
HAL Id: hal-01254426
https://minesparis-psl.hal.science/hal-01254426

Submitted on 12 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Data to Effects Dependence Graphs:
Source-to-Source Transformations for C

Nelson Lossing, Pierre Guillou, Mehdi Amini, François Irigoin

To cite this version:
Nelson Lossing, Pierre Guillou, Mehdi Amini, François Irigoin. From Data to Effects Dependence
Graphs: Source-to-Source Transformations for C. [Technical Report] MINES ParisTech. 2015. �hal-
01254426�

https://minesparis-psl.hal.science/hal-01254426
https://hal.archives-ouvertes.fr

From Data to Effects Dependence Graphs:
Source-to-Source Transformations for C

Nelson Lossing†, Pierre Guillou†, Mehdi Amini‡, and François Irigoin†

† firstname.lastname@mines-paristech.fr
‡ mehdi@amini.fr

MINES ParisTech, PSL Research University, France

Abstract. Program optimizations, transformations and analyses are ap-
plied to intermediate representations, which usually do not include ex-
plicit variable declarations. This description level is fine for middle-ends
and for source-to-source optimizers of simple languages. However, the C
language is much more flexible: variable and type declarations can ap-
pear almost anywhere in source code, and they cannot become implicit
in the output code of a C source-to-source compiler.
We show that declaration statements can be handled like the other state-
ments and with the same algorithms if new effect information is defined
and handled by the compiler, such as writing the environment when a
variable is declared and reading it when it is accessed. This extension
has been used for several years in our PIPS framework and has remained
compatible with its new developments such as offloading compilers for
GPUs and coprocessors.

Keywords: Source-to-Source Compiler, Data Dependence Graph, C Lan-
guage, Declaration Scheduling

1 Introduction

Program optimizations, transformations and analyses are applied to intermediate
representations, traditionnaly built with basic blocks of three-address code and
a control flow graph. They usually do not include explicit variable declarations,
because these have been processed by a previous pass and have generated con-
stant addresses in the static area or offsets for stack allocations. This description
level is used, for instance, in the Optimization chapter of the Dragon Book [2]. It
is fine for middle-ends and for source-to-source optimizers of simple languages,
such as Fortran77, that separate declarations from executable statements.

However, the C language, especially its C99 standard [11], is much more flex-
ible. Variable and type declarations, which include expressions to define initial
values and dependent types, can appear almost anywhere in the source code.
And they cannot become implicit in the output code of a C source-to-source
compiler, if the output source code is to be as close as possible to the input code
and easy to read by a programmer. Thus source-to-source compiler passes that
schedule statements must necessarily deal with type and variable declarations.

firstname.lastname@mines-paristech.fr
mehdi@amini.fr

However, these statements have none or little impact in terms of the classical
def-use chains or data dependence graphs [2,14,19], which deal only with memory
accesses. As a consequence, C declarations would be (incorrectly) moved away
from the statements that use the declared variables, with no respect for the
scope information. Is it possible to fix this problem without modifying classical
compilation algorithms?

We have explored three main techniques applicable for a source-to-source
framework. The first one is to move the declarations at the main scope level.
The second one is to mimic a conventional binary compiler and to transform
typedef and declaration statements into memory operations, which is, for in-
stance, what is performed in Clang. The third one is to extend def-use chains
and data dependence graphs to encompass effects on the environment and on
the set of types.

In Section 2, we motivate the use of C source-to-source compilation, and we
show, with an example, how Allen&Kennedy (or loop distribution) Algorithm
misbehaves when classical use-def chains and data dependence graphs are used
in the presence of declaration statements. We then provide in Section 3 some
background information about the semantics of a programming language, and
about automatic parallelization. We review in Section 4 the standard use-def
chains and data dependence graphs and introduce in Section 5 and Section 6
our proposed extension, the Effects Dependence Graph (FXDG), to be fed to
existing compilation passes. We look at its impact on them in Section 7 and
observe that the new effect arcs are sometimes detrimental and must be filtered
out, or insufficient because the scheduling constraints are not used. We then
conclude and discuss future work.

2 Motivation

Why use source-to-source compilation? C source-to-source compilers have
several key advantages over assembler or low-level intermediate compilers: the
output code is more readable and can be easily compared to the input. Moreover,
a C code is stable and portable; therefore maintenance is easier, so that the C
language is also often used as an intermediate language [15].

Practical Example Consider the C99 for loop example in Listing 1. This
code contains in its loop body declarations for a type and a variable at Lines
6-7. When loop fission/distribution [2,19] is applied blindly onto this loop, the
typedef statement and the variable declaration are also distributed, as shown
in Listing 2.

The loop distribution algorithm relies on the Data Dependence Graph to
detect cyclic dependencies between the loop body statements. Yet the type and
variable declarations carry no data dependencies towards the following state-
ments or the next iteration, thus causing an incorrect distribution. The Data
Dependence Graph (DDG) of Listing 1 is represented Figure 1. According to this
DDG, no dependence exists between the type declaration statement (typedef

1 void example () {
2 int a[10] , b [10];
3 for(int i=0; i <10; i++) {
4 a[i] = i;
5 typedef int mytype ;
6 mytype x;
7 x = i;
8 b[i] = x;
9 }

10 return ;
11 }

Listing 1: C99 for loop with a typedef
statement and a variable declaration in-
side the loop body

1void example () {
2int a[10] , b [10];
3for(int i = 0; i <= 9; i += 1)
4a[i] = i;
5for(int i = 0; i <= 9; i += 1)
6typedef int mytype ;
7for(int i = 0; i <= 9; i += 1)
8mytype x;
9for(int i = 0; i <= 9; i += 1) {
10x = i;
11b[i] = x;
12}
13return ;
14}

Listing 2: After (incorrect) loop
distribution of Listing 1

int mytype;), the variable declaration (mytype x;) and the two statements
referencing variable x (x = i; b[i] = x;).

This example highlights the inadequacy of the Data Dependence Graph for
some classic transformations when applied on C99 source code. Should we design
a new algorithm or expand the Data Dependence Graph with new precedence
constraints?

Fig. 1: Data Dependence Graph of Listing 1

Related Work We did not find any related work as recent research compil-
ers are dealing either with restricted input, e.g. polyhedral compilers and static
control parts (SCoPs [4]), a good example being Pluto [6], or are using robust
parsers such as Clang [1]. The latter delivers low-level intermediate representa-
tions, such as the three-address code LLVM IR [16], from which regenerating
a higher-level source code is complex. Other source-to-source research compil-

ers simply do not support the C99 standard: among them, Oscar [13,18] and
Cetus [17].

3 Background and Notations

We have based our work on some code transformation passes of the PIPS com-
piler and on its high-level intermediate representation. PIPS is a source-to-source
compilation framework [9] developed at MINES ParisTech. Aiming at automatic
code parallelization, it features a wide range of analyses over Fortran and C code.
To carry out these analyses, PIPS relies on the notion of effects, which reflect
how a code statement interacts with the computer memory. To better under-
stand the benefits of this approach, we have to introduce several basic concepts
about the semantics of procedural programming languages.

In Fortran and C, variables are linked to three different concepts: an Identi-
fier is the name given to a specific variable; a Memory Location is the underlying
memory address, usually used to evaluate Identifier ; and a Value is the piece of
data effectively stored at that memory address. For instance, a C variable dec-
laration such as int a; maps an Identifier to a Memory Location, represented
by &a, and usually allocated in the stack. To link these concepts, two functions
are usually defined: the Environment function ρ takes an Identifier and yields
some corresponding Memory Locations; and the Memory State or Store function
σ gives the Value stored in a Memory Location. With the above, a Statement
S can be seen as transforming a Store and Environment (in case of additional
declarations) into another. We call memory effects of a Statement S the set of
Memory Locations whose Values have been used or modified during the execu-
tion of S. Effects E are formally defined as a function taking a Statement and
returning a mapping between a pre-existing Memory State and a set of Memory
Locations. Equation 1 to Equation 4 provide the formal representation of the
concepts defined above.

ρ ∈ Env = Identifier −→ Location (1)
σ ∈ Store = Location −→ V alue (2)

S : Store× Env −→ Store× Env (3)
E : Statement −→ (Store× Env −→ P(Location)) (4)

Effects are divided into two categories: READ effects RS represent a set of
Memory Locations whose Values are accessed, but not modified, whereas WRITE
effects WS represent Memory Locations whose Values are written during the ex-
ecution of S on a given Memory State. A statement’s READ and WRITE effects,
usually over-approximated for safety by static analyses, satisfy specific proper-
ties [10], which can be used to show that Bernstein’s conditions [5] are sufficient
to exchange two statements without modifying their combined semantics. This
is also the foundation of automatic loop parallelization.

These READ and WRITE effects can be refined into IN and OUT effects to
specify the Values that “really” have an impact on the semantics of the statement

(IN), or are used by its continuation (OUT). These are similar to the live-in and
live-out variables [2].

The data structure used in PIPS for modelling effects is represented in List-
ing 3. More precisely, PIPS effects associate an action – READ or WRITE –
to a so-called memory cell, which represents a reference and can be a variable
memory address, a combination of an array pointer and an index, or a struct
and one of its fields. The unit keyword means that no additional information is
carried by the corresponding field.

Many analysis and transformation passes in PIPS are based on effects, called
effects for simple scalar variables, or regions for arrays. In particular, effects are
used to build use-def chains and the Data Dependence Graph between state-
ments. More information about effects and regions can be found in [7].

effects = effects : effect * ;
effect = cell x action x [...] ;
cell = reference + [...] ;
reference = variable : entity x indices : expression * ;
entity = name: string x [...] ;
expression = syntax ;
syntax = reference + [...] ;
action = read:unit + write:unit ;

Listing 3: READ/WRITE effects syntax in PIPS

4 Data Dependence Graph

The Data Dependence Graph is used by compilers to reschedule statements and
loops. A standard Data Dependence Graph [2,19] exposes essential constraints
to prevent incorrect reordering of operations, statements, or loop iterations. A
Data Dependence Graph is composed of three different types of constraints: flow
dependence, anti-dependence and output dependence.

Note that the Data Dependence Graph is based on memory read and write
operations, a.k.a. uses and definitions. So, to take into account the implicit mech-
anisms used by the compiler, implicit memory accesses have to be added to
obtain consistent READ and WRITE effects. We want to keep these new ac-
cesses implicit to make further analyses and transformations easier, and to be
able to regenerate a source code as close as possible to the original. Standard
high-level use-def chains and DDG are unaware of these implicit dependencies.
However, they are key when generating distributed code [19] or when isolating
statements [8].

4.1 Limitations

The problem with the standard Data Dependence Graph is that the ordering
constraints are only linked to memory accesses. A conventional Data Dependence
Graph does not take into account the address of the variables, and even less the
declaration of new types, even when they are necessary to compute a location.
In fact, when the C language, especially the C99 standard, is considered, many
features imply new scheduling constraints for passes using the Data Dependence
Graph:

Declarations anywhere is a new feature of C99, also available in C++. This
feature implies for a source-to-source compiler to consider these declarations
and to regenerate the source code with the declarations at the right place
within the proper scope.

Dependent types, especially variable-length arrays (VLA), are a new way to
declare dynamic variables in C99. The declarations cannot be grouped at
the same place, regardless of precedence constraints.

User-defined types such as struct, union, enum or typedef can also be de-
fined anywhere inside the source code, creating dependences with the follow-
ing uses of this type to declare new variables.

4.2 Workarounds

A possible approach for solving these issues in a source-to-source compiler is to
mimic the behavior of a standard compiler that generates machine code with
no type definitions or memory allocations. In this case, we can distinguish two
solutions.

The first one works only on simple code, without dependent types. The dec-
larations can be grouped at the expense of stack size and name obfuscation at
the beginning of the enclosing function scope.

The second one is more general. The memory allocations inserted by the
binary compiler can be reproduced. Analyses and code transformations are per-
formed on this low-level IR. Then the source code is regenerated without the
low-level information.

Flatten Code Pass Code flattening is designed to move all the declarations
at the beginning of functions in order to remove as many environment exten-
sions (introduced by braces, in C) as possible and to make basic blocks as large
as possible. So all the variables end up in the function scope, and declaration
statements can be ignored when scheduling executable statements.

Some alpha-renaming must also be performed during this scope modification:
if two variables share the same name but have been declared in different scopes,
new names are generated, considering the scope, to replace the old names while
making sure that two variables never have the same name.

This solution is easy to implement and can suit a simple compiler.

The result of Listing 1 after calling flatten code is visible on Listing 41.
Listing 5 is the result of a loop distribution performed on Listing 4. Note that
the second loop is no longer parallel and that a privatization pass is necessary
to reverse the hoisting of the declaration of x.

1 void example () {
2 int a[10] , b [10];
3 int i;
4 typedef int mytype ;
5 mytype x;
6 for(i = 0; i <= 9; i += 1) {
7 a[i] = i;
8 x = i;
9 b[i] = x;

10 }
11 return ;
12 }

Listing 4: After applying flatten code
of Listing 1

1void example () {
2int a[10] , b [10];
3int i;
4typedef int mytype ;
5mytype x;
6for(i = 0; i <= 9; i += 1)
7a[i] = i;
8for(i = 0; i <= 9; i += 1) {
9x = i;
10b[i] = x;
11}
12return ;
13}

Listing 5: After loop distribution of
Listing 4

However, this solution only works on simple programs without dependent
types, because dependent types imply a flow dependence between statements
and the declarations. As a consequence, the declarations cannot be moved up
anymore.

Besides, even in simple programs, the operational semantic of the code can
be changed. In our above example, flatten code implies losing the locality of
the variable x. As a consequence, the second loop cannot be parallelized, because
of the dependence to the shared variable x. Without flatten code, the variable
x is kept in the second loop, which remains parallel.

Furthermore, code flattening can produce an increase in stack usage. For
instance, if a function has s successive scopes that declare and use an array a of
size n, the same memory space can be used by each scope. Instead, with code
flattening, s declarations of different variables a1, a2, a3. . . are performed, so
s×n memory space is used.

Code flattening also reduces the readability of the code, which is unwanted
in a source-to-source compiler. The final code should be as close as possible to
the original code.

Frame Pointer Another solution is to reproduce the assembly code generated
by a standard compiler, e.g. gcc. A hidden variable, called the current frame
pointer (fp), corresponds to the location where the next declared variable is al-
located. At each variable declaration, the value of this hidden variable is updated
according to the size of the variable type. In x86 assembly code, the stack base
1 Generated variables are really new variables because they have different scopes.

pointer ([e|r]bp) with an offset is used. Moreover, for all user-defined types,
hidden variables are also added to hold the sizes of the new types. In this way,
the source-to-source compiler performs like a binary compiler.

However, this method implies to add many hidden variables. All of these
hidden variables must have a special status into the internal representation of
the source-to-source compiler. Besides, this solution adds constraints between
declarations that do not exist. Since all declarations depend on the frame pointer,
which is modified after each declaration, no reordering between declarations is
legal, for instance. With the special status of these new variables, the generation
of the new source code is also modified and can be much harder to perform.

Listing 7 illustrates a possible resulting informal internal representation in-
side a source-to-source compiler. On the corresponding Data Dependence Graph,
the declaration of the type mytype, the declaration of Variable x and the initial-
ization of x and b are strongly connected, and therefore will not be separated
when applying loop distribution.

Nevertheless, the regeneration of a high-level source code with the new in-
ternal representation has to be redesigned completely so as to ignore the hidden
variables while considering the type and program variable declarations. Thus
this solution is not attractive for a source-to-source compiler.

1 void example () {
2
3 int a[10] , b [10];
4
5
6
7 {
8 int i;
9

10 for(i = 0; i <= 9; i += 1){
11 a[i] = i;
12 typedef int mytype ;
13 mytype x;
14
15 x = i;
16 b[i] = x;
17 }
18 }
19 return ;
20 }

Listing 6: Initial code example from List-
ing 1

1void example () {
2int fp =0;
3a = fp;
4fp -= 10* $int;
5b = fp;
6fp -= 10* $int;
7{
8&i = fp;
9fp -= $int;
10for (*(&i)=0;*(& i) <=9;*(&i)+=1) {
11a[*(&i)] = *(&i);
12$mytype = $int;
13&x = fp;
14fp -= $mytype ;
15*(&x) = *(&i);
16b[*(&i)] = *(&x);}
17fp += $mytype ;}
18fp += $int;
19return ;
20}

Listing 7: IR with frame pointer of List-
ing 6: sizeof(xxx) are represented as
$xxx and dynamic adresses as &x

5 Effects Dependence Graph

Instead of modifying the source code or adding hidden variables, we propose
to use the code variables, including the type variables, to model the transfor-

mations of the environment and type functions. For this purpose, we extend
the memory effects analysis presented in Section 3 by adding an environment
function for read/write on variable memory locations, and a type declaration
function for read/write on user-defined types. By extending the effects analy-
sis with two new kinds of reads and writes, we define a new dependence graph
that extends the standard Data Dependence Graph. We name it the Effects
Dependence Graph (FXDG).

Environment function The effects on the environment function ρ, read and
write, are strictly equivalent to the effects on the store function σ, a.k.a.
the memory. A read is an applicability of ρ, which returns the location of
an identifier. A write updates the function ρ and maps a newly declared
identifier to a new location. So when a variable is declared, a new memory
location is allocated, which implies a write effect on the function ρ. Its set of
bindings is extended by the new pair (identifier, location). Similarly, when
a variable is accessed within a statement or an expression, be it for a read
or a write, the environment function ρ is used to obtain the corresponding
location, needed to update the store function σ.
So effects on the function ρ track all accesses and modifications of ρ, without
ever taking into account the value that σ maps to a location.

Type function τ To support memory allocation, the type function τ maps a
type identifier to the number of bytes required to store its values. It is used for
all user-defined types, be they typedef, struct, union or enum. The effects
on τ , read and write, correspond to apply and update operations. When a
new user-defined type is declared, τ is updated with a new pair (identifier,
size). This is modeled by a write effect on τ . When a new variable is declared
with a user-defined type, the type function τ is applied to the type identifier,
i.e., a read effect occurs.

The traditional read and write effects on the store function, a.k.a. memory,
are thus extended in a natural way to two other semantic functions, the environ-
ment and the type functions. The common domain of these two new functions
is the identifier set, for variables and user-defined types. In practice, the parser
uses scope information to alpha-rename all identifiers. The traditional memory
effects are more difficult to implement because they map locations and not iden-
tifiers to values. Static analyses should be based on an abstract location domain.
However, a subset of this domain is mapped one-to-one to alpha-renamed iden-
tifiers. Thus, the three different kind of effects can be considered as related to
maps from locations to some ranges, which unify their implementation.

The advantage of this solution is the preservation of the original source code,
unlike the above flatten code solution. Also, no new variable is introduced
to transform effects on the environment and types into effects on store, as is
shown by the generated assembly code. Moreover, no modification is required
for the source code prettyprinter. Furthermore, loop parallelization can be
properly performed using this new dependence graph.

6 Implementation of the Effects Dependence Graph

The new effects can be implemented in two different ways, with different impacts
on the classical transformations based on the Data Dependence Graph.

The first possibility is to consider separately the effects on stores, environ-
ments and types, and to generate use-def chains and dependence graphs for each
of them, and possibly fusing them when it is necessary.

The second possibility is to colorize the effects and then use a unique Effects
Dependence Graph to represent the arcs due to each kind of functions. Passes
based purely on the Data Dependence Graph have to filter out arcs not related
to the store function.

Fig. 2: Effects Dependence Graph for Listing 1. (full arc = data dependence
(W, R), dashed arcs = environment dependence (WE, RE), dotted arcs = type
dependence (WT, RT))

Merging different dependence graphs This first approach creates a spe-
cific dependence graph for each kind of effects, a Data Dependence Graph, an
Environment Dependence Graph and a Type Dependence Graph. To obtain
the global Effects Dependence Graph required as input by passes such as loop
distribution, these three graphs are fused via a new pass in PIPS.

As an example, PIPS manages resources for effects on variable values and
could manage two new resources for effects on environment and for effects on
types. With three effect resources, it is now possible to generate three differ-
ent dependence graphs, one for each of our effect resources: a Data Dependence
Graph, an Environment Dependence Graph and a Type Declaration Depen-
dence Graph. The union of the three different dependence graphs of the example
in Listing 1, the total Effects Dependence Graph, is presented in Figure 2.

With these new dependence graphs, the loop distribution algorithm pro-
duces the expected Listing 8. The loops can then be properly parallelized, as
shown in Listing 9. Since we have a dependence graph for each kind of effects,
we can independently select which dependence graph we need to compute or use.

1 void example () {
2 int a[10] , b [10];
3 for(int i = 0; i <= 9; i += 1)
4 a[i] = i;
5 for(int i = 0; i <= 9; i += 1) {
6 typedef int mytype ;
7 mytype x;
8 x = i;
9 b[i] = x;

10 }
11 return ;
12 }

Listing 8: After loop distribution
of Listing 1 using its Effects Dependence
Graph

1void example () {
2int a[10] , b [10];
3forall (int i = 0; i <= 9; i += 1)
4a[i] = i;
5forall (int i = 0; i <= 9; i += 1) {
6typedef int mytype ;
7mytype x;
8x = i;
9b[i] = x;
10}
11return ;
12}

Listing 9: After detection of parallel
loops of Listing 8

Still, at the implementation level, these independent dependence graphs also
imply to launch three different analyses and to fuse their results with a fourth
pass to obtain the Effects Dependence Graph for loop distribution.

A unique dependence graph with three colors This second approach
consists in extending the current use-def chains and data dependence graph
with the different kinds of effects. On this Effects Dependence Graph, some
colorization is used to distinguish between the different kinds of effects: data
values, memory locations and types.

With this approach, the data structure for effects in PIPS is refined with
information about the action kind as shown in Listing 10. Since the change is
applied at the lowest level of the data structure definition, the existing passes
dealing with reads and writes are left totally unchanged. The Effects Dependence
Graph for Listing 1 is identical to the result of the first approach (Figure 2).

This implementation leads to the same output of loop distribution and
loop parallelization than the three-graphs approach (see Listing 8). Besides,
only one dependence graph is generated; so we do not need to manage three
different ones, plus their union.

However, since we only have one global dependence graph2, all the transfor-
mations that use the data dependence graph have access to all the dependence
constraints on all kinds of effects. Sometimes, these new constraints might pre-
2 We can also use a PIPS property to compute and use either the Data Dependence
Graph or the Effects Dependence Graph, but it is hard to maintain consistency when
properties are changed.

vent some optimizations, even though these constraints are always correct. These
issues are studied in the next section.

1 effects = effects : effect * ;
2 effect = cell x action x [...] ;
3 cell = reference + [...] ;
4 reference = variable : entity x indices : expression * ;
5 entity = name: string x [...] ;
6 expression = syntax ;
7 syntax = reference + [...] ;
8 action = read:action_kind + write:action_kind ;
9 action_kind = store:unit + environment:unit + type_declaration:unit ;

Listing 10: PIPS syntax with the new action kind information

7 Impact on Transformations and Analyses

The introduction of the Effects Dependence Graph allows source-to-source com-
pilers to better support the C99 specification. However, not all classical code
transformations and analyses benefit from this new data structure. In this sec-
tion, we discuss the impact of replacing the Data Dependence Graph by the
Effects Dependence Graph in source-to-source compilers.

Transformations Using the Effects Dependence Graph Some transforma-
tions require the new environment effects and the corresponding dependencies.
In fact, in some passes, we cannot move or remove the declaration statements.

The first example is the Allen & Kennedy [3] algorithm on for loop par-
allelization and distribution that we used in Section 2. These algorithms were
designed for the Fortran language initially. When proposing solutions to extend
them for the C language, Allen & Kennedy [14] only focused on pointer issues
and not on declarations ones.

Another typical algorithm that requires our Effects Dependence Graph is
Dead Code Elimination [2]. Without our Effects Dependence Graph, the tradi-
tional dead code elimination pass either does not take declarations into count,
i.e., never eliminates a type or variable declaration statement, or always elimi-
nates them since no dependence arcs link them to useful statements. So, either
the dead code elimination pass performs half of its job, or it generates illegal code
when the classical use-def chains is the underlying graph, when applied to the
internal representation of a source-to-source compiler instead of to three-address
code.

Transformations That Should Filter the FXDG When the legality of a
pass is linked to the values reaching a statement, the new arcs, which embody ad-
dress or type information, are not relevant. For instance, a forward substitution
pass uses the use-def chains, also known as reaching definitions, to determine
if a variable value is computed at one place or not. Additional arcs due to the
environment are not relevant and should not be taken into account.

When applying Forward Substitution to the loop body of Listing 8, the Read
after Write Environment dependency between the statements mytype x; and
b[i] = x; prevents the compiler from subtitution, x by i. Filtering out the
Environment and Type Declaration effects is, in this case, necessary to retrieve
the expected behavior.

The Isolate Statement pass [8] is used to generate code for accelerators with
private memories such as most GPUs and FPGA-based ones. The purpose is to
transform one initial statement S into three statements, S1, S2 and S3. The first
statement, S1, copies the current values of locations used by S into new locations.
The second statement, S2, is a copy of statement S, but it uses the new locations.
Finally, the third statement, S3, copies the values back from the new locations
into the initial locations. This S2 has no impact per se on the initial store and
can be performed on an accelerator. Statement S1 is linked to the IN regions of
Statement S, while Statement S3 is linked to the OUT regions of Statement S.
Since only values are copied, it is useless to count variables declarations as some
kind of IN effect, although type information may be needed to declare the new
variables, especially if dependent types are used.

Transformations That Need Further Work Some transformations do not
use scheduling information, but the standard implementations may not be com-
patible with type declarations or dependent types.

For instance, the pass that moves declaration statements at the beginning of
a function in PIPS (flatten code) does not use data dependence arcs. When
dependent types or simply variable-length arrays are used in typedef or vari-
able declaration statements, scheduling constraints exist and must be taken into
account. A new algorithm is required for this pass, and the legality of the ex-
isting pass can be temporarily enforced by not dealing with codes containing
dependent types.

In the same way, loop unrolling, full or partial, does not modify the statement
order and does not take any scheduling constraint into consideration. However,
its current implementation in PIPS is based on alpha-renaming and declaration
hoisting to avoid multiple scopes within the unrolled loop or the resulting basic
block. This is not compatible with dependent types, and non-dependent types
are uselessly renamed like ordinary variables.

8 Conclusion

C99 is a challenge for source-to-source compilers that intend to respect as much
as possible the scopes defined by the programmers because of the flexibility of

the type system and the lack of rules about declaration statement locations.
We show that some traditional algorithms fail because the use-def chains and
the data dependence graph do not carry enough scheduling constraints. We ex-
plore three different ways to solve this problem and showed that adding arcs
for transformations of the current type set and environment was the most re-
spectful for the original source code and existing passes. The new kinds of read
and write effects fit easily in the traditional use-def chains and data dependence
graph structures. Passes that need the new constraints are working right away
when fed the effects dependence graph. Some passes are hindered by these new
constraints and must filter them out, which is very easy to implement. Finally,
some other passes are invalid for C99 declarations, but are not fixed by using
the Effects Dependence Graph because they do not use scheduling constraints.

The newer C11 standard [12], released in 2011 by the ISO/IEC as a revision
of C99, is more conservative in terms of disruptive features. In some ways, C11 is
actually a step backwards: some mandatory C99 features have become optional.
Indeed, due to implementation difficulties in compilers, Variable-Length Arrays
(VLA) support is not required by the C11 standard. With VLAs out of the
scope, declarations can more easily be moved around without modifying the
code semantic. The solution proposed in this article is still valid for C11 code.

References

1. Clang: A C Language Family Frontend for LLVM, http://clang.llvm.org
2. Aho, A.V., Lam, M., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,

and Tools (2nd Edition). Addison-Wesley (2006)
3. Allen, R., Kennedy, K.: Automatic Translation of FORTRAN Programs to Vector

Form. TOPLAS 9, 491–542 (Oct 1987)
4. Benabderrahmane, M.W., Pouchet, L.N., Cohen, A., Bastoul, C.: The Polyhe-

dral Model is More Widely Applicable Than You Think. In: Proceedings of the
19th Joint European Conference on Theory and Practice of Software, International
Conference on Compiler Construction. pp. 283–303. CC’10/ETAPS’10, Springer-
Verlag, Berlin, Heidelberg (2010)

5. Bernstein, A.: Analysis of Programs for Parallel Processing. Electronic Computers,
IEEE Transactions on EC-15(5), 757–763 (Oct 1966)

6. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A Practical Auto-
matic Polyhedral Parallelizer and Locality Optimizer. In: Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. pp. 101–113. PLDI ’08, ACM, New York, NY, USA (2008)

7. Creusillet, B.: Array Region Analyses and Applications. Ph.D. thesis, École des
Mines de Paris (Dec 1996)

8. Guelton, S., Amini, M., Creusillet, B.: Beyond Do Loops: Data Transfer Genera-
tion with Convex Array Regions. In: 25th International Workshop on Languages
and Compilers for Parallel Computing (LCPC 2012). vol. 7760, pp. pp. 249–263.
Springer Berlin Heidelberg, Tokyo, Japan (Sep 2012), 15 pages

9. Irigoin, F., Jouvelot, P., Triolet, R.: Semantical interprocedural parallelization: an
overview of the PIPS project. In: Proceedings of the 5th international conference
on Supercomputing. pp. 244–251. ICS ’91, ACM, New York, NY, USA (1991)

http://clang.llvm.org

10. Irigoin, F., Amini, M., Ancourt, C., Coelho, F., Creusillet, B., Keryell, R.: Polyèdres
et Compilation. In: Rencontres francophones du Parallélisme (RenPar’20). Saint-
Malo, France (May 2011), 22 pages

11. ISO: ISO/IEC 9899:1999 - Programming Languages - C. Tech. rep., ISO/IEC
(1999), http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf, Infor-
mally known as C99.

12. ISO: ISO/IEC 9899:2011 - Programming Languages - C. Tech. rep., ISO/IEC
(2011), http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf, Infor-
mally known as C11.

13. Kasahara, H., Obata, M., Ishizaka, K.: Automatic Coarse Grain Task Parallel
Processing on SMP Using OpenMP. In: Midkiff, S., Moreira, J., Gupta, M., Chat-
terjee, S., Ferrante, J., Prins, J., Pugh, W., Tseng, C.W. (eds.) Languages and
Compilers for Parallel Computing, Lecture Notes in Computer Science, vol. 2017,
pp. 189–207. Springer Berlin Heidelberg (2001)

14. Kennedy, K., Allen, R.: Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (2001)

15. Kreinin, Y.: C as an intermediate language, http://yosefk.com/blog/
c-as-an-intermediate-language.html

16. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO’04). Palo Alto, California (Mar 2004)

17. Lee, S.I., Johnson, T., Eigenmann, R.: Cetus – An Extensible Compiler Infras-
tructure for Source-to-Source Transformation. In: Languages and Compilers for
Parallel Computing, 16th Intl. Workshop, College Station, TX, USA, Revised Pa-
pers, volume 2958 of LNCS. pp. 539–553 (2003)

18. Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K., Kasahara, H.: Hierarchical
Parallelism Control for Multigrain Parallel Processing. In: Pugh, B., Tseng, C.W.
(eds.) Languages and Compilers for Parallel Computing, Lecture Notes in Com-
puter Science, vol. 2481, pp. 31–44. Springer Berlin Heidelberg (2005)

19. Wolfe, M.J.: High Performance Compilers for Parallel Computing. Benjamin/Cum-
mings, Redwood City, CA, USA, 1st edn. (1996)

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://yosefk.com/blog/c-as-an-intermediate-language.html
http://yosefk.com/blog/c-as-an-intermediate-language.html

	From Data to Effects Dependence Graphs: Source-to-Source Transformations for C

