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A study on generalized inverses and increasing functions
Part I: generalized inverses

Arnaud de La Fortelle

September 3, 2015

Abstract

Generalized inverses of increasing functions are used in several domains such as
function analysis, measure theory, probability and fuzzy logic. Several definitions of
the generalized inverse are known leading to different properties. This paper aims at
giving a precise study of the link between the definitions and the properties. It is shown
why the right-continuous generalized inverse is a good choice. This rigorous treatment
opens the doors to more focused studies.

1 Introduction

This study was first motivated by theoretical considerations on stochastic processes where
some increasing processes are sometimes naturally inverted. One example is the maximum of
a Brownian motion Bt on [0, t]: this continuous increasing process is the generalized inverse
of an increasing Levy process. However it happens that there are many other domains where
one can apply this notion of inverse: a generalized version of the inverse of a one-to-one
function hence the name generalized inverse. In measure theory it is linked to change-
of-variables formulæ for Lebesgue–Stieltjes integrals as in [2]; in probability theory it is
linked to the distribution function of a real-valued random variable: the generalized inverse
appears naturally to transform a uniform random variable into a random variable with a given
distribution function and this technique is widely applied to simulation; for the same reason
the generalized inverse is sometimes called quantile function and the previous operation a
quantile transformation: it is used in statistics (and applied e.g. to insurance and finance);
generalized inverses are also used in fuzzy logic for building t-norms as in [7, 4]: this is
probably where one can found the most general generalized inverses.

The history of the generalized inverse is difficult to draw since it is a well established
auxiliary notion that was not considered worth a dedicated study: this is especially true in
probability theory. Moreover the name generalized inverse, though the most common, is not
stable, changing with the domain: we mentioned quantile function but there are other names
such as pseudo-inverse or quasi-inverse. However, with the use of more precise properties,
there has been some papers dedicated to generalized inverses. The fuzzy logic domain has
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made precise definitions such as [4] citing [7] and even earlier work of [6] related to t-norms:
in these papers the most general definitions are given at the price of maybe very non-regular
generalized inverses. In recent years there was a rising interest to clarify the definitions and
the properties of generalized inverses as in [1, 3] who have inspired a large part of this paper.

Though a lot of work has been devoted to the analysis of the generalized inverse, some
more work is needed in order to reach the author’s initial goal. Indeed the reference above
study properties of the transform for a single function (continuity — left or right — at a
point, injective and surjective properties, orders...). Now what happens if we apply that to
stochastic processes, i.e. families of functions? There is a clear need of continuity properties
at the functional level so that we can ensure (or not) that sequences of generalized inverses
converge if the original functions converge. Surprisingly enough, when going to the functional
level, some interesting properties emerge naturally such as the generalization of the Lebesgue
decomposition. However, due to the length these considerations will be developed separately.

This study is aimed at being self-contained so that the paper begins with a detailed section
on properties of increasing functions and some descriptors of increasing functions: Lebesgue
decomposition, jumps and flat sections that are closely tied with the generalized inverses.
Then we deal with the definitions of generalized inverses and their properties: Section 3; one
interesting result is to see the generalized inverses as all almost everywhere equals. Finally
we concentrate on a specific generalized inverse in Section 4: the right-continuous generalized
inverse. It has interesting regularity properties.

Note that lots the properties demonstrated in this paper also hold more generally for
functions with bounded variations (that are the difference of two increasing functions). For
the sake of conciseness this will not be developed.

2 Increasing functions: definitions and descriptions

Throughout the paper we will use the term increasing for non-decreasing functions f in R:

x > y =⇒ f(x) ≥ f(y) (2.1)

If the right inequality is strict in (2.1) we say f is strictly increasing.
Generally we should consider mappings f : I 7→ J with I, J ⊂ R. Convexity is implicitly

used in the sequel so that I and J should be intervals. Then we need also complete intervals
(to take extrema) so that I and J should be chosen closed. For the sake of simplicity we have

chosen to take I = J = R̄ def
= R∪{−∞,+∞} and the usual topology on this compactification

of the real numbers. It would be easy to transform the results below for any I = [a, b] and
J = [c, d] using conventions like infI ∅ = b, supI ∅ = a and similarly for J . But it becomes
notationally complex without more generality.

Left and right limits always exist for increasing functions and are denoted by

f(x−)
def
= lim

z↑x
f(z) = sup

z<x
f(z), (2.2)

f(x+)
def
= lim

z↓x
f(z) = inf

z>x
f(z). (2.3)
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By definition, f is right-continuous [resp. left-continuous] at x when f(x) = f(x+) [resp.
f(x) = f(x−)]. And f is continuous at x when it is right and left continuous at x.

The following result of Lebesgue [5] is fundamental in our analysis.

Theorem 2.1 (Lebesgue decomposition) Any right-continuous increasing function f may
be decomposed as:

f = fa + fc + fj, (2.4)

where fa is absolutely continuous, fc is a singular continuous function (i.e. f ′c = 0 almost
everywhere) and fj is a jump function (its value is a countable sum of jumps). This decom-
position is unique up to constants.

Note that the classical definition of a jump function fj as fj(x) =
∑

y≤x f(y+)−f(y−) leads
to the condition for f to be right-continuous (and so is fj). If we want to relax it, we need
to characterize better the jumps.

2.1 Description of jumps

Figure 1: Jumps of an increasing function and the related concepts: jump point, jump,
“free” value at a jump point.

Definition 2.2 (Jumps) We say an increasing function f has a jump at x if f(x−) <
f(x+)1. Whenever f jumps at x we say x is a jump point and we define the jump as the
open interval (f(x−), f(x+)). The set of all jump points of f is called its jump points set
denoted by J(f) and the set of all jumps is called jumps family and denoted by J (f):

J(f)
def
=

{
x ∈ R̄ : f(x−) < f(x+)

}
(2.5)

J (f)
def
=

⋃
x∈J(f)

{
(f(x−), f(x+))

}
=
⋃
x∈R̄

{
(f(x−), f(x+))

}
(2.6)

1For the special case of infinity, this definition should be adapted to right- or left- jumps. There is no
technical difficulty but notational complexity so we skip these special cases.

3



Note that f(x) ∈ [f(x−), f(x+)] in general but f(x) = f(x+) [resp. f(x) = f(x−)] if, and
only if, f is right-continuous [resp. left-continuous] at x. From the above definition, we see
that an increasing function also defines a mapping Φf between J(f) and J (f) by:

Φf : J(f) 7→ J (f)

x → (f(x−), f(x+)). (2.7)

Since f(x) = f(x+), it is clear that a right-continuous pure jump function (f = fc in
Lebesgue decomposition (2.4)) is completely characterized by (J(f),J (f),Φf ):

f(x)
def
= f(0) +

∑
y∈(0,x]∩J(f)

λ(Φf (y)) ∀x ≥ 0

With the classical notation λ for the Lebesgue measure (here it is simply the length of the
interval Φf (y)); and the classical convention that a sum over (0, x] for x < 0 is the opposite
of the sum over (x, 0]. Following the convention of the right term of Equation (2.6), and
splitting the positive and the negative summation for the sake of clarity, we can rewrite the
above definition as:

f(x)
def
= f(0) +

∑
0<y≤x

f(y)− f(y−) ∀x ≥ 0 (2.8)

def
= f(0−)−

∑
x<y<0

f(y)− f(y−) ∀x < 0 (2.9)

The above equations avoid the problem of infinities if f(−∞) = −∞: classically it is assumed
— sometimes implicitely — that f(−∞) = 0 as for distribution functions in probability and
Equation (2.8) is written f(x) =

∑
y≤x f(y)−f(y−). Moreover it involves only the values of

the jumps (i.e. λ(Φf (y)) = f(y)−f(y−)) as in the classical formula: up to a global constant,
this is the minimum information that is needed.

If f is not right-continuous (or left-continuous, it would be similar), we can easily adjust
the equations but we must add the knowledge of the value of f at the jump points:

f(x)
def
= f(0+) +

∑
0<y<x

f(y+)− f(y−) + (f(x)− f(x−)) ∀x > 0 (2.10)

def
= f(0) x = 0 (2.11)
def
= f(0−)−

∑
x<y<0

f(y+)− f(y−)− (f(x+)− f(x)) ∀x < 0 (2.12)

Note that the sets J(f) and J (f) are finite or countable hence are of null measure
(Lebesgue’s measure is always assumed). Since Definition 2.1 only makes use of limits,
two increasing functions f1 and f2 that would be equal almost everywhere have the same
characterization: (J(f1),J (f1),Φf1) = (J(f2),J (f2),Φf2). So f1 and f2 jump at the same
points and are continuous at the same points. This is easy to prove considering that the set
where f1 = f2 is dense.
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What we see is that the value of an increasing function at a jump point is ”free” and has
no influence to most of the properties of jumps. This is why taking a special representative
of an increasing function in its equivalence class is rather logic. There are two main choices:
left-continuous regularization, by taking f(x) = f(x−) and right-continuous regularization
by taking f(x) = f(x+).

Proposition 2.3 (Regularization) Let f be an increasing function. There exists a unique
right-continuous [resp. left-continuous] function g that is almost everywhere equal to f . We
call it right-continuous [resp. left-continuous] regularization of f . It the greatest [resp. least]
function almost everywhere equal to f .

Proof : Following the previous characterization of jumps as (J(f),J (f),Φf ) that is in-
variant within an equivalence class, we build g as follow: g(x) = f(x+) for all x ∈ R̄(f).
Therefore existence is proved. Since we changed values only at a null measure set, limits of
f and g are the same so that g is right-continuous. If f is right-continuous, then f = g.
In general g ≥ f since f(x) ≤ f(x+) and there is equality only if f is right-continuous.
Therefore g = f if, and only if f is right continuous. Hence uniqueness is proved as well as
the maximum property.

The properties for the left-continuous regularization are derived by considering −f(−x).

This property allows us to use Lebesgue’s decomposition on any increasing function f . We
apply the decomposition to g, the right-continuous regularization of f : g = ga + gc + gj. We
set fa = ga, fc = gc and fj = gj except at jump points (i.e. on J(f) = J(g)) where we set
fj(x) = gj(x) + f(x)− f(x+). This decomposition exists with all desired properties except
for the right-continuity of fj.

Another consequence of the regularization is the following characterization of an equiva-
lence class of almost everywhere equal increasing functions. Let f be an increasing function,
gr and gl the right- and left-regularization of f . From Proposition 2.3 we know f is char-
acterized by gl ≤ f ≤ gr. This is equivalent to 0 ≤ f − gl ≤ gr − gl. Note gr − gl is null
except on the jump set J(f) where its value is the value of the jump f(x+)−f(x−) (another
invariant of the class). Therefore an equivalence class of almost everywhere equal increasing
functions is much simpler to describe than an equivalence class of almost everywhere equal
functions.

Theses properties of the jumps will be useful in the sequel. Before going to the next
point, we would like to conclude this section by some remarks. First we see that the union of
jumps of J (J is a set of disjoint open intervals, not a subset of R̄) is an open set of R̄ made
of at most a countable union of disjoint open intervals; we denote it by O. It is maximal
for pure jump increasing functions in the sense that its measure is maximal (this imply it is
dense) in the following meaning. For any interval (a, a+ l), the measure of O ∩ (a, a+ l) is
l. It means the only increases are made by jumps. It could also serve as a characterization
of pure jumps functions though this property is rather technical to demonstrate.
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Uniqueness of the mapping Φf : It is clear that the jump points set J(f) and the
jumps family J (f) are a necessary information (though we could reduce the jumps
family to the set of jumps heights for pure jumps functions). By considering a function
with a finite number of jumps, one could wonder if the mapping Φf is really necessary
in the characterization (J(f),J (f),Φf ) because there is a natural order on J(f) and
J (f). For finite sets the mapping is unnecessary: jump points and jumps can be
numbered in increasing order and the mapping is unique. For an infinite jump points
set like J(f) = Z, there is a unique shift for the mapping: once the mapping of a jump
point is defined, all other can be easily derived by recurrence.

Finally we can build a jump points set and a jumps set such that a single shift is not
sufficient to describe the difference between valid mappings. The idea is the following.
Consider the jump points xn = 2n−1 for n ≤ 0 and xn = 1− 2−n−1 for n ≥ 0. Jumps
are On = (xn, xn+1). For any k ∈ Z, the mappings xn → On+k are valid. Now, the
jump points (and jumps) lies within 0 and 1 and we can extend the jump points set
(and similarly the jumps family) by adding all jump points a+ xn with corresponding
jumps (a+xn, a+xn+1) for any given non null integer a and all n ∈ Z. We see that we
would need several shifts ka, possibly an infinity. It would be even worse for a dense
J(f). This is why the mapping is part of the characterization of the jumps.

���

2.2 Flat sections

Figure 2: Flat sections of an increasing function and the related concepts: interior (x, y),
value of the flat section f(z) and “free” value at the boundaries x and y.

Definition 2.4 (Flat sections) We say f is flat at z if there exist x1 < z < x2 such that
f(x1) = f(x2) = f(z). The flat section at z is defined as the greatest open interval (x, y)
containing z such that f is constant on (x, y); this constant value is the flat section value.
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The set of all flat sections is called flat sections family and denoted2 by H(f) and the set of
flat sections values H(f).

The open interval defining a flat section exists and is unique. Consider a point z where f
is flat and E = f−1({f(z)}) def

= {r ∈ R̄ : f(r) = f(z)}. By definition E contains an open
interval (x1, x2) so that the flat section cannot be empty. E is also convex so that it is an
interval with bounds x < y, possibly infinite (i.e. x = −∞ or y = +∞). It always contains
its interior, the open interval (x, y). By construction any point u < x has value f(u) < f(z)
otherwise it would have value f(z) and belong to E; and symmetrically any point u > y has
value f(u) > f(z). Therefore the (x, y) exists, is unique and is the maximal open interval
defining the flat section.

As for jumps, there is a natural order defined on the sets H(f) and H(f). And we can
define a one-to-one mapping Φ∗f between H(f) and H(f) as in (2.7). The flat sections are
completely characterized by (H(f),H(f),Φ∗f ). We will see this is dual to the characterization
of jumps (J(f),J (f),Φf ) via the generalized inverse.

3 Generalized inverses

There are several ways to define generalized inverses. Let’s begin with the most classical
definitions following [3] and the notation of [4]:

f∧(y)
def
= sup{x ∈ R̄ : f(x) < y} (3.1)

f∨(y)
def
= inf{x ∈ R̄ : f(x) > y} (3.2)

In [3] it is proved that:

f∧(y) = inf{x ∈ R̄ : f(x) ≥ y} (3.3)

f∨(y) = sup{x ∈ R̄ : f(x) ≤ x} (3.4)

It is easy to see that both f∧ and f∨ are increasing. Curiously [3] proves f∨(y) is right-
continuous but not that f∧(y) is left-continuous though the sketch of the proof is the same.
Note that Equation (3.3) is the most classical definition of the generalized inverse; in prob-
ability it is linked to stopping times definition.

In [4] there is the following very interesting characterization.

Proposition 3.1 (Regularization) Let f be an increasing function with generalized in-
verses f∧ and f∨ defined in Equations (3.1) and (3.2). Then f∧(y) ≤ f∨(y) and

f∧(y) = f∨(y) ⇐⇒ Card f−1({y}) ≤ 1.

2We follow [2] with the notation H for horizontal since the flat sections are horizontal in the graph. It
seems more readable than F (f).
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Figure 3: Generalized inverse function (the right-continuous one). Note here both functions
are pseudo-inverse of each other since they are right-continuous. The jump of f at x0

translates into a flat section of f∨ on [y0, y1].

This means that f∧(y) = f∨(y) for all y 6∈ H(f). Since H(f) is at most countable, f∧ = f∨

almost everywhere. Furthermore, Proposition 2.3 implies that f∧ is the minimal function in
this class of almost everywhere equal increasing functions while f∨ is the maximal function.
This leads to the definition:

Definition 3.2 (Generalized inverses) Let f be an increasing function with generalized
inverses f∧ and f∨ defined in Equations (3.1) and (3.2). Then any increasing function f ∗

verifying
f∧ ≤ f ∗ ≤ f∨

is a generalized inverse of f . These functions are increasing and almost everywhere equal.
f∨ [resp. f∧] is the unique right-continuous [resp. left-continuous] generalized inverse of f .

It is easy to see that any generalized inverse swaps the jumps and the flat sections (see
also Figure 3) and the mappings are preserved:

J(f ∗) = H(f), J (f ∗) = H(f) and Φf∗ = Φ∗f (3.5)

H(f ∗) = J(f), H(f ∗) = J (f) and Φ∗f∗ = Φf (3.6)

This is easy to prove for f ∗ = f∨ (with the properties in the section below); and since it is
a property of the class, it holds for all generalized inverses.

The problem of generalized inverses is closely related to the problem of quasi-inverses f ∗

defined as the increasing functions verifying

f ◦ f ∗ ◦ f = f (3.7)
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Klement et Al [4] prove there always exists quasi-inverses of an increasing function and
the quasi-inverses are generalized inverses. However a generalized inverse (even regular)
is not a quasi-inverse in general. E.g. for a right-continuous function f , a quasi-inverse
would be the left-continuous generalized inverse f∧ but not always the right-continuous
f∨ ([4] demonstrates why). Take for example f(x) = bxc; then f∨(x) = 1 + bxc so that
f ◦ f∨ ◦ f = f + 1. This study concentrates on the inversion as a transformation within
the set of increasing functions, therefore we will not bring more attention to quasi-inverses
(except for Proposition 4.3).

4 A regular generalized inverse

As we have seen above, there are lots of generalized inverses (provided there are flat sections).
Moreover they are equal almost everywhere. Therefore we concentrate now on a particular
representative of the class: the right-continuous generalized inverse f∨. We now come back
to the usual inverse notation to simplify the reading, being aware of the difference between
f−1(x) = f∨(x) and f−1({x}) = {y ∈ R̄ : f(y) = x}. To emphasize this change we formally
define again the generalized inverse. This definition (with singular in “inverse”) replaces
Definition 3.2.

Definition 4.1 (Generalized inverse) Let f be an increasing function. The generalized
inverse is function f−1 defined by

f−1(y) = inf{x ∈ R̄ : f(x) > y} (4.1)

4.1 General properties

The pseudo-inverse has some interesting properties. Lots of them are already demonstrated
bu we give a fairly exhaustive list hereafter for the sake of completeness.

Proposition 4.2 (pseudo-inverse properties) The pseudo-inverse f−1 of an increasing
function f has following properties:

1. f−1 is increasing, has left limits and is right continuous (càdlàg);

2. the following implications hold for all x ∈ R̄ and y ∈ R̄:

f(x) > y =⇒ x ≥ f−1(y), (4.2)

f(x) = y =⇒ x ≤ f−1(y), (4.3)

f(x) > y =⇒ x ≤ f−1(y), (4.4)

f−1(y) > x =⇒ y ≥ f(x), (4.5)

f−1(y) < x =⇒ y < f(x); (4.6)

3. for all x ∈ R̄, f−1(f(x)) ≥ x;
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4. if f is right continuous at x, then for all y ∈ R̄

f−1(y) = x =⇒ y ≤ f(x), (4.7)

f(x) > y ⇐⇒ x > f−1(y), (4.8)

f(f−1(y)) ≥ y; (4.9)

5. f is strictly increasing on R̄ if, and only if, f−1 is continuous on R̄;

6. f is continuous on R̄ if, and only if, f−1 is strictly increasing on R̄;

7. f is right-continuous if, and only if, (f−1)−1 = f ;

8. f is right-continuous if, anf only if, {x ∈ R̄ : f(x) ≥ y} is closed for all y ∈ R̄.

Proof : f−1 is increasing since the sets Ey
def
=
{
x ∈ R̄ : f(x) > y

}
are decreasing. Left and

right limits always exist for increasing functions. Since the inequality in Equation (4.1) is
strict: ⋃

z>y

Ez =
{
x ∈ R̄ : f(x) > z > y

}
=
{
x ∈ R̄ : f(x) > y

}
= Ey

and we get

f−1(y+)
def
= inf

z>y
f−1(z) = inf

z>y
inf Ez = inf

⋃
z>y

Ez = inf Ey = f−1(y)

so that f−1 is always right continuous (there is no condition on f).

The implication (4.2) is a direct consequence of the definition and Equation (4.1). The
implication (4.3) and (4.4) can be demonstrated together; assume f(x) ≥ y. Then we have
f(z) > y =⇒ f(z) > f(x) =⇒ z > x or equivalently{

z ∈ R̄ : f(z) > y
}
⊂
{
z ∈ R̄ : f(z) > f(x)

}
⊂
{
z ∈ R̄ : z > x

}
and taking the infimum f−1(y) ≥ x. The implication (4.5) is the contrapositive of impli-
cation (4.2) and (4.6) the contrapositive of the aggregation of (4.3) and (4.4) gathered so
that there is only f(x) ≥ y in the left part of the implication. Therefore the second point is
demonstrated.

The third point is a direct consequence of implication (4.3). The special case f−1(y) =∞
is obvious since by completion f(∞) = y so that there is even equality. Note that this
inequality can be strict when f is constant on an open interval.

In the fourth point we assume f is right-continuous in x i.e. f(x) = infz>x f(z). Take
f−1(y) = x. From the definition of f−1(y), for any ε > 0 there exists z such that f(z) > y
and z ≤ f−1(y) + ε = x + ε. For any η > 0, since f(x) = infz>x f(z), we can chose
ε > 0 such that f(z) ≤ f(x) + η. Therefore f(x) ≥ f(z) − η > y − η. Because this
inequality is true for all η > 0 we get f(x) ≥ y and implication (4.7) is demonstrated.
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Combining this implication with implication (4.6) we get f−1(y) ≤ x =⇒ y ≤ f(x) whose
contrapositive is f(x) > y =⇒ x < f−1(y). Combining with implication (4.6), we get
the equivalence (4.8). Inequality (4.9) is a straightforward consequence of implication (4.7),
similar to the demonstration of fourth point.

Let demonstrate the fifth point by contrapositive. Assume f is discontinous at point x.
Then y1

def
= f(x−) < y2

def
= f(x+) and y0

def
= f(x) ∈ [y1, y2]. Either (y1, y0) or (y0, y2) is non-

empty so that we can find y3 < y4 such that [y3, y4] lies in one of these sets. Therefore there
is no z ∈ R̄ such that f(z) ∈ (y3, y4] and it is straightforward to see that f−1(y3) = f−1(y4).
Hence f−1 is not strictly increasing. Assume now that f−1 is not strictly increasing. This
means there exists x ∈ R̄ and y1 < y2 such that f−1(y) = x for all y ∈ [y1, y2]. Take ε > 0;
by implication (4.5), f(x−ε) ≤ f(x) = y1; by implication (4.6), f(x) = y2 ≤ f(x+ε); hence
f(x−) ≤ y1 < y2 ≤ f(x+) and f is discontinuous.

The proof of the sixth statement is very similar to the proof of the fifth statement and is
left to the reader. It is obvious if f is right-continuous following the next statement.

The seventh statement is easy in the reverse direction: if f is a pseudo-inverse, by
statement 1 it is right-continuous. Now assume f is right-contiunous. Take x ∈ R̄ and
y

def
= (f−1)−1(x). By definition of the pseudo-inverse (equation 4.1), for all ε1 > 0

f−1(y + ε1)
def
= x+ η1 > x (4.10)

f−1(y − ε1) ≤ x (4.11)

Therefore η1 > 0. Applying the equivalent (for f−1) of inequality (4.11) to the equality (4.10),
yield, for any ε2 > 0:

f(x+ η1 − ε2) ≤ y + ε1

Taking ε2
def
= η1/2 > 0 yields y ≥ f(x+η1/2)−ε1 ≥ f(x)−ε1. Since this is true for any ε1 > 0,

we get y ≥ f(x). Now, because f is right-continuous, we can combine implications (4.6)
and (4.7) to the inequality (4.11) which gives y − ε1 ≤ f(x) hence y ≤ f(x). Finally we
proved y = f(x) and the seventh statement is demonstrated.

For the eighth statement, first we see that if z ∈ {x ∈ R̄ : f(x) ≥ y}, then [z,∞] ∈ {x ∈
R̄ : f(x) ≥ y}. Therefore the set is a segment that is either [x0,∞] or (x0,∞]. The first
one is closed and the second one not. In any case, f(x0+) ≥ y. If f is right continuous,
f(x0+) = f(x0) ≥ y hence x0 ∈ {x ∈ R̄ : f(x) ≥ y} and it is closed. Assume f is not right
continuous: then there exists x0 such that f(x0) < (f(x0+) and x0 6∈ {x ∈ R̄ : f(x) ≥ y}
that is not closed. Hence the eighth statement is proved.

4.2 Jumps and flat sections

This proposition recalls some earlier results and adds an interesting equivalence.

Proposition 4.3 The pseudo-inverse f−1 of an increasing and right-continuous function f
swaps jumps and flat sections as in Equations (3.5)-(3.5). Moreover
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1. f−1(f(x)) = x if, and only if, f(x) 6∈ H(f). Otherwise f−1(f(x)) > x;

2. f(f−1(y)) = y if, and only if, y 6∈ J(f). Otherwise f(f−1(y)) > y;

Proof : The proof of property 1. is an adaptation of Lemma 2 of [7] that proves a similar
result for the left-continuous generalized inverse. And the second property derives from the
first one by the property 7. of Proposition 4.2.

The first item of Proposition 4.3 implies that f is bijective if, and only if, H(f) = ∅.
Now it is a bijection between R̄ and the range of f . It is only injective as a function into
R̄. The second item deals with the surjective property. Hence there is a true bijection if,
and only if, J(f) = H(f) = ∅. However this statement is not precise enough since there
are technicalities at infinity (we must impose lim−∞ f = −∞ and lim∞ f =∞ and consider
jumps at infinity). What holds for sure if J(f) = H(f) = ∅ is that f and f−1 are continuous
and strictly increasing.

5 Conclusion

This study shows deep connections between several characteristics of increasing functions
when applying the generalized inverse: jumps and flat section, right-continuity, almost ev-
erywhere equal functions... This study is the first part of a larger effort to understand these
connnections, considering only the generalized inverse of a single function.

When applying the generalized inverse as a transform of the set of càdlàg increasing func-
tions (right-continuous with left limits), more questions appear naturally. This transform is
an involution: f and f−1 are the transform of each other. But the transform is stable on
special subsets of functions: this leads to an extended Lebesgue decomposition. A second
direction of research is the continuity property of this transform. And these two consider-
ations give space to precise statements about time changes and the operations that can be
realized with time changes. Therefore we believe the precise study of increasing function is
worth some more work.
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