nBM)

15

The figures clearly showed that the values of the limiting activity coefficients for isopropyl and isobutyl mercaptans are smaller in MDEA aqueous solutions than in pure water. It can also be observed that the values of the limiting activity coefficient reduces with the increasing concentration of the aqueous amine solutions. The decreasing function of the amine concentration relation is true for all mercaptans considered in the study.

Bedell and Miller [17] carried out study on the mercaptans solubility in aqueous amine. The authors concluded that the solubility of mercaptans in amines can be treated as the sum of both a physical solubility and a chemical solubility. For isopropyl and isobutyl mercaptans, the absorption mechanisms observed involved physical and chemical. Due to the addition of MDEA to water, the alkalinity of the solution changes resulting in the increased of mercaptan solubility. It was also observed indirectly that the limiting activity coefficient increases with the solute molecular size (higher number of carbon atoms of mercaptans) at constant MDEA concentration. The reason is due to the physical absorption being the predominant
 mechanism.

3 The comparison made on the values of the limiting activity coefficients for isobutyl 4 mercaptan and n-butyl mercaptan showed that they were higher for the latter for both amine 5 solutions i.e., concentration of 25 wt% and 50 wt%.

6

7 [INSERT FIGURE 5 HERE] 8

9 Figure 3. Logarithm of Henry's Law Constant of n-propyl mercaptan and isopropyl
10 mercaptan in water and in various MDEA weight fractions of 25 %; and 50 % as a function of
11 inverse temperature.(▲ water-iPM; × water-nPM; ◆ 25 wt% MDEA-iPM; ■ 25 wt% MDEA12 nPM ; x 50 wt% MDEA-iPM; • 50 wt% MDEA-nPM)

13

14

16

15 [INSERT FIGURE 6 HERE]

Figure 4. Logarithm of Henry's Law Constant of n-butyl mercaptan and isobutyl mercaptan
in water and in various MDEA weight fractions of 25 %; and 50 % as a function of inverse
temperature. (▲ water-iBM; × water-nBM; ◆ 25 wt% MDEA-iBM; ■ 25 wt% MDEA-nBM ;
x 50 wt% MDEA-iBM; • 50 wt% MDEA-nBM)

21 22

Figures 3 and 4 present the measured Henry's Law constant as a function of inverse temperature for n-propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan and isobutyl mercaptan species in pure water and in 25 wt % and 50 wt % MDEA aqueous solution respectively. The values for n-propyl mercaptan and n-butyl mercaptan were taken from our previous work [13].

It was observed that the Henry's Law constant for the various species of mercaptans exhibited lower values whilst in the MDEA solution compared to pure water. These effects

1 could be explained through the higher solubility of the mercaptans in the presence of 2 alkanolamine in solutions as a result of higher affinity between the organic molecules namely 3 the mercaptans and the alkanolamine, compared to water. The same deduction was made by 4 Lange et. al [10] in their work on the influence of mercaptans impurities on thermodynamics 5 of amine solutions. Bedell and Miller [17] mentioned in their work that in general the 6 solubilities of higher mercaptans in pure water show a slight decrease in solubility as the 7 mercaptan alkyl groups increase in size. Results obtained in this work are in fair agreement 8 with their statement as higher mercaptans exhibited higher values of Henry's Law constant (as 9 shown in Table 1 and 2). Higher Henry's Law constant values translate to lower solubilities of 10 a gas in a solvent and vice versa.

11 Another important observation that could be made from Figure 3 is the higher Henry's 12 Law constant exhibited by the isopropyl mercaptan compared to the n-propyl mercaptan 13 which were consistent for both MDEA solutions i.e., 25 wt % and 50 wt % concentrations. 14 The same observation was also made for the isobutyl and n-butyl mercaptans at 25 wt % and 15 50 wt % of amine concentration as shown in Figure 4. The Henry's Law constant for the 16 former was also found to be higher. The significance of the result above is that the Henry's 17 Law constant increases with the solute molecular size. Density of the two pairs showed that 18 the n-propyl and the n-butyl display higher values compared to the iso-propyl and iso-buytl 19 mercaptan as shown in Table 4. The higher density of n-butyl and n-propyl mercaptan species 20 tend to have more compact molecular arrangement hence leading to smaller molecular size 21 could fit more easily in the solvent cavity. These findings agree with the works by 22 Tsonopoulos [18].

23

Table 4. Density of Isopropyl Mercaptan, n-propyl Mercaptan, Isobutyl Mercaptan and n butyl Mercaptan at atm, 25°C [19]

[INSERT TABLE 4 HERE]

The argument could also be further supported through the determination of the Hildebrand solubility parameter of the mercaptan species involved in the study as shown in Table 5. Theoretically, the solubility parameter is a numerical value that indicates the relative solvency behaviour of a specific solvent and it is derived from the square root of the cohesive energy density of the solvent [20]. Hildebrand solubility parameters obtained from literature [21] are calculated through equation 4.

9
$$\delta = \sqrt{c} = \left[\frac{\Delta H - RT}{V_m}\right]^{\frac{1}{2}}$$
(4)

10 where *c* is the cohesive energy density; ΔH is heat of vaporization(kJ.mol⁻¹), V_m is molar 11 volume of the mixture (m³.mol⁻¹); *T* is the temperature (K) and *R* is the ideal gas constant 12 (J.mol⁻¹.K⁻¹). By ranking solvents according to Hildebrand solubility parameter a solvent 13 range is obtained, with solvents occupying positions in proximity to other solvents of 14 comparable strength [19].

15

16 Table 5. Hildebrand Solubility parameter of Isopropyl Mercaptan, n-propyl Mercaptan,

17 Isobutyl Mercaptan and n-butyl Mercaptan [21]

18 [INSERT TABLE 5 HERE]

19

Figures 5 shows the plotted values of the Henry's Law Constant and the limiting activity coefficient of the isobutyl mercaptan in water and in the various MDEA solution concentrations at different temperature (298-348 K). The figures are tendency curves that are useful for quick estimation of solubility and limiting activity coefficient value for the isobutyl mercaptan under different MDEA solution concentrations i.e., within the range of 0 - 15 mole 1 fraction (similarly to 0 - 50 wt %). Similar tendency curves can also be plotted for all the
2 mercaptan species in this work.

3

4 [INSERT FIGURE 5 HERE] 5

6 Figure 5. Tendency curves of Henry's Law Constant Logarithm for isobutyl mercaptan in
7 water and in various MDEA weight fractions at different temperature ◆ 298K ■ 323K
8 ▲ 333K × 348K.

9

10 **3.2 Heat of Solutions**

11 To evaluate the effect of different concentration, the heat of solution is determined through 12 equation 5. The equation is derived from the Gibbs-Helmholtz equation using excess 13 thermodynamic properties.

$$14 \quad \left(\frac{\partial \ln H_i}{\partial^1/T}\right)_p = \frac{\Delta H_i}{R} \tag{5}$$

15 The heat of solution ($\Delta H_i(J.mol^{-1})$) is also considered to be the partial molar excess 16 enthalpy of component *i* in the solution. By assuming that the heat of solution is a constant 17 and by integrating equation 6, it can be shown that limiting activity coefficient can be 18 expressed as a function of 1/T.

$$19 \quad lnH_i = A + \frac{B}{T} \tag{6}$$

20 Which resulted in $\Delta H_i = RB$. Table 6 reported the results of the heat of solutions at 21 different MDEA solution concentrations for isopropyl and isobutyl mercaptans.

22

Table 6. Values of Heat of Solution for isobutyl and isopropyl mercaptan in Different MDEA
Molar Concentrations

25 [INSERT TABLE 6 HERE]

- 1
- 2

3 [INSERT FIGURE 6 HERE]

4 Figure 6. n-propyl, iso-propyl, n-butyl and iso-butyl mercaptans heats of solution as a
5 function of MDEA molar concentration.(× nPM; ■ iPM; ▲ nBM; ◆ iBM)

6 7

8 Figure 6 shows the heats of solution for, n-propyl, isopropyl, n-butyl and isobutyl mercaptans 9 as a function of MDEA concentration in mole fraction. From Table 6 and Figure 6, it can be 10 observed that the heat of solution for n-compounds are higher than the iso-compounds for 11 both propyl and butyl mercaptans at all different concentrations of MDEA solutions.

12 Also, it is known that the heat of solution are contributed by three effects namely a positive heat of cavitation, a negative heat of hydrophobic interactions, and the heat of reaction (here 13 between acids R-SH and base (amines or water)) [16]. When MDEA is added in the aqueous 14 15 solution, it is probable that the contribution of chemical reactions are increased as there is a 16 change in the value of heat of solution. Another way to explain: the heat of solution is the sum 17 of the contribution of breaking solute solute and solvent solvent interactions and creation of 18 solvent solute interaction. Acid base reactions are also exothermic. The two first are 19 endothermic and the last one is exothermic. According to Table 6 the final results show that 20 more energy is releasing during the solvation probably due to acid base reaction.

Moreover, in pure water, the difference in the heat of solution is due to the size effect (physical solubility) causing the partial molar excess enthalpy to be slightly higher for the isocompound. In addition, with higher value of Henry's Law Constant shown by isobutyl and isopropyl mercaptan, indicates that the solute are less soluble in the alkanolamine solution thus less energy required to remove the solute from the solution. It is also observed that heat of solution for isopropyl and isobutyl mercaptans have the same order of magnitude and the
 same shape.

As for the both iso and n-propyl and butyl mercaptan, the n-butyl and isobutyl mercaptan shows a higher heat of solution values due to the presence of an additional alkyl group compared to the n-propyl and isopropyl mercaptan.

6

7 **4. Conclusion**

8 The new values for Henry's Law constants and the infinite dilution activity coefficients of 9 n-propyl mercaptan, isopropyl mercaptan n-butyl mercaptan, isobutyl mercaptan in 25 wt % 10 and 50 wt % MDEA aqueous solution at T = (298 to 348 K) have been obtained through gas 11 stripping measurements. Based on general observation, it can be concluded that that the 12 limiting activity coefficient and Henry's Law constant is an increasing function of the solute 13 molecular size value. The observation can be supported through the determination of 14 Hildebrand solubility parameter for the components and solvent involved. The experimental 15 technique has provided information about heats of solution of MDEA aqueous solution.

16

17 **5. Acknowledgment**

18 The authors wish to thanks Dr. Stanley Huang from Chevron Energy Technology Corporation 19 and member of Gas Processor Association research Committee for fruitful discussion and 20 advice.

1 2	Appendix				
3	Correlation used to calculate vapor pressure is				
4	$P^{sat} = e^{\left(A + \frac{B}{T} + C\ln(T) + D \cdot T^{E}\right)}$				
5	with the following parameters (Table 7);				
6	Concerning the solvent, the expression is				
7	$P_{solv}^{sat} = x_{water} P_{water}^{sat} + x_{MDEA} P_{MDEA}^{sat}$				
8					
9	Table 7: Vapor pressure correlation parameters.				
10	[INSERT TABLE 7 HERE]				
11 12	These parameters (for the mercaptans) were obtained after adjustment on literature data (from				
13	ThermoDataEngine version 3.0 from NIST) by minimising the objective function,				
14	$F = \sum (P_{ m exp} - P_{cal})^2$				
15	The AAD (average absolute deviations) are presented in the following Table 8:				
16					
17	Table 8: Average absolute deviations (AAD) values .				
18	[INSERT TABLE 8 HERE]				
19					
20	References				
21	[1] Ryzhikov A., Hulea V., Tichit D., Leroi C., Anglerot D., Coq B., Trens P., Applied				
22	Catalysis A: General 397 (2011) 218-224				
23	[2] Deshmukh, R.D. and Mather A.E., Chem. Eng. Sci. 36 (1981) 355–362.				
24	[3] Kumar S., Cho J. H, Il Moon., Int. Journal of Greenhouse Gas Control 20 (2014) 87–116				
25	[4] Abass A. Olajire, Energy 35 (6) (2010), 2610–2628				
26	[5] Paul, S.; Mandal, B. J. Chem. Eng. Data 51, (2006) 1808–1810				
	16				

- [6] Ayyaz M, Mohamed I. 1, Thanabalan M., Amir S. J. Chem. Eng. Data 54 (2009) 2317–
 2321
- 3 [7] Huguet E., Coq B., Durand R., Leroi C., Cadours R., Hulea V., Applied Catalysis B:
 4 Environmental 134–135 (2013) 344–348
- 5 [8] Awan A. J, Kontogeorgis G. M., Tsivintzelis I., Coquelet C., Ind. Eng. Chem. Res. 52
 6 (2013) 14698–14705
- 7 [9] Awan A. J, Tsivintzelis I, Valtz A., Coquelet C., Kontogeorgis G. M., Ind. Eng. Chem.
 8 Res 51 (2012) 11561–11564
- 9 [10] Pellegrini, L.A., Langè S., Moioli, S., Picutti, B., Vergani, P., Industrial and Engineering
 10 Chemistry Research 52 (2013) 2018-2024.
- [11] Langè S., Pellegrini, L.A., Moioli, S., Picutti, B., Vergani, P., Industrial and Engineering
 Chemistry Research (2013), 52 (5), 2025–2031
- 13 [12] Krummen, M.; Gruber, D.; Gmehling, J. Ind. Eng. Chem. Res. 39 (2000) 2114-2123
- 14 [13] Coquelet C., D. Richon., J. Chem. Data 50 (2005) 2053-2057
- 15 [14] Coquelet C., S.Laurens, D. Richon., J. Chem. Data 53 (2008) 2540-2543
- 16 [15]Richon, D.; Antoine, P.; Renon, H. Ind. Eng. Chem. Process Des. Dev. 19 (1980) 14417 147
- 18 [16] Richon, D.; Renon, H. J. Chem. Data. 25 (1980) 59-60
- 19 [17] Bedell S A., Miller M., Ind. Eng. Chem. Res. 46 (2007) 3729-3733
- 20 [18] Tsonopoulos C., Fluid Phase Equilibria 186 (2001) 185–206
- [19] Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of
 Organic Compounds (1987)
- 23 [20] Burke, J. AIC Book Paper Group Annual 1984, 3, 13-58
- 24 [21] Daubert, T. E., Danner, R. P., Sibul, H. M., & Stebbins, C. C. DIPPR Data compilation of
- 25 pure compound properties. DIPPR, AIChE, New York (1993).
- 26

Table 1. Chemical sample

Chemical Name	Cas No.	Mass Fraction Purity	Supplier
Isopropyl Mercaptan	75-33-2	>0.99	Aldrich
Isobutyl Mercaptan	513-44-0	>0.99	Aldrich
Methyl Diethanolamine	105-59-9	99 + GC%	Aldrich

Table 2. Temperature Dependence of Henry's Law Constant for in Isopropyl Mercaptan and n-propyl Mercaptan in Water and in (25 and 50) wt % MDEA Aqueous Solutions

T/K	H/MPa	u(H)/MPa	$\gamma\infty$	T/K	H/MPa	$\gamma\infty$			
	Isopropyl Mercaptan			n-p	ropyl Merca	aptan			
	_		ater		_				
298.5	35	5.3	916	293.1	24	1455			
308.3	54	8.1	1005	303.1	47	1844			
318.3	76	11.4	999	333.1	94	1191			
323.3	88	13.2	988						
333.3	103	15.5	840						
348.2	143	21.5	730						
	Aqueous MDEA solution								
		25 wt%			25 wt% ^a				
298.5	8.6	1.3	227	298.1	4.3	209			
308.3	13	2.0	244	303.1	5.4	211			
318.4	17	2.6	229	313.1	6.9	181			
323.4	20	3.0	225	323.1	10	187			
333.5	28	4.2	222	333.1	15	189			
348.2	43	6.5	220	343.1	17	157			
		50 wt9/			50 wt% ^b				
208.6	36	50 WL 70	0/	203 1	$30 \text{ wt/}{0}$	188			
290.0	5.0	0.3	94	293.1	3.1	100			
210.2	<i>J.J</i> 0.2	0.0	90 100	290.0	3.9	190			
318.3	ð.3	1.2	109	303.1	4.5	108			
323.0 222.5	9.1 11	1.4	101	312.9	4.9	129			
555.5 249.0	11	1./	91	525.1 222.1	5.6	101			
348.0	17	2.6	85	333.1	9	105			
				343.1	10	93			

u(T) = 0.2K, u(H) = 15% of H (MPa)^aResults from Coquelet et al. [13] ^bResults from Coquelet and Richon[14]

1 2 3 4

Table 3. Temperature Dependence of Henry's Law Constant for Isobutyl Mercaptan and n-butyl Mercaptan in Water and in (25 and 50) wt % MDEA Aqueous Solutions

T/K	H/MPa	u(H)/MPa	$\gamma\infty$	T/K	H/MPa	$\gamma\infty$			
	Isob	utyl Mercap	n-but	yl Mercapt	an ^a				
			Wat	ter					
298.3	54	8.1	5803	292.8	29	6223			
308.3	80	12	5462	312.8	70	5717			
3234	138	20.7	5046	332.8	125	4504			
333.2	204	30.6	5145						
348.1	310	46.5	4674						
	Aqueous MDEA solution								
		25 wt%			25 wt% ^a				
294.0	5.5	0.8	669	293.1	3.4	708			
298.5	7.0	1.1	665	303.1	4.9	622			
303.5	7.9	1.2	599	313.1	7.8	623			
313.4	12	1.8	610	318.1	10	644			
318.4	16	2.4	635						
323.5	20	3.0	647						
333.4	28	4.2	633						
348.1	42	6.3	638						
		50 wt%			50 wt% ^b				
298.6	2.9	0.4	272	292.8	1.8	383			
308.4	4.2	0.6	255	302.6	3.2	411			
318.5	7.1	1.1	282	312.7	3.1	253			
323.2	7.7	1.2	252	322.9	4.7	246			
333.4	11	1.7	238	332.4	7.2	262			
348.3	16	2.4	208	342.8	9.3	241			
u(T) =	= 0.2K. u()	H = 15% of I	H (MPa						

 a^{a} Results from Coquelet et al. [13] ^bResults from Coquelet and Richon[14]

Table 4. Density of Isopropyl Mercaptan,	n-propyl Mercaptan,	Isobutyl Mercaptan and n-
butyl Mercapt	an at atm, 25°C [19]	

Component	Density / g.cm ⁻³)
n-propyl Mercaptan (nPM)	0.841
isopropyl Mercaptan (iPM)	0.820
n-butyl Mercaptan (nBM)	0.842
isobutyl Mercaptan (iBM)	0.831

- Table 5. Hildebrand Solubility parameter of Isopropyl Mercaptan, n-propyl Mercaptan,
- 2 3 Isobutyl Mercaptan and n-butyl Mercaptan [21]

Component	Hildebrand Parameter δ /cal ^{1/2} .cm ^{-3/2}
n-propyl Mercaptan (nPM)	8.81
isopropyl Mercaptan (iPM)	8.30
n-butyl Mercaptan (nBM)	8.70
isobutyl Mercaptan (iBM)	8.43
Water	22.9
MDEA	13.8
Aqueous MDEA (25 wt%)	22.5
Aqueous MDEA (50 wt%)	21.7

1 2 3 **Table 6.** Values of Heat of absorption for isobutyl and isopropyl mercaptan in Different MDEA Molar Concentrations

		4		
	/		L	
2		1	Г	

Aqueous MDEA	Heat of solution /kJ.mol ⁻¹				
solution /wt %	iBM	nBM ^a	iPM	nPM ^a	
0	-30.6	-29.7	-26.2	-26.0	
25	-32.8	-33.5	-27.6	-26.9	
50	-30.2	-26.3	-24.7	-18.4	

^aResults from Coquelet and Richon¹⁴.

 Table 7: Vapor pressure correlation parameters.

	Parameter	nBM*	iBM*	nPM*	iPM*	Water**	MDEA**
	A	64.649	61.213	61.813	74.676	73.649	253.07
	В	-6262	-5909	-5623	-5272	-7258.2	-18378
	С	-6.1280	-5.6431	-5,7934	-8.1974	-7.3037	-33.972
	D	$6.84 \text{ x} 10^{-18}$	1.48×10^{-17}	6.51×10^{-18}	3.42×10^{-16}	4.17 x10 ⁻⁶	2.33×10^{-5}
	Ε	6	2	6	6	2	2
3 4 5 6	* Temperature nBM: 323.1 ** From Daub	ranges for vapor -408.8, iBM: ert et al. [21]	r pressure data 310.5-394.6 ,	underlying the nPM; 284.6	correlation T(K 5-383.2, iPM	K) for mercapta ; 283.8 -358.9	nn species ; Ə
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37							
38 39 40							

- 42

- 2 3 4 5 6

Table 8: Average absolute deviations (AAD) values

		nBM	iBM	nPM	iPM
	AAD /%	2	1	3	6
7					
8					

Figure 1. Logarithm of limiting activity coefficient of n-propyl mercaptan and isopropyl
mercaptan in water and in various MDEA weight fractions of 25 %; and 50 % as a function of
inverse temperature (▲ water-iPM; × water-nPM; ◆ 25 wt% MDEA-iPM; ■ 25 wt% MDEAnPM ; x 50 wt% MDEA-iPM; • 50 wt% MDEA-nPM)

Figure 2. Logarithm of limiting activity coefficient of n-butyl mercaptan and isobutyl
mercaptan in water and in various MDEA weight fractions of 25 %; and 50 % as a function of
inverse temperature. (▲ water-iBM; × water-nBM; ◆ 25 wt% MDEA-iBM; ■ 25 wt%
MDEA-nBM ; x 50 wt% MDEA-iBM; • 50 wt% MDEA-nBM)

Figure 3. Logarithm of Henry's Law Constant of n-propyl mercaptan and isopropyl mercaptan in water and in various MDEA weight fractions of 25 %; and 50 % as a function of
inverse temperature.(▲ water-iPM; × water-nPM; ◆ 25 wt% MDEA-iPM; ■ 25 wt% MDEAnPM; x 50 wt% MDEA-iPM; • 50 wt% MDEA-nPM)

Figure 4. Logarithm of Henry's Law Constant of n-butyl mercaptan and isobutyl mercaptan
in water and in various MDEA weight fractions of 25 %; and 50 % as a function of inverse
temperature. (▲ water-iBM; × water-nBM; ◆ 25 wt% MDEA-iBM; ■ 25 wt% MDEA-nBM;
% 50 wt% MDEA-iBM; • 50 wt% MDEA-nBM)

Figure 5. Tendency curves of Henry's Law Constant Logarithm for isobutyl mercaptan in

298K 🔳

323K 🔺

water and in various MDEA mole fractions at different temperature

333K × 348K.

1

5 6 Figure 6. n-propyl, iso-propyl, n-butyl and iso-butyl mercaptans heats of solution as a function of MDEA molar concentration.(Δ nPM; \blacktriangle iPM; \circ nBM; \bullet iBM)