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1MINES ParisTech, PSL Research university, Centre for mathematical morphology, 35, rue St

Honoré, F-77300 Fontainebleau, France

Abstract

A general method is proposed to model 3D microstructures representative of three-phase anode layers used
in fuel cells. The models are based on SEM images of cells with varying morphologies. The materials are first
characterized using three morphological measurements: (cross-)covariances, granulometry and linear erosion. They
are measured on segmented SEM images, for each of the three phases. Second, a generic model for three-phase ma-
terials is proposed. The model is based on two independent underlying random sets which are otherwise arbitrary.
The validity of this model is verified using the cross-covariance functions of the various phases. In a third step,
several types of Boolean random sets and plurigaussian models are considered for the unknown underlying random
sets. Overall, good agreement is found between the SEM images and three-phase models based on plurigaussian
random sets, for all morphological measurements considered in the present work: covariances, granulometry and
linear erosion. The spatial distribution and shapes of the phases produced by the plurigaussian model are visually
very close to the real material. Furthermore, the proposed models require no numerical optimization and are
straightforward to generate using the covariance functions measured on the SEM images.
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1 Introduction

The recent development of fuel cells has been driven by an increasing demand for new energy production, and
technological advances (Badwal et al., 2014; Laguna-Bercero, 2012). Since the pioneering work of Grove (1839),
fuel cells have been tremendously improved both in terms of performance and durability. The materials involved
in the manufacturing process have become complex as per their composition and microstructure. In this regard,
electrodes, made of an electrical conductor, an ionic conductor and pores are a key part of solid oxide fuel cells
(SOFC). Sophisticated interactions between phases have been reported in commonly-used microstructures (Joos
et al., 2012) at the micro- and nano-scale. Thus, the characterization of anode microstructures is a critical point
in the improvement of the whole cell. Several works have focused on the reconstruction of a 3D volume using
FIB-SEM techniques (Gostovic et al., 2007; Iwai et al., 2010; Joos et al., 2011; Shearing et al., 2009; Wilson
et al., 2006). These however require expensive facilities for data acquisition. By contrast, the development of
3D microstructural models based on 2D images offers a low-cost easy alternative. Careful study of 2D images
indeed provides estimates of 3D properties such as three-point boundaries (Zhang et al., 2009) but cannot directly
provide estimates of geometrical properties such as phases tortuosity, which are useful for estimating the cells’s
transport properties (Masson et al., 2015). These properties can be measured, however, on 3D models constructed
from 2D images, without the need for expensive and time consuming FIB-SEM tomography. Furthermore, the
computation of the effective transport properties of the materials, such as ionic diffusion, electronic conductivity
and permeability are microstructure-sensitive and require accurate simulations of 3D microstructures (Abdallah
et al., 2015).

The present work is organized as follows. A short presentation of the anode samples is given in Sec. 2.1. The
three-phase SEM images are segmented using specific techniques described in Sec. 2.2. The morphology is char-
acterized in terms of various measurements in Secs. 3 and 4. A statistical characterization of the microstructure
is provided in Sec. 5. It is shown that the morphological measurements support a strong probabilistic assump-
tion which is especially useful to model the microstructure. Under this assumption, we attempt to model the
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Figure 1: Schematic principle of the fuel cell: Two composite electrode layers separated by a dense electrolyte. At
the cathode, di-oxygen molecules (e.g. from air or H2 syngas). are ionised into O2− anions that go through the dense
electrolyte in order to reach the anode side. On the anode compartment H2 is injected to react with the oxygen
anions and give water plus electrons.

microstructure using Boolean models (Sec. 6) and plurigaussian truncated random functions (Sec. 7). Concluding
remarks are in Sec. 8.

2 Anode cell layers

2.1 Anode samples

This work is concerned with the microstructural modeling of anode cell layers located at the top and bottom of an
electrolyte substrate (see Fig. 1). The layers are heterogeneous materials made of two solid phases, gadolinium-
doped ceria (GDC) and lanthanum-doped strontium titanate (LST), and the pores. Specific transport properties
are allowed by each of the three phases. The GDC phase is a molecule with high ionic conduction property (trans-
port of 02−), LST is an electrical conductor. Fluid flow occurs in the material’s porous phase, which results in
an effective permeability. The morphology of each of the three phases is constrained by the two others, therefore
increasing one of the material’s effective properties without degrading the other two is difficult. One minimal
requirement is that each of the three phases percolates to allow transport in the material. Additionally, electro-
chemical properties in anode layers have been found to be especially sensitive to contact surface areas (Yurkiv et al.,
2015).

The present work focuses on the morphological modeling of anode cells. The cells were produced at ISTEC
(Instituto di Scienza e Tecnologia dei Materiali Ceramici, Italy). Additionally, a few anode cells prepared by
the DLR (Deutsches Zentrum für Luft- und Raumfahrt e.V., Germany) and by the Center for Materials (Mines
ParisTech, France) are used in the present study for comparison purposes. All cells were analyzed by the Center
for Materials (Mines ParisTech, France). To achieve percolation of the two solid phases, the LST and GDC phases
were prepared so that both phases have roughly the same volume fraction. The pores volume fraction is not known.
The reader is referred to Masson et al. (2015) for details on material preparation. The present study is based on
a set of SEM microscopy images of back-scattered electrons representing eight anode cells obtained at Center for
Materials (again, the reader is refered to Masson et al. (2015) for details on image acquisition). Each anode cell is
symmetrical: the microstructures at the top and bottom of the electrolyte should be very similar. Each of the eight
samples have been prepared and processed in different manners. Furthermore, they have been used for varying
periods of time. Accordingly, we expect differences in the morphology of each sample. A series of 9 to 14 images
of the top (resp. bottom) parts of each sample are used hereafter. Examples of SEM images are shown in Fig. 2.
Each SEM image contains 1024 × 883 pixels at resolution 12.4nm per pixel. A region of interest in the core of
each layer, without electrolyte, is selected from each image. The size of the crop varies between 251× 1024 pixels
(39.5 µm2) to 883 × 1024 pixels (139µm2). Hereafter we denote each ISTEC sample by a number in the range 14
to 32. The bottom layer is identified with the letter i, and the top layer with the letter s. For instance, 29-s refers
to the top layer of sample 29.
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(a) (b)

(c) (d)

Figure 2: SEM images of symmetric cells 14 (a; b) and 29 (c; d) manufactured by CNR ISTEC. Images are 1024
pixels (12.7µm) wide and 883 pixels (11 µm) height for a spatial resolution of 12.4 nm/ pixel (images: D. Masson).
Images (a) and (c) show the layer on top of the electrolyte, and (b) and (d) on the bottom. Black: pores; white:
GDC; dark-gray: LST. The electrolyte is visible in images (a) and (b).
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(a) (b) (c) (d)

Figure 3: Segmentations steps of the SEM images illustrated on one enlarged zone in a sample: (a) SEM image; (b)
bilateral filtering; thresholding (c); (d) removal of 3D “shadow” effects.

2.2 Image segmentation

The SEM images are segmented in order to assign each pixel to one of the three phases. The most important
steps of the segmentation are illustrated in Fig. (3). We first filter noise using a bilateral filtering (Tomasi and
Manduchi, 1998). The latter is applied using the transform:

F(I ; i, j) =
1

µ

∑

k,l∈W (i,j)

I(i, j)f(|i − k|, |j − l|;σc)f
′(|I(i, j) − I(k, l)|;σi), (1)

where I is the input image, F(I) its transform, W (i, j) is a square-shaped window of side length a centered on a
pixel with coordinates (i, j), σi and σc stand for the standard deviations of the centered Gaussian functions:

f(x, y;σ) =
1

2πσ2
e

−(x2+y2)
2σ2 , f ′(x, σ) =

1√
2πσ

e
−x2

2σ2 . (2)

The filter does not remove the contrast at the interface between phases. All images have been acquired on the
same microscope, therefore we fix the same set of parameters σi = 0.15, σc = 2.5 and a = 5 (pixels) for all images.
The normalizing parameter µ reads (Tomasi and Manduchi, 1998):

µ =
∑

k,l∈W (i,j)

f(|i− k|, |j − l|; σc)f
′(|I(i, j) − I(k, l)|; σi). (3)

A rough approximation of each phase is obtained by two thresholds on the output F(I). Noise-reduction is mainly
visible when looking at enlargements (Fig. 3b), nevertheless it greatly improves the rest of the segmentation process.
In the rest of this study, for simplicity, the GDC, LST and porous phases are denoted respectively by the letter
W (white), G (gray) and B (black).

The intensity of the signal in the image results from the scattering of electrons with the material. Therefore,
phases containing atoms with the highest atomic number appear brighter than the other phases in the backscattered
electron images. As a result, the GDC phase appear in white, the LST phase in gray and the pores in black.
However, an unwanted effect should be first taken into account. Due to the halo artifact, the SEM images are
not actual planar 2D sections. Parts of the structures under the plane of acquisition are visible in what should
really be pores. The latter are located slightly behind the section along which the material was cut. Therefore,
we fix the two threshold values that monitor the volume fractions of LST and GDC to minimize the halo effect
(Fig. 3c). Note that thresholds are such that the volume fractions of the LST and GDC phases are equal, which
leaves one free parameter. After thresholding, a relief effect is still observed around each phase, due to out-of-plane
structures. Following Gillibert et al. (2012), a combination of simple mathematical morphology operators are used
to remove this effect. We denote by δSE(A) and γSE(A) the morphological dilation and opening of a set A by a
structural element SE. The halo effect is removed by considering the GDC phase (W ) and the LST phase (G)
and applying the following:

W = W ∪ (δSE(W ) ∩ [G \ γSE (G)]) ,

with SE taken as a flat-disk of fixed radius. The radius of SE is chosen such as the out-of-plane structures are
removed, in this case 3 pixels. This transformation provides the segmented image, such as image (d) in Fig. 3.
In this image each pixel is assigned either to the porous phase (black), the LST phase (gray) or the GDC phase
(white).
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Figure 4: Mean covariance Cii(h) of the porous phase over a sample, as a function of the vector h, parametrized by
its norm h and angle with the x-axis θ. The angle θ takes on increasing values θ = 0, ..., π. The isotropy hypothesis
is validated since the covariance remains the same regardless the direction of h.

3 Morphological measurements

We now use the segmented image to measure various morphological criteria. The images are considered as real-
izations of a stationary random structure. Therefore all morphological criteria are measured separately on each
image, and then averaged on all images that belong to the same sample. We first estimate the covariance and
cross-covariance functions (Matheron, 1967) as the probability:

Cij(h) = P{x ∈ i,x+ h ∈ j} (4)

where i and j ∈ {W,G,B} are two phases, and h is a vector. The values of x in the above are taken so that both
x and x + h are in the observation window. Numerical investigations indicate that the medium is isotropic with
respect to the covariance so that Cij(h) depends only on the norm h = ||h|| of h. This is illustrated on Fig. 4 for
the porous phase. Similar results hold for the other phases and all image sets. Accordingly, we identify Cij(h)
with Cij(h). Note that the volume fractions of phase i is given by:

fi = P{x ∈ i} = Cii(0). (5)

We also estimate the following statistical properties:

Qi(ℓ) = P{L(ℓ) ⊂ ic}, Pi(ℓ) = P{L(ℓ) ⊂ i}, (6)

where L(ℓ) is a segment of length ℓ with unspecified orientation or location, i = W , G, B is one of the three
phases and ic is the complementary set of i. In practice, the functions Qi and Pi are estimated by computing the
area (or volume fraction) of the sets i and ic eroded by segments of length ℓ. The latter is related to the linear
contact distribution. We (abusively) refer to Pi and Qi as “linear erosions” hereafter. For general Boolean models
with convex grains, linear erosion functions are exponentials (see Sec. 6). This allows one to determine with few
computations if a Boolean set might be appropriate to model a material.

The grain size distribution of set i is estimated by the granulometry by opening Gi(S). Denoting by γB(S)(i)
the morphological opening of the set i by the compact set B(S) of area S, one has:

Gi(S) = 1− P{x ∈ γB(S)(i)|x ∈ i}. (7)

In our case B(S) is taken as a disk of surface S. This measure is used in Secs. 6 and 7 to validate models.
The representativity of all three-phase models M developed in this work is evaluated quantitatively by the

following error criterion E(M):

E(M) =
1

3

∑

i=W,G,B

[
〈|Ci(h)− CM

i (h)|2〉1/2h + 〈|Qi(ℓ)−QM
i (ℓ)|2〉1/2ℓ + 〈|Gi(S)−GM

i (S)|2〉1/2S

]
, (8)

where averages, denoted by 〈·〉, are taken in the intervals h <1.5 µm, ℓ <1.5 µm and S <1.5 µm2.
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Sample fW ± ǫfW fG ± ǫfG fB ± ǫfB
14-i 0.151 ± 0.009 0.203 ± 0.007 0.646 ± 0.009
14-s 0.151 ± 0.009 0.168 ± 0.008 0.681 ± 0.009
24-i 0.161 ± 0.008 0.161 ± 0.007 0.678 ± 0.009
24-s 0.179 ± 0.009 0.198 ± 0.007 0.624 ± 0.008
25-i 0.175 ± 0.009 0.177 ± 0.007 0.648 ± 0.009
25-s 0.171 ± 0.013 0.193 ± 0.010 0.636 ± 0.012
28-i 0.185 ± 0.006 0.196 ± 0.006 0.619 ± 0.006
28-s 0.197 ± 0.005 0.214 ± 0.005 0.589 ± 0.005
29-i 0.154 ± 0.007 0.162 ± 0.006 0.684 ± 0.007
29-s 0.187 ± 0.006 0.207 ± 0.005 0.605 ± 0.005
32-i 0.188 ± 0.009 0.197 ± 0.008 0.615 ± 0.009

Table 1: Volume fractions fi of each phase i estimated on SEM images and their associated relative error ǫfi .

4 Representative volume element of the microstructure

The representativity of the microstructures in terms of volume fraction fi for the phase i is considered. The latter
is estimated on 2D sections by estimating area fractions as explained below.

Consider a 2D section of area S0, either of the real material (SEM images) or of a 3D model M . The apparent
area fraction of each phase is estimated on disjoint subdomains of surface S. The variance of the latter, D2

fi
(S)

scales as shown in (Kanit et al., 2003; Matheron, 1971):

D2
fi
(S)

D2
fi

∼ Afi
2

S
, S ≫ Afi

2 , (9)

where Afi
2 is the integral range and D2

fi
is the point variance for phase i, i.e.:

D2
fi = fi(1− fi). (10)

The integral range Afi
2 is the integral of the correlation function of phase i; we refer to Matheron (1971) for a

discussion of its main properties. Simply remark that when (9) holds, the domain S acts as n = S/Afi
2 independent

sub-domains each of area Afi
2 . Eq. (9) is useful to estimate the representativity of a microstructure. For instance,

for a given domain of area S the relative error ǫfi on the volume fraction fi estimated for phase i is given by:

ǫfi =
2Dfi

fi

√
Afi

2

S
(11)

In the next sections, the function D2
fi
(S) is used to compare simulations of the models and the SEM images.

Tab. 1 gives estimates of the area fractions, and therefore the volume fractions fi of each phase, averaged over
the 11 samples. The porosity is around fB ≈ 63% for all samples, while the volume fraction of GDC and LST lies
between 15% ≤ fG,W ≤ 20%. The integral range Afi

2 is extracted numerically by fitting the left-hand side of (9) for
large S. This value is used to estimate ǫfi in Eq. 11. As seen in Tab. 1, the volume fractions of the two solid phases
fG and fW differ by up to 10%, except for sample 14-i for which the relative difference is 25%. These differences
are much higher than the relative errors ǫfi , and are presumably an effect of the preparation techniques.

5 Three-phase media modelled using two underlying indepen-

dent random sets

In this section, we assume that the three sets B, W and G are obtained from two independent random sets X and
Y . To obtain three random sets Ai (i = 1, 2, 3), we consider the following combinations of the two sets X and Y :

A1 = X, A2 = Xc ∩ Y, A3 = Xc ∩ Y c. (12)

Each set Ai (i = 1, 2, 3) is used to represent either B, W or G. The above construction is represented schematically
in Fig. 5. We denote by Ci(h) and Cij(h) (i, j = 1, 2, 3) the covariance and cross-covariance, respectively, of the
sets Ai and Aj as in (4). The covariance of the complementary set Ac

i , denoted by Ci(h), is given by:

Ci(h) = 1− 2Ci(0) + Ci(h) (13)
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Figure 5: Schematic representation of a three-phase material A1 (dark gray), A2 (light gray), A3 (crosshatch) modeled
by two underlying independent random sets X (ellipses) and Y (triangles).

The covariances Ci(h) of the sets Ai read:

C1(h) = CX(h), C2(h) = CX(h)CY (h), C3(h) = CX(h)CY (h), (14)

where CX(h) and CY (h) are the covariances of the sets X and Y respectively, and CX(h) and CY (h) that of
their complementary sets Xc and Y c. The independency of X and Y implies, for the cross-covariance functions
Cij(h) (Jeulin , 2014):

C12(h) =
C2(0)

1− C1(0)
[C1(0)− C1(h)] , (15)

C13(h) =
C3(0)

1− C1(0)
[C1(0)− C1(h)] , (16)

C23(h) =
C2(0)

1− C1(0)
C1(h) −C2(h). (17)

For instance, formula (15) is obtained as follows:

C12(h) = P{x ∈ A1,x+ h ∈ A2}
= P{x ∈ X,x+ h ∈ Xc ∩ Y }
= P{x ∈ X,x+ h ∈ Xc}P{x+ h ∈ Y }
= [CX(0)− CX(h)]CY (0).

Eqs. (16) and (17) are derived in a similar way. This particular structure, resulting from the construction of the
model, is useful to test the validity of the independence assumptions from experimental covariances. We emphasize
that (15), (16) and (17) are valid if X and Y are independent. This assumption is tested by considering all possible
choices for assigning any of the sets B, G or W to A1, A2 or A3. The 6 possibilities, labelled Hk (1 ≤ k ≤ 6)
are given in Tab. 2. We denote CHk

ij (h) where (i, j) ∈ {B,G,W } the cross-covariance Cij defined in (15), (16)
and (17) with the Ai specified by Hk (1 ≤ k ≤ 6).

For each pair of values i 6= j and each of the possible set of choices Hk (1 ≤ k ≤ 6), the cross-covariance C
Hk
ij (h)

is computed according to (15), (16), (17) and compared to its estimate directly measured on the SEM image. For
instance, referring to Tab. 2, CH1

12 (h) is the cross-covariance between sets B and G, which is compared to the
right-hand-side of Eq. (15). The latter is computed using the covariance of the sets B and the volume fraction of
the set G. Accordingly, hypothesis H1 implies that:

CGB(h), CH1

GB(h) =
CG(0)

1−CB(0)
[CB(0)− CB(h)]

are equal. The cross-covariances CHk
GW of G and W are plotted in Fig. 6 for sample 29-i, for all hypothesis H1, ...,

H6, and compared to CGW .
In order to quantify the quality of each possible choice Hk we compute the relative error:

E(k) =
∑

i,j

1

n+ 1

n∑

h=1

|CHk
ij (h)−Cij(h)|

Cij(h)
(18)

for all image sets and set of choices Hk (Tab. 3).
The configuration H6 minimizes the relative error εk on 12 out of 16 image sets. Furthermore, E(6) is close

to the minimum value on 3 out of the 4 other samples. In the following, we assume that hypothesis H6 holds, i.e.
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Figure 6: Cross-covariance CGW between sets G and W measured on images of sample 29-s (solid line). Comparison
with the cross-covariances CHk

GW computed using (15), (16) and (17). The latter are computed for each configuration
k = 1, ..., 6 from Tab. (2).

Hypothesis A1 = X A2 = Xc ∩ Y A3 = Xc ∩ Y c

H1 B G W

H2 B W G

H3 G B W

H4 G W B

H5 W B G

H6 W G B

Table 2: The 6 possible choices for assigning any of the sets B, G or W to A1, A2 or A3.

the three phases are written as (12) with A1 = W , A2 = G and A3 = B as specified in Tab. 2. In particular, using
the independency of X with respect to Y :

fW = fX , fG = (1− fX)fY . (19)

These equations give the volume fractions of X and Y for each sample (Tab. 1).
Herefter, we aim to determine the random sets X and Y , which can be generated independently from each

other. Boolean (Sec. 6) and plurigaussian models (Sec. 7) are explored in the following.

6 Boolean models

The Boolean model is a set A ⊂ R
3 obtained by implantation of the primary grains A′ (with possible overlaps) on

points xk distributed according to a Poisson point process P with intensity θ (Matheron, 1967):

A =
⋃

xk∈P

A′
xk

, (20)

where A′
xk

= {x+ xk; x ∈ A′} is the translation of A′ by xk. To determine if the set X or Y might be approached
by Boolean models, we measure the linear erosion Qi(ℓ) (see 6) for the three phases G, W and B on all data sets.
Results are represented in Fig. 7 in lin-log scale for sample 29-s and show an exponential decrease log[Qi(ℓ)] ∼ ℓ.
A similar behavior is observed on all samples. This scaling law is compatible with a Boolean model with convex
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Image set H1 H2 H3 H4 H5 H6

14-i 3.15 3.15 2.9 2.9 14.11 1.4
14-s 4.14 3.99 3.84 3.86 6.55 2.07
15-i 3.61 3.42 3.2 3.21 17.06 4.19
15-s 3.94 3.97 2.52 2.52 19.46 1.96
24-i 4.24 4.31 3.27 3.27 3.88 2.76
24-s 3.62 3.84 3.33 3.31 7.64 2.38
25-i 5.9 5.83 3.53 3.53 4.05 1.76
25-s 4.96 4.84 4.34 4.35 7.45 1.87
28-i 3.23 3.26 3.96 3.96 5.18 2.44
28-s 2.18 2.16 3.74 3.74 5.99 2.43
29-i 3.95 3.82 3.48 3.48 4.62 1.85
29-s 3.17 3.16 3.96 3.96 7.16 2.42
32-i 3.21 3.17 2.97 2.98 4.39 1.77
32-s 3.28 3.31 3.64 3.63 7.57 3.43
33-i 2.94 2.88 4.16 4.16 5.86 3.45
33-s 2.75 2.71 2.97 2.97 4.15 2.17

Table 3: Relative error E(k) (Eq. (18)) between the measured cross-covariances Cij(h) and the ones computed using

(15), (16) and (17) for all combinations H1, ..., H6, denoted CHk

ij (h). For each sample, the minimum value of E(k),
corresponding to the best configuration from Tab. 2, is highlighted in grey.

primary grain A′. Indeed, the covariance CA(h) and linear erosion QA(ℓ) of a Boolean model A read (Matheron,
1967):

CA(h) = q2−rA′ (h), QA(ℓ) = q1−ℓr′
A′ (0), (21)

where q is the volume fraction of the complementary set of A, rA′(h) is the normalized geometrical covariogram
of the primary grain A′ and r′A′(h) its derivative. The latter is given by Matheron (1967) in three dimensions:

rA′(h) =
µ3(A

′ ∩A′
−h)

µ3(A′)
, (22)

where µ3 is the Lebesgue measure in dimension 3. Note that the exponential scaling law is expected to hold for
the linear erosions of the underlying random sets X and Y . Indeed:

QX(ℓ) = QW (ℓ), PB(ℓ) = QX(ℓ)QY (ℓ). (23)

The above suggests that one uses Boolean random sets to model X and Y . We emphasize that the exponential
decrease holds for general isotropic Boolean models built on a distribution of convex random primary grains A′ with
arbitrary shape and orientations. Accordingly, in the following, we consider various primary grains A′ oriented
uniformly on the unit sphere. The two models X and Y are determined by their primary grains A′

X and A′
Y ,

respectively, and by the Poisson intensity ΦX and ΦY . In (Greco, 1979), such a combination of Boolean models
with parallelipiped primary grains was used to model iron ore sinter textures.

The round-shaped GDC particles and the elongated shapes observed for the LST phase suggest that one uses
spheres of radius RX for A′

X and cylinders of radius RY and height LY for A′
Y . Taking into account the Poisson

intensities ΦX and ΦY , the entire model, denoted M1, depends on five parameters. The normalized geometrical
covariogram reads, for the spherical primary grain A′

X :

rX(h) = 1− 3h

4RX
+

h3

16(RX )3
, h ≤ 2RX . (24)

The normalized mean covariogram of cylinders takes the form of a one-dimensional integral which can be solved
analytically using special functions Willot (2015). The covariograms of spheres and cylinders allow to compute
the covariance CB,G,W (h) of B, G and W using (13), (14), and (21) without generating 3D Boolean models.
The quadratic difference between the covariances of the model and that measured on the images is used as error
criterion.

We minimize numerically the error criterion by optimizing the 5 parameters of the model using the algorithm
of Nelder and Mead (1965). The optimal microstructure for model M1 is found for RM1

X = 14µm, ΦM1

X =
1.31 10−5

µm−3, RM1

Y = 8µm, LM1

Y = 147µm and ΦM1

Y = 6.70 10−6
µm−3 for sample 29-s. Accurate volume fractions

are recovered for the three phases: fB = 0.71%, fG = 16%, fW = 15% (SEM) compared to f̃B = 68%, f̃G = 16%
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Figure 7: Linear erosion function Qi(ℓ) of each phase of the composite 29-s, averaged over all 8 images of the sample
and over 10 directions, represented in lin-log scale. The exponential decrease is compatible with a Boolean model
with convex grains (see Eq. 21)

.

(a) (b) (c) (d)

Figure 8: Sample 29-s: crop of a segmented image (a) and 2D sections of various optimized Boolean models (b-d):
model M1 with mono-sized spheres for X and cylinders for Y (b), model M2 with two populations of spheres for X
(c) and model M3 made of sphero-cylinders for X and Y (d)

.

and f̃W = 14% (model). Good agreement is found as well for the covariance functions and linear erosions (Fig. 9a
and 9b). However, the model is unable to reproduce the granulometries measured on the SEM images (Fig. 9c),
which is much wider than the narrow distribution of sizes obtained with the model. The model is not visually
satisfactory either. A 2D section of M1 is represented in Fig. 8b, which is quite different from the SEM images
(Fig. 8a).

Two other Boolean models are explored as an attempt to obtain wider granulometries for phases G and W. In
the first one, denoted M2, the set X is a Boolean model containing two populations of spheres. The spheres have
radius RM2

X with probability sM2 and R′M2

X with probability 1− sM2 . The set Y , a Boolean model of cylinders, is
left unchanged. The model M2 is accordingly parametrized by 7 variables: the Poisson intensities ΦM2

X,Y of X and

Y , the spheres radii RM2

X and R′M2

X , the probability sM2 , the radius RM2

Y and length LM2

Y of the primary grains in
model Y . In the second model, denoted M3, the two sets X and Y are Boolean models of sphero-cylinders. This
model is parametrized by 6 variables: the intensities of the Poisson point processes ΦM3

X,Y and the lengths LM3

X,Y

and radii RM3

X,Y of the sphero-cylinders. Sphero-cylinders are used in order to reproduce the smooth boundaries
observed on the segmented image.

The parameters of models M2 and M3 are optimized, as before, on the covariances of the three phases. Again,
the quadratic difference between covariances measured on the segmented images and computed on the models
is used as error criterion. A different optimization is carried out for each sample. Using (21), the optimization
of model M2 is carried out without generating the microstructures. Again, the algorithm of Nelder & Mead is
used. For model M2, the optimal microstructure is found when ΦM2

X = 1.84 10−7
µm−3, DM2

X = 75µm, Φ′M2

X =

10



(a) (b) (c)

Figure 9: Sample 29-s: covariances Ci(h) (a), linear erosion Qi(ℓ) (b) and granulometries Gi(h) (c) of the segmented
SEM image (solid lines) and that of the optimal Boolean model M1 of mono-sized spheres and cylinders (dotted lines)
for phases B (black), G (blue) and W (red).

2.42 10−5
µm−3, D′M2

X = 21µm, ΦM2

Y = 2.04 10−5
µm−3, DM2

Y = 11µm, LM2

Y = 113µm for sample 29-s. For
model M3 we find RM3

X = 8µm, RM3

Y = 10µm, LM3

X = 123µm, LM3

Y = 75µm, ΦM3

X = 8.0 10−6
µm−3 and ΦY =

8.2 10−6
µm−3 for the same sample. 2D sections of the optimized models M2 and M3 are represented in Fig. 8c and

Fig. 8d respectively. The models are not visually satisfactory. Quantitatively, only a small improvement on the
granulometry is observed when using model M2, compared to model M1 (not shown). Similar results are obtained
for model M3 (not shown).

Finally, we mention that we considered a fourth model that consists of a Boolean model of spheres for set X,
with radii uniformly distributed from 0 to a maximum value, and a Boolean model of cylinders for set Y . Again
however, the models were unable to reproduce the observed granulometry.

7 Plurigaussian model

In this section, we model sets X and Y by means of truncated Gaussian models (Armstrong et al., 2011; Lantuéjoul,
2002). This choice is led by the need to generate three-phase microstructures with smooth boundaries. Such
models have been used successfully to represent food microstructures (Bron and Jeulin, 2004) and (binary) SOFC
electrodes (Lanzini et al., 2009).

The three-phase microstructures are represented by two underlying independent sets X and Y , as described in
Sec. 5. The latter sets are both generated by the convolution of a Gaussian noise U with a weight function w. The
resulting fields are thresholded. The value of the threshold is chosen to reproduce the measured volume fractions
of the three phases. For set X, for instance, we use:

X = {x ∈ Ω;ZX(x) ≥ λX} , (25a)

ZX(x) = (wX ∗ UX)(x), UX (x) ∼ N (0, 1), (25b)

where ∗ is the convolution product, λX is the threshold and UX(x) follows the normal distribution N (0, 1) of mean
0 and variance 1. The expectation of the indicator function of the random set X reads:

fX = P{ZX (x) ≥ λX} = P{N (0, 1) ≥ λX}, (26)

P{N (0, 1) ≥ λX} is the probability that a variable following the normal distribution is greater than λX . This
equation provides the value for the threshold λX . Indeed:

λX = F−1(1− fX), (27)

where F is the cumulative distribution function of the normal distribution and the volume fraction fX is given
by (19) and by the measurements on segmented SEM images (Tab. 1). The weight function wX is normalized and
symmetric: ∫

Ω

w2
X(x)dx = 1, wX(x) = wX(−x), x ∈ Ω. (28)
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Sample E(M1) E(M2) E(M4) E(M5) E(M6)
14-i 4.62 6.73 6.08 5.71 7.47
14-s 4.94 5.88 4.66 5.43 5.16
24-i 5.23 7.03 5.13 5.31 4.40
24-s 4.39 5.85 4.50 4.63 3.03
25-i 5.52 7.40 8.58 4.59 7.56
25-s 6.27 7.72 5.78 4.68 7.69
28-i 5.26 6.94 4.39 5.47 3.79
28-s 5.75 8.23 3.56 4.31 3.97
29-i 5.25 6.58 4.10 5.40 2.44
29-s 5.02 6.97 3.57 4.38 2.89
32-i 6.28 8.97 6.06 6.25 5.81

Table 4: Global error (×10−3) E(M) (see Eq. 8) computed on models M1−2 and M4−6, for 11 samples. The best fit
obtained for each sample is highlighted in grey.

Figure 10: Weight functions wX and wy for sample 29-i. Each weight function is defined by (30) where ρX,Y is
obtained by numerical inversion of (29).

The latter is directly related to the covariance CX(h) of X by (Lantuéjoul, 2002):

CX(h) =
1

2π

∫ ρX(h)

0

1√
1− t2

e
−λ2

X
1+t d t, (29)

where ρX(h) = (wX ∗ wX)(h). The function wX is obtained using:

wX = FFT−1
{√

FFT{ρX}
}
, (30)

where FFT and FFT−1 are the forward and backward discrete fast Fourier transforms. Once λX is known, the
function ρ is provided by inverting numerically (29) and wX is given by (30). We emphasize that the covariance
measured on the SEM image for the set X (i.e., W ) is reproduced exactly by the model.

The same procedure is applied to determine Y . Recall that, under assumption H6, W = X, G = Xc ∩ Y and
B = Xc ∩ Y c. Accordingly, the covariance of the set X is given by that of W whereas the covariance of Y (see
Eq. 14) reads:

CX(h) = CW (h), CY (h) =
CG(h)

CW (h)
. (31)

As an example, the weight functions wX and wY corresponding to X and Y are plotted in Fig. 10.
A microstructure model of size 5123 voxels (6.14 µm3) is simulated for each of the 16 samples. A 2D section of

the resulting model is represented in Fig. 13 and compared to the segmented image for sample 29-s. The covariance
functions, linear erosions and cumulative granulometries of the three phases are estimated on realizations of the
plurigaussian model. For a given model, 10 random 2D sections are selected. The morphological measurements
are averaged over the 2D sections.

The plurigaussian model defined above is hereafter denoted M4. The contours of this model, represented in
Fig. 11b, are very noisy, as previously observed by Bron and Jeulin (2004). In (Bron and Jeulin, 2004), noise is
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(a) (b)

(c) (d)

Figure 11: Sample 29-i: (a) crop of a segmented image, (b) plurigaussian model M4, (c) plurigaussian model M5

using the Corson model for the covariance functions, (d) plurigaussian model M6 with Gaussian low-pass filtering.
Note that for the sake of comparison, all images are simulated using fixed Gaussian noises UX,Y .

removed using an analytical model for the covariance. This model reads (Corson, 1974):

C(h) = f2 + f(1− f)e−chn

, (32)

where n ≤ 1 and c are two parameters. We follow this procedure and fit the right-hand sides of (31) with the
Corson model (32). Values of parameters n and c are given in Tab. 5. These fits are used for the covariances
CX,Y (h). Hereafter, this model is referred to as M5. Results are represented in Fig. 11c. Noise is not removed
using the Corson model, and the method produces sub-optimal models (see Tab. 4, column 5). Indeed, the fit of
the covariances using the Corson model is not satisfactory (not shown).

A different approach is followed to remove noise on the contours, that preserves the information provided by
the weight functions wX,Y . The plurigaussian model M4 is filtered using a low-pass normalized-centered Gaussian
kernel. This filtering is applied on ZX,Y , after the convolution of the Gaussian noise UX,Y by the weight function
wX,Y . Equivalently, the weight functions wM6

X,Y in model M6 is replaced by:

wM6

X,Y (x) =
(
wM4

X,Y ∗ K
)
(x), (33)

where K refers to the Gaussian kernel:
K(x) = e

−||x||2/σ2
K . (34)

The value of the variance in the Gaussian kernel is fixed to σK = 0.055 µm. This value removes most of the
small-length artifacts while preserving the structure of the model. This filtered model is denoted M6. As shown
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Sample cX nX cY nY

14-i 0.138 0.859 0.159 0.863
14-s 0.135 0.850 0.162 0.851
15-i 0.155 0.834 0.186 0.827
15-s 0.153 0.813 0.168 0.844
24-i 0.125 0.843 0.161 0.833
24-s 0.120 0.867 0.150 0.859
25-i 0.145 0.785 0.175 0.821
25-s 0.147 0.795 0.176 0.831
28-i 0.136 0.839 0.156 0.849
28-s 0.206 0.798 0.228 0.813
29-i 0.149 0.810 0.175 0.825
29-s 0.146 0.812 0.164 0.840
32-i 0.108 0.864 0.108 0.893

Table 5: Values of the parameters (c,n) (see Eq. 32) of the Corson model used for each of the 11 samples. For each
sample two sets of parameters are identified, the first one (cX ,nX) corresponds to the random set X and the other
one (cX ,nX) to the random set Y .

(a) (b) (c)

Figure 12: Sample 29-s: covariances Ci(h) (a), linear erosion Qi(ℓ) (b) and granulometries Gi(h) (c) of the segmented
SEM image (solid lines) and that of the optimal Plurigaussian model M6 (dotted lines) for phases B (black), G (blue)
and W (red).
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(a) (b)

Figure 13: Crop of a segmented SEM image (a) and 2D section of the corresponding 3D plurigaussian model M6 (b)
for sample 32-s.

Sample fW ± ǫfW fG ± ǫfG fB ± ǫfB
14-i 0.149 ± 0.015 0.197 ± 0.016 0.654 ± 0.022
14-s 0.154 ± 0.012 0.166 ± 0.011 0.680 ± 0.015
24-i 0.158 ± 0.015 0.164 ± 0.016 0.678 ± 0.017
24-s 0.181 ± 0.018 0.198 ± 0.014 0.620 ± 0.017
25-i 0.182 ± 0.019 0.178 ± 0.011 0.640 ± 0.019
25-s 0.173 ± 0.019 0.191 ± 0.024 0.635 ± 0.027
28-i 0.184 ± 0.012 0.193 ± 0.013 0.623 ± 0.016
28-s 0.196 ± 0.014 0.214 ± 0.014 0.589 ± 0.017
29-i 0.152 ± 0.011 0.163 ± 0.014 0.685 ± 0.016
29-s 0.190 ± 0.016 0.201 ± 0.014 0.608 ± 0.020
32-i 0.186 ± 0.021 0.199 ± 0.015 0.614 ± 0.020

Table 6: Volume fractions fi of each phase i estimated on model M6 and their associated relative error ǫfi .

in Fig. (11d) and Tab. (4) (column 6), this filter preserves the statistical properties of the SEM images and the
noise is removed.

The volume fraction of each phase in model M6 is given in Tab. 6 together with their relative error. The
phase volume fractions of model M6 (Tab. 6) are close to that measured on the SEM images (Tab. 1). Other
morphological measurements on the plurigaussian model M6 are represented in Fig. 12 and compared to that of
the segmented image. As expected, a very good agreement is found for the two covariance functions CW and
CG, which are directly used in the plurigaussian model. A good agreement between the plurigaussian model M6

and the SEM images is observed as well for the covariance CB , and for the linear erosions Qi and granulometry
functions Gi, for the three phases. This result holds even though the linear erosion and granulometry were not
used for the identification and the generation of the model. For certain samples, as the one represented in Fig. 12,
however, a small misfit is observed for the covariance CB(h). In a few other samples, a small discrepancy appears
regarding the granulometry GB (not shown) but overall, the model follows quite closely the measurements. A
visual comparison between model M6 and the segmented SEM images (Fig. 13) confirms the good behavior of the
model. The two images are close to one another.

Exactly the same procedure has been applied to compute M6 models corresponding to the DLR and Mines
ParisTech samples. The latter are also visually close to the SEM images (Fig. 14). This is especially remarkable
as the anode samples have quite different morphologies, due to the particular preparation techniques involved in
the fabrication of the cells.

The specific surface areas of the SEM images and M6 models are compared in Tab. (7). The contact surface
areas between G and W , denoted SVGW , is computed by estimating the derivative at 0 of the cross-covariance
functions of the segmented images and models. The contact surface area between B and W , denoted SVWB , and
between B and G, denoted SVBG , are estimated in the same way. The comparison is carried out for the ISTEC
samples as well as 4 DLR anode samples (labeled A1 to A4) and one Mines ParisTech sample (labeled B1). The
relative error on the measurement of the various surface areas is estimated by computing the derivative of the cross-
covariance functions in different ways and studying representativity effects. Details are given in Abdallah (2015).
The relative error is estimated to be at most 15%. Overall, good agreement is found between the models and SEM
images, except for the contact surface area between G and W for the DLR samples, which are underestimated by
model M6 by a factor 2. Use of the parameter σK in (33) would presumably provide additional degrees of freedom
for improving the model in this respect, as will be seen hereafter.
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SVGW
SVWB

SVGB

Sample M6 SEM M6 SEM M6 SEM
14-i 1.36 1.23 4.20 4.68 7.90 7.97
14-s 1.02 1.07 4.43 4.88 6.99 6.93
15-i 0.96 1.04 3.74 4.22 5.46 7.34
15-s 1.42 1.47 3.91 4.80 6.34 8.43
24-i 1.10 1.09 4.56 4.32 5.81 6.10
24-s 1.41 1.42 4.47 4.74 6.75 6.99
25-i 1.36 1.18 4.97 5.24 6.57 7.15
25-s 1.46 1.23 4.83 5.31 7.10 7.78
28-i 1.59 1.20 4.95 5.45 6.89 7.41
28-s 1.84 1.42 5.05 8.20 7.30 10.55
29-i 1.13 0.90 4.73 5.11 6.26 6.80
29-s 1.70 1.33 4.99 5.61 7.27 7.89
32-i 1.43 1.47 4.38 4.08 5.32 5.37
32-s 1.59 1.78 4.32 4.14 5.64 5.89
33-i 0.99 1.14 3.94 3.88 5.36 5.11
33-s 1.31 1.38 4.33 4.14 5.62 5.22
A1-i 0.56 1.42 3.00 2.25 4.99 4.69
A1-s 0.54 1.21 2.81 2.32 4.69 4.56
A2-i 0.93 1.79 3.77 3.47 5.57 4.84
A2-s 1.26 2.22 4.13 3.74 5.90 4.76
A3-i 0.98 1.74 3.88 3.60 5.19 4.92
A3-s 1.23 2.05 4.20 4.18 5.27 4.78
A4-i 0.71 1.07 3.64 3.55 5.05 4.70
A4-s 1.05 1.16 4.02 4.22 5.40 5.20
B1-i 3.85 3.96 5.28 5.78 7.90 8.00
B1-s 4.06 4.59 5.46 5.78 7.67 7.19

Table 7: Specific surface areas SVGW
, SVWB

and SVGB
(in µm−1) between any two phases measured on SEM images

and on the corresponding M6 model. Discrepancies between the models and SEM images are highlighted in dark and
light gray when the model underestimates and overestimates, respectively, the measurement carried out on the SEM
image.
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(a) (b)

(c) (d)

Figure 14: SEM images (a, c) vs. microstructure model M6 (b, d) for samples A4-i (a, b) and B1-i (c, d).
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Figure 15: Quantity log [− logw(h)] vs. log h, computed on a set of 12 SEM images of anode layers. Top-left quadrant:

weight function wX(h) determined from (29), (30) and (31), for the anode layer 29-s (dots); fit wX(h) = e−
√

h/2.0

(solid line). with parameter αX = 2.0 pixels ≈ 25 nm.

The model M6 is based on the covariance functions of X and Y , or equivalently, of B, W and G. Thus a
parametrization of the latter functions is needed to obtain an analytical model for M6. Numerical investigations
show that the weight functions wX,Y (h) for X and Y are close to the law:

wX,Y (h) = e−(h/αX,Y )
βX,Y

, (35)

where, depending on the material, 0.5 ≤ βX ≤ 0.55 and 2.0 ≤ αX ≤ 2.07. The two parameters are not independent.
Because of the condition (28), they satisfy:

αX,Y = 21/βX,Y

[
Γ

(
1 +

1

βX,Y

)]−1

, (36)

where Γ is the extended factorial function. A numerical fit of wX(h) is illustrated in Fig. (15). In this figure, the
quantity log [− logwX(h)] is plotted as a function of log h. The form (35) leads to the expansions, for h → 0:

ρX,Y (h) ≈ 1− h

2
, CX,Y (h) ≈ CX,Y (0)− e−λ2

X,Y /2

2π

√
h. (37)

The expansion for CX,Y (h) with first-order correction ∼
√
h indicates an infinite specific surface area, which

explains the roughness of the contours observed for model M4 (Fig. 11b). For model M6, as a result of the
regularization (33) by a Gaussian kernel, one finds instead, for h → 0:

ρX,Y (h) ≈ 1− h2

4σ2
, CX,Y (h) ∼ C(0)− h

2σ
, (38)

so that smooth boundaries and a finite surface area are obtained for the random set. In that case, the specific
surface areas of X and Y is given by the parameters σK (Eq. 34) and λX,Y as:

SVX =
1

σKπ
e−λ2

X/2, SVY =
1

σKπ
e−λ2

Y /2. (39)

The contact surface areas between any two phases are given by:

SVWG = fY SX , SVWB = (1− fY )SX , SVBG = (1− fX)SY . (40)

The formula above match the numerical measures for the contact areas in the the model (Tab. 7).

8 Conclusion

A methodology has been presented for simulating 3D models of three-phase anode composites using 2D SEM
images. Such images should first be segmented, which requires removing the “halo” (or 3D) effect present in porous
materials. For moderate halo effects, a combination of dilation and openings is sufficient. Second, the segmented
microstructures have been characterized by a set of stereological measurements, in particular the covariance and
cross-covariance functions.
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Third, a generic three-phase random model has been introduced, based on two underlying independent random
sets. We showed that this generic model results in simple constraints on the covariance and cross-covariance
functions that can be tested in practice. For the anode layers studied here, the covariance and cross-covariance
functions were found to be roughly compatible with one of the possible combinations of the three-phase model.
In a fourth step, several models, namely Boolean sets and plurigaussian fields, were explored for the underlying
random sets defining the three-phase model. Good agreement was obtained with plurigaussian models in terms of
covariance, granulometry and linear erosion functions and the plurigaussian models were found to be visually very
close to the materials. Furthermore, the models can be simulated very easily and efficiently, using the covariance
function of the material or an analytical model that we propose. Similar results were obtained on anode layers of
different origins and microstructures, highlighting the versatility of the proposed method.

We emphasize that the methodology developed in this work is applicable to materials with an arbitrary number
of phases. In the general case, an n-phases microstructure is modeled using n− 1 underlying independent random
sets. The independency assumption enforce a set of constraints on the covariance and cross-covariance functions of
the material’s phases, as studied in (Jeulin, 1979). This work demonstrates that such n-phases models are useful
for simulating real materials.
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Aitor Hornes for providing the DLR anode samples. Finally, the authors are grateful to two anonymous reviewers
for helpful suggestions.

References

Abdallah, B. (2015). Analyse morphologique et modélisation pour l’optimisation structurelle d’éléctrodes. PhD
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