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Abstract: With the variety of measurement techniques available on the market today, 

fusing multi-source complementary information into one dataset is a matter of great 

interest. Target-based, point-based and feature-based methods are some of the approaches 

used to place data in a common reference frame by estimating its corresponding 

transformation parameters. This paper proposes a new linear feature-based method to 

perform accurate registration of point clouds, either in 2D or 3D. A two-step fast algorithm 

called Robust Line Matching and Registration (RLMR), which combines coarse and fine 

registration, was developed. The initial estimate is found from a triplet of conjugate line 

pairs, selected by a RANSAC algorithm. Then, this transformation is refined using an 

iterative optimization algorithm. Conjugates of linear features are identified with respect to 

a similarity metric representing a line-to-line distance. The efficiency and robustness to 

noise of the proposed method are evaluated and discussed. The algorithm is valid and 

ensures valuable results when pre-aligned point clouds with the same scale are used. The 

studies show that the matching accuracy is at least 99.5%. The transformation parameters 

are also estimated correctly. The error in rotation is better than 2.8% full scale, while the 

translation error is less than 12.7%. 

Keywords: matching; alignment; transformation; registration; point cloud; feature; line; 

quality; distance 
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1. Introduction 

Over the last decade, laser scanning systems have proven to be an efficient measurement tool 

providing satisfactory accuracy in a variety of applications, notably in 3D reconstruction and realistic 

modeling of the environment. However, a technique is needed to register and visualize the resulting 3D 

scans in a common coordinate system. The aim is to estimate transformation parameters, which 

minimize a chosen measure of mismatch between overlapping point clouds. With static terrestrial laser 

scanning (TLS), an object is collected from different scanner locations in order to avoid the presence 

of so-called dead spots and to recover a dense 3D point cloud spanning its entire surface. As a 

consequence, the alignment phase faces the issue of merging multi-view scans together. In addition, a 

registration problem arises if the same area is acquired more than once. In the case of airborne (ALS) 

or ground-based (MLS) mobile scanning platforms, offsets between overlapping areas of adjacent 

flying strips or surveys resulting from drifts of the INS or temporary loss of GNSS signals may occur. 

Finally, the wide variety of available measurement techniques provides different sources of 3D 

information requiring integration into one coherent dataset. 

Both rigid and non-rigid alignment methods exist. The classification of registration approaches in 

[1] divides algorithms into three main families. The first are multi-feature-based methods relying on 

the extraction of primitives, which achieve the alignment through prior correspondence of geometric 

features. As such, these algorithms depend on the existence of suitable primitives within the scene. 

Moreover, the data filtering and segmentation steps can take considerable amounts of processing time. 

A second solution consists of rendering 3D point clouds into a surface model (e.g., meshing). The third 

and final category are point-based methods, which require neither feature recognition nor pre-

modeling. The most commonly employed solution is the well-known Iterative Closest Point (ICP) 

algorithm [2], a robust and accurate method provided that a good rough alignment exists. The ICP 

iteratively minimizes the point-to-point distances between overlapping point clouds by estimating 

transformation parameters, then re-pairing points in the transformed clouds. These two main steps are 

repeated until the registration error is smaller than a given threshold value. Despite its numerous 

advantages, the ICP method is burdened by limitations, which are still under study. Many variants 

have been proposed to improve the individual steps of the ICP namely the selection of points, 

matching, weighting and rejection of erroneous associations, and choice of cost function to be 

minimized [3–5]. Nonetheless, the main weaknesses of the ICP algorithm are the high number of 

iterations needed to achieve convergence, the requirement for a good initialization, and sensitivity to 

noise. Furthermore, the ICP’s matching step is the most time-consuming part of the registration phase 

[1], and the initial alignment is usually assigned by hand. A wide variety of research has focused on 

automating the coarse registration and reduction of matching time. A current trend is two-step 

approach [6,7]. At first, a feature-based coarse registration provides an initial estimate, which is then 

passed to an ICP-like method for accurate and robust fine registration. Referring to [8], the ICP 

algorithm is still only well-formulated for pair-wise registration (i.e., two scans at the time). Therefore, 

other methods are needed to ensure simultaneous alignment of multiple point clouds. 

In summary and as stated in [9], the registration process should address four issues: (1) Extracting 

corresponding geometric primitives within the scans, such as key-points, linear, planar, spherical or 

cylindrical features as well as higher-level shape descriptors; (2) Estimating the transformation 
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parameters that ensure the best fit; (3) Defining the similarity measure for conjugate features, which 

describes their coincidence after the registration process; (4) Choosing the matching strategy. In this 

context, a solution to each of the above-mentioned tasks is proposed in this paper. 

1.1. Motivation 

Man-made urban areas are rich in linear features, making their use appropriate in several 

applications. They can be also useful to carry out automatic 2D or 3D registration between different 

scans as well as for integration of LiDAR and photogrammetric data. From an algorithmic point of 

view, the determination of 3D motion from line correspondences is more challenging compared to 

point-based methods. However, the linear primitives, recovered from plane-plane intersections, are 

easier to extract and describe, even within low-density and relatively noisy point clouds. Rather than 

using conjugate points, linear features are thus employed in this research. Hence, to obtain the rigid-

body transformation parameters, at least two non-parallel lines are required (since a single line has 

three degrees of freedom). The pair-wise registration of datasets that are already geo-referenced and do 

not exhibit large changes, especially in rotation is thus focused. Indeed, a good a priori alignment 

between the point clouds should be assumed, meaning that it needs to be only refined by the co-

registration. The objective is to develop an effective registration procedure for the co-alignment of the 

Mobile Laser Scanning (MLS) point cloud data. Therefore, a complete framework for the so-called 

Robust Line Matching and Registration (RLMR) is outlined. 

The remainder of the paper is organized as follows: after a short presentation of the existing 

optimization methods suitable to estimate the transformation parameters from line segment 

correspondences, primitives, which can be reliably extracted from the MLS data, are introduced. In 

Section 2, a procedure to precisely register, even in noisy data conditions, two point clouds is 

described. The performance and feasibility of the proposed methodology are evaluated through 

experimental results using both simulated and experimental datasets (Section 4). Finally, some 

conclusions and recommendations for future work are drawn (Section 5).  

1.2. Overview of Linear Feature-Based Registration Methods 

A variety of methods have been proposed to tackle the problem of estimation of transformation 

parameters from pre-matched lines [9–18]. Among these various algorithms [10] proposes two variants 

of the so-called Iterative Closest Line (ICL) algorithm. The first one, the ICP form, has the same logic 

as the ICP algorithm provided that one considers only the estimation of rotation (closed-form solution). 

However, the translation computation is performed differently. The second variant, the ICL 

(alternative form), is inspired by [11] and seeks to determine seven parameters (rotations, translations, 

and scale factor) of a 3D Helmert transformation. In our case, the scale factor is considered unity since 

the laser rangefinders provide the true scale. Nevertheless, this latter approach requires that matched 

elements have the same length and their endpoints are conjugate to each other. To overcome 

limitations of such explicit assumption [10], suggests matching the length of corresponding linear 

features before starting the algorithm. Another improvement of algorithm [11] is given by [12]: an 

additional unknown vector defined for corresponding lines compensates the non-correspondence of 

endpoints, then, a point-based approach using a weight-modification process is implemented. In this 
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way, the systematic error resulting from the use of non-conjugate points is eliminated. These two 

optimization methods are nonlinear and require prior information about the unknown transformation 

parameters. When the initial estimate is sufficiently distant from the true one, this method may provide 

an incorrect solution. A qualitative and quantitative assessment was carried out by [13] to analyze the 

performance of the method proposed  

in [12]. The transformation parameters are compared with those obtained from other methods, i.e., the 

Iterative Closest Projected Point (ICPP) [14] (a variant of the ICP approach) and a planar feature-based 

registration method [19]. On the basis of this study [9] developed a two-step process where the coarse 

alignment between overlapping lines is refined through an ICPP registration. 

Using different representations of line segments and rotation, [15] analyzed several methods for the 

estimation of transformation parameters e.g., the Extended Kalman Filter (EKF), the Singular Value 

Decomposition (SVD) and a general minimization process. They observed that the application of a 

general minimization algorithm is very time-consuming compared to SVD. The EKF with the  

rotation-axis representation was found to be the preferred way to achieve a high-accuracy solution.  

In turn, the quaternion representation of rotation combined with the SVD (the so-called EIGEN 

method) is efficient and does not need an initial estimate. However, the results are not very 

representative. 

Meanwhile [16], suggest the use of randomly selected line triplets from all possible permutations. 

The objective is to test a very large number of transformations and to keep only the best one.  

However there is an implicit assumption that the midpoints of the corresponding line segments are 

conjugates of each other, which provides the correct results only in particular situations. 

Finally [17], develop a four-variant algorithm (iterative optimization algorithm) for estimating an 

optimal transformation giving the best fit of an image set being moved (I) to a model reference set (M). 

The (closed-form) solution for equal-length line segments is described in [18]. In the case of different 

lengths, three approaches are possible: (1) Finite Model, Finite Image (FMFI)—both sets consist of 

line segments; (2) Infinite Model, Infinite Image (IMII)—both sets contain infinite lines; (3) Finite 

Model, Infinite Image (FMII)–mixed case. Regardless of the choice, a method that yields the 

transformation parameters without need for an initial approximation is proposed. The cost function is 

formulated explicitly in terms of corresponding points on each pair of homologous lines. These 

corresponding points need to be determined iteratively. In summary, irrespective of the method 

chosen, the estimation process addresses two separate tasks: a non-linear stage to recover the rotation 

and a linear stage to obtain  

the translation. 

2. Methodology 

The proposed two-stage procedure RLMR consisting of a rough followed by a fine alignment 

phases handles the registration (Figure 1). Assuming that there is no scale difference between the two 

overlapping point clouds, the transformation from the Data set (X) to the Model set (M) requires the 

estimation of three rotation angles and three translations. For this task one could implement one of the 

approaches from the state-of-the-art. The correspondences between two sets of lines are created twice 

with the algorithm described below. This correspondence-finding algorithm is an extension of the 
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work presented in [20] by providing more details and presenting new results. An analysis of a line-to-

line distance (score) leads to identification of conjugate linear features between two sets. This score is 

composed of angular deviation and spatial separation values. First, a one-to-one correspondence  

Aini (approximate matching), which is used to find the initial guesses of the unknown transformation 

parameters should be made. Then, all newly matched line segments (within an explicit matching Af 

which allows both one-to-many and one-to-null relations between lines) are used to refine the 

transformation. 

Figure 1. RLMR procedure (a) Rough alignment; (b) Fine alignment. 

 

Using the incorporated registration primitives, an iterative robust approach is proposed in [17] to 

eliminate the need for an initial estimate during the estimation process. Knowing that the FMFI 

algorithm may fail if in a pair of lines the shorter segment is not fully contained within the longer one, 

the FMII2 approach is implemented. In this case, linear features in the Data set are infinite while those 

in the Model set are finite. Thus, the FMII algorithm has been slightly modified in order to estimate the 

rigid transformation. The FMII2 name is used to distinguish the procedure from its original variant.  

The transformation parameters for both registration stages are obtained from the FMII2 algorithm.  

To overcome the problem that Aini may contain erroneous pairs resulting from the distance between 

Data and Model, only three pairs of matched lines selected from Aini are considered when computing 

the initial transformation. The coarse registration is carried out using an efficient RANSAC algorithm 

coupled with FMII2 in order to provide the best available triplet of pairs within Aini. The resulting 

roughly-aligned datasets permit an explicitly matching Af due to their mutual displacement being 

substantially reduced. The rough alignment step is paramount because the correspondence-finding 

procedure is sensitive to distance, or conversely having the two sets close improves matching. 

2.1. Finding Features of Interest 

Linear features reconstructed from 3D point clouds may be divided into two types [10]: (1) crease 

edges corresponding to discontinuities in the first derivative or equivalently in the surface normal 

direction, which can be found from plane-plane intersections; (2) jump edges related to discontinuities 

of the surface. 

To minimize problems with recognition and identification of features, only edges formed by 

intersections between principal planes (typically walls and roads) are considered. This choice of 

geometric primitives ensures their accurate extraction even from low-density, noisy point clouds [21]. 
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The RANSAC algorithm [22], which considers the largest connected component, is employed for the 

plane segmentation of point clouds. The adjacency relations between points of each detected planar 

feature are analyzed using an approach taken from graph theory. Once all “big” planes in the scene are 

found, one proceeds to generate 3D line segments by finding plane-plane intersections. This task can 

be easily solved using a brute-force approach of searching for adjacent planes among all possible pair-

wise combinations. The consecutive rejections of hypothetical intersecting planes are illustrated in 

Figure 2. 

Figure 2. Overview of the plane-plane intersection recovery algorithm. 

 

The concept is straightforward and consists of analyzing the spatial relationships between planes.  

Let us consider two planes ΠA and ΠB, each one characterized by a polynomial model (using the  

point-normal form of the equation) fitted to a sample of points associated to a given planar surface. 

Firstly, the weight Q = sin
2
α, where α is the intersection angle, is assigned for all possible 

combinations of plane pairs in order to discriminate the quality of each possible edge. Obviously, the 

intersection is defined most accurately if the paired planes are orthogonal (Q = 1). A pair is thus 

omitted if the weight Q is less than the threshold Tq = 0.5. The next step is to check the distance 

between admissible pairs of planes and retain only adjacent ones. Then, the line of intersection is 

found and the range of coupled planes can be considered. At all times, there are two line segments SA 

and SB resulting from the projection of two sets of points (approximated by the best-fitted planes ΠA 

and ΠB) onto their line of intersection. Only these pairs of planes are retained for which both line 

segments overlap with each other. In fact, the final linear feature is a common part of two congruent 

line segments (SA ∩ SB). At this stage a minimum length constraint is also introduced, since short lines 

are not desirable in the registration process because their descriptive attributes are less accurate. 

2.2. Line Matching 

The determination of correspondences is typically a challenging aspect of the overall registration 

process, which directly affects the quality of the estimated transformation parameters and has the 

potential to cause divergence of the optimization algorithm. To explain the conceptual basis of our 
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correspondence-finding procedure, suppose the set Data = {t1,t2,…,ti,…,tp} need to be transformed so 

as to obtain the best alignment with the other set Model = {m1,m2,…,mj,…,mq}. Formally, a set is 

denoted by an uppercase letter and an individual element by a lowercase letter. The identification of 

conjugate lines involves assigning a dissimilarity measure d(t,m) based on geometric characteristics 

such as magnitude, orientation and location. This individual score, calculated for the total number of 

line pair combinations, is used to build a similarity matrix. Afterwards, the same line segments should 

be identified by analyzing the elements of this matrix. Here “same” means that they have small d(t,m) 

values (within a predefined threshold). This threshold is fixed and depends on the noise level, the 

spacing between the two sets, and the accuracy of the line extraction algorithm. All the chosen line 

pairs to create a binary correspondence matrix are put together. Its indices denote the features, which 

are most likely to correspond amongst the two input linear feature sets. The three main stages of this 

method: the similarity matrix, the correspondence matrix formed by thresholding, and the similarity 

measure Line Hausdorff Distance (LHD) [23] used as a quality indicator, which evaluates the 

coincidence of conjugate features following the registration procedure, are presented in Figure 3. At all 

times, the pairing is made bilaterally: the Data set is compared to the Model set and vice-versa. This 

solution is directed by the conditions imposed by the definition of the Hausdorff metric. This will be 

further explained in  

Section 2.2.3. 

Figure 3. Matching of linear features with quality measure determination. 

 

2.2.1. Similarity Matrix 

The main step of our correspondence-finding algorithm is to build a similarity matrix of dimensions 

p by q resulting from the cardinality of the Data and Model sets. Thus, the total number of possible 

matching line pairs will equal the number of lines in the first set (Data) multiplied by the size of 

second set (Model). Note that in this similarity matrix every column corresponds to a line from the 

Model set and every row corresponds to a line from the Data set. Each entry of the matrix, referred to 

as the score d(t,m) for a possible pairing of lines, is calculated according to Equation (1). This metric is 

inspired by the approach of [23] used to compare two sets of 2D edges, and adapted in [20] to assess 

the quality of 3D point clouds by means of linear features: 

d(ti, mj) = √W ∙ (dα(ti, mj))
2

+ (dII(ti, mj))
2

+ (d⟘(ti, mj))
2
 (1) 

The angular deviation d
α
(t,m) and the two spatial displacements in the form of an overlapping 

indicator d
II
(t,m) and a perpendicular distance d⟘(t,m) are considered to measure the similarity d(t,m) 



 8 

 

 

between any two line segments. The constant W is a non-dimensional weight for angle distance, 

chosen empirically as 10. Its purpose is to provide a better tolerance to potential misalignments of lines 

since d
α
(t,m) closes to zero for parallel lines, will much more contribute to the overall value of d(t,m) 

in case of lack of parallelism. Therefore, the score d(t,m) may be interpreted as a minimum 

displacement required to superimpose any pair of segments (e.g., t and m). All types of distance 

defined to measure the dissimilarity between 3D line pairs are shown in Figure 4. 

Figure 4. Line displacement measures between two line segments in 3D: (a) Angular 

deviation; (b) Overlapping indicator; (c) Perpendicular distance. 

 

The angular distance d
α
(t,m) is equal to the sine of the intersection angle α between two line 

directions multiplied by the length of the shorter line segment: 

dα(t, m) = min(Lt, Lm) ∙ sinα (2) 

Due to the fact that none of the pairs of lines (ti,mj) are exactly parallel, every Data line has to be 

rotated, using its midpoint as the rotation center, to the desired orientation before determining both 

parallel and perpendicular distances. The overlapping indicator d
II
(t,m) is thus the minimum 

displacement needed to align either the left endpoints or the right endpoints of the segments. There is 

an exception to this rule, if one line is within the range of the other one. In this case, the parallel shifts 

dII1 and dII2 are reset to zero: 

dII(t, m) = {
0 if t ⊂ m or m ⊆ t

min(dII1, dII2) otherwise 
 (3) 

Finally, the perpendicular distance d⟘(t,m) simply represents the minimum distance between two 

parallel lines. 

2.2.2. Correspondence Matrix 

Once the similarity matrix is created, one proceeds to find a pair-wise correspondence matrix (Cor) 

describing the relationships between two sets of lines in Data and Model. Each cell in this binary 

matrix filled with 0’s and 1’s indicates the non-existing and existing pair respectively. The 

correspondences are therefore found by thresholding the similarity matrix. An analysis of scores 

contained within the similarity matrix should be carried out to set up an appropriate threshold value δ. 



 9 

 

 

The process starts by linking each Data line segment with its nearest corresponding line from the 

Model set by means of distance d(t,m) (Figure 5). 

Obviously, this task is easy to accomplish since for every line segment its most-similar feature in 

the other set can always be found, even if their effective distance d(t,m) is quite large or if the pairing 

is erroneous. Based on these preliminary one-to-one correspondences (S), an optimal threshold δ is 

searched by analyzing successive differences between the scores d(t,m) associated to selected pairs. 

The subtraction of elements is applied recursively twice. 

Figure 5. Finding the line correspondences: (a) Similarity matrix; (b) Preliminary 

associations S (the white squares). 

 

First, the differences between adjacent elements of the sequence S sorted in ascending order are 

calculated. This aims to create a new list of values known as the first-order difference Diff1 (green plot 

in Figure 6). The operation is carried out again, but this time on sequence Diff1. The result, the  

second-order difference (Diff2), is illustrated in Figure 6 (magenta plot). Next, a search for relative 

extrema in the input data set is used to discriminate all local maximum values in Diff2. Assuming an a 

priori sensibility U (minimum peak height) for the search function, the first detected peak (pks) 

denotes the index of the line segment pair whose score will correspond to the chosen threshold value 

(δ). 

Figure 6. Thresholding–searching for the local maxima. 
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The above procedure is only valid for relatively large samples. Equation (4) summarizes how the 

threshold δ is calculated if the number of pairs N in the preliminary matching S is very low (n ≤ 10).  

For either sparse samples or when there is no local maximum (pks is an empty vector), two cases are 

considered: (1) Pairs within the matching S are correct while each value of Diff1 is insignificant 

(within some tolerance). The threshold δ is thus the maximum among the scores d(t,m) ordered by S;  

(2) The presence of gross outlier pairs in S is noted but the highest peak is smaller than U. The 

threshold δ is set as the median in the item S within the 2σ interval: 

δ = {

max(S)  if N ≤ 10 and |Diff1 < U| = N − 1

S(pks) if pks is not empty

S̃ + 2σ otherwise

 (4) 

Using this threshold δ a correspondence binary matrix Cor between the finite indexed sets Data and 

Model (see Figure 7) is created as: 

Cor = {(i, j)ϵℵ2: ∀(ti ∈ Data, mj ∈ Model), d(ti, mj) ≤ δ} (5) 

Figure 7. Binary correspondence matrix (Line matching is marked by the black squares). 
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2.2.3. Computing the Hausdorff Distance between Two Sets of Line Segments-Quality Indicator 

For the purpose of assessment, a quality measure, which describes the convergence between two 

sets of conjugate lines after the registration process, is defined. The metric used is based on the 

Hausdorff distance, which was originally proposed to measure the proximity of two sets of points or 

alternatively the similarity of shapes. 

Given two datasets Data and Model as introduced earlier, the classical symmetrical Hausdorff 

Distance (HD) is defined as [24]: 

HD = max[h(Data, Model), h(Model, Data)] (6) 

The two components of the Hausdorff distance h(Data,Model) and h(Model,Data), also called 

directed distances, may have different values but use the same method of calculation: 

h(Data, Model) = max
t∈Data

min
m∈Model

d(t, m) (7) 

where d(t,m) denotes some underlying metric, most often the Euclidean distance. In this context, the 

one-sided Hausdorff distance h(Data,Model) is the maximum distance of a set Data to the nearest point 

in the set Model. To find the Hausdorff distance (HD), the computations must be applied reciprocally 

i.e., from Model to Data. This classic HD measure is sensitive to noise and occlusions. Benhabiles et al. 

[25] proved the usefulness of a slightly different definition, the Modified Hausdorff Distance (MHD) 

[24]. The directed distance of the MHD is defined as: 

hMHD(Data, Model) =
1

|X|
∑ d(t, Model)

t∈X

 (8) 

By taking the average of the single point distances, this version decreases the impact of outliers, 

making it more robust than the classic HD. 

The above definitions of distance are based on points and may become quite ineffectual to measure 

the mutual proximity of line segments. This is because they use only spatial information and neglect 

orientation information. On this basis, a modification of the MHD distance proposed by [23] will be 

employed, although in our case the computation will be carried out solely for corresponding line 

features. The Oriented Line Hausdorff Distance (OLHD) is defined by replacing the distance concept 

of the conventional HD as follows: 

OLHD(Data, Model) =
1

∑ Lmjmj∈Model
∑ Lmj

d(ti, dj)
(i,j)∈Cor

 (9) 

where Lmj are the lengths of the line segments in the Model set, ordered by the correspondence matrix 

Cor. Since longer line segments are more reliable, the dissimilarity value d(t,m) obtained for a longer 

line should contribute more significantly to the symmetric LHD, our chosen measure of quality. Its 

value will express the degree of mismatch between two sets of registered lines. The definition of LHD 

from OLHD remains the same as in Equation (6) and the distance between any pair of line segments 

d(t,m) is calculated according to Equation (1). 

2.3. Coarse-to-Fine Registration 
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A coarse-to-fine point cloud registration method based on the optimization algorithm FMII2 is 

developed in this paper to achieve robust alignment using extracted line segments. An initial search for 

a 3D rotation matrix (R) and translation vector (T) is applied at the beginning to improve matching 

accuracy. This coarse registration process is carried out in three steps: (1) Creating preliminary line 

matching Aini between Data and Model sets; (2) Applying the RANSAC algorithm to the candidate 

correspondences Aini to select three inlier pairs for input into the FMII2 algorithm (this step is 

mandatory because several pairs obtained previously may be incorrect); (3) Estimating the 

transformation parameters. Following a rough alignment of the line segments, the final transformation 

parameters  

Ƭ = (R̂, T̂) are calculated for the newly matched line segments Af, and used to refine the overall 

transformation (fine alignment). 

2.3.1. Solving for the Transformation Parameters 

Let us first define two sets of conjugate line segments in point set Data as X and in point set Model 

(reference) as M which consist of N pairs. A common approach is to represent every line segment by 

its midpoint, noted respectively by xi and ai, and the normalized direction vector wi and vi: 

Xi = (xi, wi) and Mi = (ai, vi, Li) (10) 

In addition, each reference line segment is described by its length Li. The robust optimization 

algorithm proposed in [17] minimizes the distance measure: 

D(M, ƬX) = ∑[Li‖ai − T − R(xi + siwi)‖2 + Li
3(1 − vi

′Rwi)/6]

N

i=1

 (11) 

The cost function is defined as a sum of squared Euclidean distances of corresponding points. In our 

notation vectors are column matrices, ||vi|| symbolizes the length of the vector vi, and the prime symbol 

denotes a matrix transpose. For conjugate line segments, to calculate the distance D(M,ƬX), the 

corresponding points on line segments Xi and Mi must be found. This is indicated by the shift 

parameter si: the point xi + siwi on Xi denotes the point corresponding to ai ϵ Mi. The best alignment 

between Data and Model is obtained by minimizing D(M,ƬX) over all possible transformations Ƭ and 

{si}. This nonlinear minimization problem is solved by an iterative solution as explained in Figure 8. 

Figure 8. Iterative algorithm for computing the optimal transformation parameters from 

corresponding lines. 
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Thus, the six parameters of rigid transformation and the set of N shift parameters {si} must be 

determined. Starting from the approximate values of {si} set as zero, the algorithm converges when all 

{si} cease to vary significantly with respect to the previous step. For every loop iteration, the values of 

the shift parameters are successively updated as: 

si = (ai − T − Rxi)
′Rvi (12) 

For a given set of {si} the 3 × 3 cross-covariance matrix CX,M is computed as: 

CX,M = ∑[Li(ai − a̅)(xi + siwi − x̅)′ + Li
3viwi

′/12]

N

i=1

 (13) 

where the centers of sets X and M are: 

a̅ =
1

P
∑ Liai

N
i=1  x̅ =

1

P
∑ Li(xi + siwi)

N
i=1  and P = ∑ Li

N
i=1  (14) 

The rotation matrix is found in closed-form using quaternion representation as presented in [26]. 

Working with the unit quaternion notation, a symmetric matrix Q4x4 is defined as follows: 

Q11 = C11 + C22 + C33 Q12 = Q21 = C23 − C32 

(15) 

Q13 = Q31 = C31 − C13 Q14 = Q41 = C12 − C21 

Q22 = C11 − C22 − C33 Q23 = Q32 = C12 + C21 

Q24 = Q42 = C31 + C13 Q33 = C22 − C33 − C11 

Q34 = Q43 = C23 + C32 Q44 = C33 − C11 − C22 

The solution, namely the quaternion q = (λ0, λ1, λ2, λ3), is the eigenvector of the matrix Q associated 

with the largest positive eigenvalue. Finally, the orthonormal rotation matrix R from the components 

of the unit quaternion q is computed as: 

R = [

λ0
2 + λ1

2 − λ2
2 − λ3

2 2(λ1λ2 − λ0λ3) 2(λ1λ3 + λ0λ2)

2(λ1λ2 + λ0λ3) λ0
2 − λ1

2 + λ2
2 − λ3

2 2(λ2λ3 − λ0λ1)

2(λ1λ3 − λ0λ2) 2(λ2λ3 + λ0λ1) λ0
2 − λ1

2 − λ2
2 + λ3

2

] (16) 

Once the rotation matrix R is calculated, the translation vector T can be computed as: 
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T = a̅ − Rx̅ (17) 

2.3.2. RANSAC-Assisted Coarse Alignment 

The coarse registration returns the parameters of a transformation used to achieve mutual proximity 

between two sets of lines. This ensures that our correspondence-finding algorithm works properly.  

Due to the near-certain presence of erroneous pairs in the preliminary matching Aini, none of 

optimization methods can be applied directly. Referring to [7], only K = 3 pairs of matched lines from 

Aini should be chosen to compute an initial transformation via the robust algorithm FMII2. The 

RANSAC algorithm randomly selects K data items, which are used to estimate the parameters. The 

number of iterations changes dynamically as a function of the amount of inliers Ninlier [27]: 

Niter =
log (ε)

log (1 − q)
 (18) 

q ≈ (
Ninlier

NA
)

K

 (19) 

where NA denotes the number of pairs in the preliminary matching Aini, K is the number of pairs that 

are picked, and ε is a probability called the alarm rate (ε = 1e-6 in our case). 

Once the K pairs are chosen, the estimated parameters Ƭ are validated by transforming all line 

segments in the Data set and then check the quality measure LHD between previously matched lines in 

Aini. Among all transformations Ƭ, the one with the “best” score is selected. The goal is to determine 

the value of γ that bounds, within a given probability, the error generated by a true inlier corrupted by 

Gaussian noise. Thus, the value γ needs to be found such that:  

{(i, j) ∈ Aini: ∀(ti ∈ X, mj ∈ M), d(ti, mj) ≤ γ} = Ninlier (20) 

In other words, the best sample is the one for which the number of line pairs from Aini—which after 

registration possess a score d(t,m) within the given tolerance γ–is the greatest. This threshold γ is set as 

a function of the predicted standard deviation (σ) for Gaussian noise affecting the localization of 

extracted line segments. The impact of noise levels on the distance has been tested by analyzing the 

LHD value between two datasets, the first one containing noise-free 3D line segments, the other 

containing the same elements corrupted by noise. Specifically, Gaussian noise with mean zero and 

standard deviation σ is added to the coordinates of each line segment endpoint. The relationships 

between the noise level and the computed distance are shown in Figure 9. The σ is directly linearly 

proportional to OLHD (OLHD ∝ σ) as: 

γ = 5.8σ ± 0.17 (21) 

Thus, if the Hausdorff distance between two sets of lines is known, the standard deviation of noise σ 

associated to endpoints of segments can be estimated and vice versa. A pseudo-code of our Matlab 

implementation is presented below in Procedure Line-based Registration. 

Pseudo-Code : Line-Based Registration, Given Two Line Sets 𝑿𝑻𝒆𝒔𝒕 and 𝑿𝑴𝒐𝒅𝒆𝒍 Estimate the Optimal 

Transformation Parameters 

Input: Coordinates of lines endpoints; σ : noise standard deviation; K: minimal sample size 
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1 Initialize : 𝑁𝐼_𝑈𝑝𝑑𝑎𝑡𝑒 = 0; 𝑁𝑖𝑡𝑒𝑟 = 100; 𝑖 = 1;  ε = 1𝑒 − 6;  𝑘;  δ = 5.8σ 

2 𝐴𝑖𝑛𝑖 ← Create preliminary ono-one correspondence between 𝑋𝑇𝑒𝑠𝑡 and 𝑋𝑀𝑜𝑑𝑒𝑙 

3 Repeat 

4 𝑆𝑎𝑚𝑝𝑙𝑒 ← Select randomly 𝐾 best data items from 𝐴𝑖𝑛𝑖 

5 𝑅𝑖 , 𝑇𝑖 ← Compute the rigid-body transformation parameters via 𝐹𝑀𝐼𝐼2 from 𝑆𝑎𝑚𝑝𝑙𝑒 

6 Transforme 𝑋𝑇𝑒𝑠𝑡 and 𝑋𝑀𝑜𝑑𝑒𝑙  : 𝑋𝑇𝑒𝑠𝑡_𝑈𝑝𝑑𝑎𝑡𝑒 = 𝑋𝑇𝑒𝑠𝑡 ∙ 𝑅𝑖 + 𝑇𝑖 

7 𝑑𝑖 ← Compute all distances between matched line segments within 𝐴𝑖𝑛𝑖 (equation 1) 

8 𝑁𝐼 ← (𝑑𝑖 ≤ δ) 

9 
 

if 𝑁𝐼 ≥ 𝑁𝐼_𝑈𝑝𝑑𝑎𝑡𝑒 do 

10 
  

𝑅𝑖𝑛𝑖 ← 𝑅𝑖 

11 
  

𝑇𝑖𝑛𝑖 ← 𝑇𝑖 

12 
  

𝑁𝐼_𝑈𝑝𝑑𝑎𝑡𝑒 = 𝑁𝐼 

13 
 

end if 

14 Update number of iteration 𝑁𝑖𝑡𝑒𝑟 : 𝑞 ← (𝑁𝐼/𝑁)𝑘 ; 𝑁𝑖𝑡𝑒𝑟 ← 𝑙𝑜𝑔(ε)/𝑙𝑜𝑔(1 − 𝑞) 

15 Increment : 𝑖 ← 𝑖 + 1 

16 Until 𝑖 ≤ 𝑁𝑖𝑡𝑒𝑟 

17 𝐴𝑓 ← Find matching between 𝑋𝑇𝑒𝑠𝑡_𝑈𝑝𝑑𝑎𝑡𝑒 and 𝑋𝑀𝑜𝑑𝑒𝑙 

18 �̂�, �̂� ← Compute the rigid-body transformation parameters via 𝐹𝑀𝐼𝐼2 from 𝐴𝑓 

19 𝑅 = 𝑅𝑖𝑛𝑖 ∙ �̂� 

20 𝑇 = �̂� ∙ 𝑇𝑖𝑛𝑖 + �̂� 

21 𝐶𝑜𝑟 ← 𝐴𝑓 

22 Return R T Cor 
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Figure 9. LHD between two sets of lines versus noise level. 

 

3. Datasets and Evaluation Metrics 

Two kinds of line datasets are exploited in order to assess the performance and efficiency of 

proposed RLMR framework. 

3.1. Synthetic Data 

The synthetic data consists of two datasets, each of which contains 64 linear features (Figure 10).  

The Data set is obtained by transforming the Model set using a rigid motion, setting the rotation (R) as 

Euler angles (1.0°; −1.0°; 1.0°) and the translation (T) to (−1.0 m; 0.5 m; 1.0 m).  

Figure 10. Synthetic data example. 

 

Then, an additive white Gaussian noise with zero mean and isotropic standard deviation σ is added to 

the 3D coordinates of endpoints of the Model set. The noise level is successively increased from σ = 0.00 
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m to σ = 0.05 m with a step interval of 0.001 m. In this way, 50 noisy Data sets from a given Model set are 

generated. The computed Hausdorff distance (LHD) between corresponding Data and Model line segments 

equals to 2.892 m. 

3.2. Real Data 

The real dataset has been acquired over a dense urban area characterized by narrow (mostly one-

way) streets and tall buildings where the sky visibility was limited. The data consists of one point 

cloud collected by a stationary Leica ScanStation C10, and three mobile scans gathered by the 

Stereopolis II Mobile Laser Scanning System (MLS) with the configuration described in [28]. 

3.3. Evaluation 

The estimation error is given in two parts: rotation and translation. The quality of estimates (R̂) and 

(T̂) is thus expressed by eR and eT errors [15] defined by: 

eR = 100% ∙ ‖r − r̂‖/‖r‖ (22) 

eT = 100% ∙ ‖T − T̂‖/‖T‖ (23) 

A vector of discrepancies is created for both rotation angles and translations. It is populated by 

computing the absolute differences between the estimated transformation parameters �̂�, �̂� and the real 

parameters r,T. Formula (22) is valid for the axis-angle representation, which is obtained from a 3 × 3 

rotation matrix (R) as explained now. The axis-angle representation parameterizes the rotation by a 

unit vector r = (ex,ey,ez) indicating the rotation axis and an angle θ describing the magnitude of the 

rotation around this axis as follows: 

r =
1

2sinθ
(

R32 − R23

R13 − R31

R21 − R12

) (24) 

θ = arccos (
tr(R) − 1

2
) (25) 

In turn, the performance of the proposed correspondence-finding algorithm is validated against the 

ground-truth. Sensitivity, specificity and accuracy are defined in terms of TP, TN, FN and FP  

(cf. Section 4.1) and used to interpret the results. 

Sensitivity =
TP

(TP + FN)
 Specificity =

TN

(TN + FP)
 

(26) 

Accuracy =
(TN + TP)

(TN + TP + FN + FP)
 

4. Results 

In the following section the efficiency and robustness of the RLMR procedure is assessed and 

compared to other state-of-the-art approaches, i.e., EIGEN [15] and ICL (ICP form) [10]. Both 

synthetic and real data will be used, as well as the evaluation metrics described earlier. 
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4.1. Assessment of Estimated Transformation Parameters with Synthetic Data 

First, the transformation parameters are independently computed from the synthetic data using the 

three algorithms mentioned above. Then, our pair-wise registration procedure RLMR, which 

simultaneously allows an explicit line matching, is compared to the ICL (ICP form) and EIGEN 

approaches for which the prior corresponding lines are known and do not have to be determined.  

This leads to the best possible outcome since the registration process is not perturbed by erroneous  

line pairings. 

The quality of the estimated transformation parameters, obtained from the ICL (ICP form) and 

EIGEN approaches, is quite similar, irrespective of noise level, as shown in Figure 11. This is logical, 

since both methods are analogous from an algorithmic point of view. Their main differences are the 

representation of line segments and rotations, as well as the way of finding optimal translation between 

corresponding features. However, both use an analytical method (SVD) to estimate the rotation, which 

is obtained from line orientations only. The precision of rotation estimation is better than 30% of full 

scale. The exact error value is highly dependent on the noise level. For a noise standard deviation (σ) 

not exceeding 0.02 m, the value is less than 10% full scale, and otherwise it fluctuates randomly. It 

should be noted that the error in translation eT is dominant.  

Figure 11. Comparison of the RLMR procedure with the state-of-the-art approaches.  

Error in rotation and translation. 

 

In contrast, the RLMR procedure gives much smaller errors than EIGEN and ICL (ICP form) 

methods. The results are accurate, despite the presence of an extra factor affecting the quality of the 

estimate, namely the matching process, which may generate some erroneous line pairings. The error in 

rotation eR is stable regardless of the noise level. In fact, its value is less than 0.5% for σ ≤ 0.015 m, 

else it ranges from 0.5% to 2.8%. Finally, the error in translation eT is greater than eR and remains 

within the interval of 2.9% to 12.7%. 
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In order to assess the final quality of matching (Af) obtained from our correspondence-finding 

algorithm, the results are compared with the ground-truth. First, the transformation parameters 

recovered by the FMII2 using known line associations are applied. Then, the correctness of the RLMR 

registration is assessed at each level of noise. The differences in LHD between the two methods are 

shown in  

Figure 12. The values are small and do not exceed 0.005 m, which confirms the robustness of our 

procedure and its ability to correctly identify conjugate line segments. 

Figure 12. Comparison: RLMR procedure versus FMII2 under known correspondences. 

 

Afterwards, a confusion matrix (an error matrix) is created to visualize the number of pairs which 

are: (1) correctly matched (True Positive); (2) incorrectly identified (False Positive); (3) correctly 

rejected (True Negative); (4) wrongly rejected (False Negative), during both the approximate matching 

Aini  

and the explicit matching Af. A sample result for line segments artificially corrupted by noise with  

σ = 0.04 m is illustrated in Figure 13.  

Figure 13. Matching accuracy: (a) Approximate matching Aini (one-to-many relation 

permitted); (b) Final approximate matching Aini (one-to-one relation at most); (c) Explicit 

matching Af (without any constraints). 
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A significant improvement in the quality of correspondence identification is observed. The 

assumption of lines being initially matched in at most one-to-one fashion appears to be necessary. 

Thus, the generation of a large amount of false positive results (FP) can be avoided at the expense of 

increasing the false negative (FN) detections. Seeing as the RANSAC algorithm is time-consuming in 

practice, this step reduces the number of iterations needed to find an optimal triad of pairs for coarse 

registration. Also, by decreasing the mutual distance between two datasets, the proposed 

correspondence-finding algorithm can ensure an exact matching. 

Summarizing, the FMII2 optimization algorithm is preferable, especially when the linear features 

have significant associated uncertainty. Whenever the line correspondences are unknown, the RLMR 

procedure ensures a precise matching. The EIGEN and ICL (ICP form) methods cannot be applied 

directly due to the potentially lack of accuracy of the line localization (caused by a high noise level). 

4.2. Assessment with Real Data 

Experiments were also conducted using real point cloud (see Section 3.2). Within this data, only 

long (more than 2.0 m in length) and well-defined linear features were extracted via the edge-detection 

method described previously. The number of selected lines for subsequent tests is given in Table 1. 

Table 1. The number of extracted linear features from the acquired point clouds. 

Point Cloud ID Number of Extracted Features 

F 64 

S1 36 

S2 28 

S3 41 

Based on these data, all possible permutations of {F,S1,S2,S3} are established. Then, the RLMR 

framework is used to identify the conjugate line segments, and solve for the transformation parameters. 

A summary of this assessment is provided in Table 2.  

Table 2. Performance of the correspondence-finding algorithm. 

Scans ID Sensitivity Specificity Accuracy 

S1-S2 100 99.8 99.8 

S1-S3 96.6 99.7 99.6 

S2-S3 100 99.8 99.8 

S1-F 95.2 99.6 99.5 

S2-F 95.5 99.8 99.7 

S3-F 95.8 99.7 99.6 

 

The sensitivity (Equation (26)), which measures the proportion of line pairs correctly matched (TP), 

has an average value of 97.2%, indicating that the number of FN (the rate of non-detected existing 

pairs) is quite low. The specificity shows how good the matching algorithm is at identifying and 

rejecting  

non-existing pairs (TN). In our case there is on average a 99.7% chance that the candidate pair will be 
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correctly classified as negative. The accuracy is also quite high, with none of the values lower than 

99.5%. Accuracy describes the rate of the correspondence-finding algorithm obtaining true results, 

either TP or TN. Consequently, the proposed procedure provides an efficient and robust way to match 

two  

line sets.  

The verification of convergence between registered sets of linear features is performed using the 

LHD. The final distance values after both rough and fine alignments are provided in Table 3, which 

depicts a progressive reduction of the spatial spacing between the processed datasets. Besides, the 

estimated transformation parameters (the rotations ω, φ, κ and translations Tx, Ty, Tz applied 

respectively to the X-axis, Y-axis, and Z-axis), as well as the CPU processing time needed by our 

Matlab implementation of the RLMR approach (the edge-detection method processing time is omitted) 

are included in Table 3. 

Table 3. Estimated transformation parameters for pair-wise registration by RLMR. 

Scans ID S1-S2 S1-S3 S2-S3 S1-F S2-F S3-F 

LHD (m) 

Departing 0.518 0.297 0.560 0.671 1.257 0.657 

Coarse Registration 0.364 0.233 0.481 0.266 0.451 0.320 

Fine Registration 0.304 0.213 0.377 0.189 0.220 0.140 

ω (°) 0.35196 −0.15530 0.68971 0.30821 −0.00763 0.03841 

φ (°) −0.12854 −0.00760 −0.19781 −0.17301 −0.14627 −0.08465 

κ (°) −0.43047 −0.21210 0.28428 −0.01031 0.09351 0.18708 

T (m) 0.950 −0.205 1.172 −0.646 −0.331 −0.205 

Ty (m) −0.833 0.108 −1.048 0.014 −0.525 −0.461 

Tz (m) 0.189 0.177 −0.708 −0.494 −0.285 −0.507 

* CPU Time (s) 18.1 10.4 50.4 7.8 183.6 16.4 

* Central Processing Unit with Intel Core x2 T7600 2.33GHz/4 Go/Win 7 64bits. 

Figure 14. Part of line sets: (a) Before registration; (b) After registration. 
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To investigate the quality of the estimated transformation parameters, the registration results for a 

small fragment of the aligned line sets are presented in Figure 14, with different colors indicating 

different datasets. 

5. Conclusions 

Three main contributions of this paper are highlighted. First, a discussion of several approaches to 

linear feature-based registration. Second, a new correspondence-finding algorithm to match conjugate 

line segments, accompanied by a quality indicator which allows measuring the proximity of two line 

sets. Finally, the RLMR framework for performing automated pair-wise registration of low-density  

point clouds. 

The linear feature extraction approach considers only crease edges. The proposed RLMR procedure 

consists of two steps: coarse and fine alignments. The coarse registration reduces the spacing between 

two datasets so as to improve the results of the subsequent matching process. In order to obtain a good 

initial transformation guess only a triplet of matched line pairs is considered. For the purpose of 

rejection of outlier pairs, the well-known RANSAC algorithm is used. Given two roughly registered 

datasets, their alignment is refined through the FMII2, which employs the full set of matched lines. A 

novel solution for the problem of searching for conjugate matching lines was also developed. The 

proposed correspondence-finding algorithm exploits the positions and orientations of linear features to 

deduce their similarity and then pick the “same” lines within two sets. This approach may also be 

applied to match two sets of 2D line segments. 

The application of the RLMR procedure on experimental datasets yields reliably satisfying 

transformation results. This framework is robust to noise and efficient if one seeks to register two 
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initially pre-aligned point clouds at the same scale. The line extraction errors that generally comprise 

of laser measurement noise, occlusions, performance of the prior plane-based segmentation (over-

segmentation and under-segmentation errors), do not affect the registration outcome significantly. It is 

due to the matching algorithm that provides a correct pairing, even if there are several linear features in 

one set corresponding to only one element in the other set. The quality of matching obtained in 

comparison tests on both real and synthetic datasets is very encouraging, provided that assumed 

proximity of datasets holds. This assumption is met through the coarse registration, which can 

considerably minimize the  

line matching errors as demonstrated in the result section. Thus, the rate of the proposed  

correspondence-finding algorithm obtaining true results is quite high, with an average value of 99.7%. 

Future works will focus on further evaluation of the RLMR including a comparison with other plane 

and point-based registration algorithms. 
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