Nelson Lossing

Pierre Guillou

Mehdi Amini

François Irigoin

Keywords: Source-to-Source Compiler, Data Dependence Graph, C Language, Declaration Scheduling

Program optimizations, transformations and analyses are applied to intermediate representations, which usually do not include explicit variable declarations. This description level is fine for middle-ends and for source-to-source optimizers of simple languages. However, the C language is much more flexible: variable and type declarations can appear almost anywhere in source code, and they cannot become implicit in the output code of a C source-to-source compiler. We show that declaration statements can be handled like the other statements and with the same algorithms if new effect information is defined and handled by the compiler, such as writing the environment when a variable is declared and reading it when it is accessed. This extension has been used for several years in our PIPS framework and has remained compatible with its new developments such as offloading compilers for GPUs and coprocessors.

From Data to Effects Dependence Graphs: Source-to-Source Transformations for C 1 Introduction

Program optimizations, transformations and analyses are applied to intermediate representations, traditionnaly built with basic blocks of three-address code and a control flow graph. They usually do not include explicit variable declarations, because these have been processed by a previous pass and have generated constant addresses in the static area or offsets for stack allocations. This description level is used, for instance, in the Optimization chapter of the Dragon Book [START_REF] Aho | Compilers: Principles, Techniques, and Tools[END_REF]. It is fine for middle-ends and for source-to-source optimizers of simple languages, such as Fortran77, that separate declarations from executable statements. However, the C language, especially its C99 standard [11], is much more flexible. Variable and type declarations, which include expressions to define initial values and dependent types, can appear almost anywhere in the source code. And they cannot become implicit in the output code of a C source-to-source compiler, if the output source code is to be as close as possible to the input code and easy to read by a programmer. Thus source-to-source compiler passes that schedule statements must necessarily deal with type and variable declarations.

However, these statements have none or little impact in terms of the classical def-use chains or data dependence graphs [START_REF] Aho | Compilers: Principles, Techniques, and Tools[END_REF][START_REF] Kennedy | Optimizing Compilers for Modern Architectures: A Dependence-based Approach[END_REF][START_REF] Wolfe | High Performance Compilers for Parallel Computing[END_REF], which deal only with memory accesses. As a consequence, C declarations would be (incorrectly) moved away from the statements that use the declared variables, with no respect for the scope information. Is it possible to fix this problem without modifying classical compilation algorithms?

We have explored three main techniques applicable for a source-to-source framework. The first one is to move the declarations at the main scope level. The second one is to mimic a conventional binary compiler and to transform typedef and declaration statements into memory operations, which is, for instance, what is performed in Clang. The third one is to extend def-use chains and data dependence graphs to encompass effects on the environment and on the set of types.

In Section 2, we motivate the use of C source-to-source compilation, and we show, with an example, how Allen&Kennedy (or loop distribution) Algorithm misbehaves when classical use-def chains and data dependence graphs are used in the presence of declaration statements. We then provide in Section 3 some background information about the semantics of a programming language, and about automatic parallelization. We review in Section 4 the standard use-def chains and data dependence graphs and introduce in Section 5 and Section 6 our proposed extension, the Effects Dependence Graph (FXDG), to be fed to existing compilation passes. We look at its impact on them in Section 7 and observe that the new effect arcs are sometimes detrimental and must be filtered out, or insufficient because the scheduling constraints are not used. We then conclude and discuss future work.

Motivation

Why use source-to-source compilation? C source-to-source compilers have several key advantages over assembler or low-level intermediate compilers: the output code is more readable and can be easily compared to the input. Moreover, a C code is stable and portable; therefore maintenance is easier, so that the C language is also often used as an intermediate language [START_REF] Kreinin | C as an intermediate language[END_REF].

Practical Example

Consider the C99 for loop example in Listing 1. This code contains in its loop body declarations for a type and a variable at Lines 6-7. When loop fission/distribution [START_REF] Aho | Compilers: Principles, Techniques, and Tools[END_REF][START_REF] Wolfe | High Performance Compilers for Parallel Computing[END_REF] is applied blindly onto this loop, the typedef statement and the variable declaration are also distributed, as shown in Listing 2.

The loop distribution algorithm relies on the Data Dependence Graph to detect cyclic dependencies between the loop body statements. Yet the type and variable declarations carry no data dependencies towards the following statements or the next iteration, thus causing an incorrect distribution. The Data Dependence Graph (DDG) of Listing 1 is represented Figure 1. According to this DDG, no dependence exists between the type declaration statement (typedef This example highlights the inadequacy of the Data Dependence Graph for some classic transformations when applied on C99 source code. Should we design a new algorithm or expand the Data Dependence Graph with new precedence constraints?

Related Work

We did not find any related work as recent research compilers are dealing either with restricted input, e.g. polyhedral compilers and static control parts (SCoPs [4]), a good example being Pluto [START_REF] Bondhugula | A Practical Automatic Polyhedral Parallelizer and Locality Optimizer[END_REF], or are using robust parsers such as Clang [START_REF]Clang: A C Language Family Frontend for LLVM[END_REF]. The latter delivers low-level intermediate representations, such as the three-address code LLVM IR [START_REF] Lattner | LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation[END_REF], from which regenerating a higher-level source code is complex. Other source-to-source research compil-ers simply do not support the C99 standard: among them, Oscar [START_REF] Kasahara | Automatic Coarse Grain Task Parallel Processing on SMP Using OpenMP[END_REF][START_REF] Obata | Hierarchical Parallelism Control for Multigrain Parallel Processing[END_REF] and Cetus [START_REF] Lee | Cetus -An Extensible Compiler Infrastructure for Source-to-Source Transformation[END_REF].

Background and Notations

We have based our work on some code transformation passes of the PIPS compiler and on its high-level intermediate representation. PIPS is a source-to-source compilation framework [START_REF] Irigoin | Semantical interprocedural parallelization: an overview of the PIPS project[END_REF] developed at MINES ParisTech. Aiming at automatic code parallelization, it features a wide range of analyses over Fortran and C code. To carry out these analyses, PIPS relies on the notion of effects, which reflect how a code statement interacts with the computer memory. To better understand the benefits of this approach, we have to introduce several basic concepts about the semantics of procedural programming languages.

In Fortran and C, variables are linked to three different concepts: an Identifier is the name given to a specific variable; a Memory Location is the underlying memory address, usually used to evaluate Identifier; and a Value is the piece of data effectively stored at that memory address. For instance, a C variable declaration such as int a; maps an Identifier to a Memory Location, represented by &a, and usually allocated in the stack. To link these concepts, two functions are usually defined: the Environment function ρ takes an Identifier and yields some corresponding Memory Locations; and the Memory State or Store function σ gives the Value stored in a Memory Location. With the above, a Statement S can be seen as transforming a Store and Environment (in case of additional declarations) into another. We call memory effects of a Statement S the set of Memory Locations whose Values have been used or modified during the execution of S. Effects E are formally defined as a function taking a Statement and returning a mapping between a pre-existing Memory State and a set of Memory Locations. Equation 1 to Equation 4 provide the formal representation of the concepts defined above.

ρ ∈ Env = Identifier -→ Location (1) σ ∈ Store = Location -→ V alue (2) S : Store × Env -→ Store × Env (3) E : Statement -→ (Store × Env -→ P(Location)) (4)
Effects are divided into two categories: READ effects R S represent a set of Memory Locations whose Values are accessed, but not modified, whereas WRITE effects W S represent Memory Locations whose Values are written during the execution of S on a given Memory State. A statement's READ and WRITE effects, usually over-approximated for safety by static analyses, satisfy specific properties [START_REF] Irigoin | Polyèdres et Compilation[END_REF], which can be used to show that Bernstein's conditions [START_REF] Bernstein | Analysis of Programs for Parallel Processing[END_REF] are sufficient to exchange two statements without modifying their combined semantics. This is also the foundation of automatic loop parallelization.

These READ and WRITE effects can be refined into IN and OUT effects to specify the Values that "really" have an impact on the semantics of the statement (IN), or are used by its continuation (OUT). These are similar to the live-in and live-out variables [START_REF] Aho | Compilers: Principles, Techniques, and Tools[END_REF].

The data structure used in PIPS for modelling effects is represented in Listing 3. More precisely, PIPS effects associate an action -READ or WRITEto a so-called memory cell, which represents a reference and can be a variable memory address, a combination of an array pointer and an index, or a struct and one of its fields. The unit keyword means that no additional information is carried by the corresponding field.

Many analysis and transformation passes in PIPS are based on effects, called effects for simple scalar variables, or regions for arrays. In particular, effects are used to build use-def chains and the Data Dependence Graph between statements. More information about effects and regions can be found in [START_REF] Creusillet | Array Region Analyses and Applications[END_REF].

Data Dependence Graph

The Data Dependence Graph is used by compilers to reschedule statements and loops. A standard Data Dependence Graph [START_REF] Aho | Compilers: Principles, Techniques, and Tools[END_REF][START_REF] Wolfe | High Performance Compilers for Parallel Computing[END_REF] exposes essential constraints to prevent incorrect reordering of operations, statements, or loop iterations. A Data Dependence Graph is composed of three different types of constraints: flow dependence, anti-dependence and output dependence.

Note that the Data Dependence Graph is based on memory read and write operations, a.k.a. uses and definitions. So, to take into account the implicit mechanisms used by the compiler, implicit memory accesses have to be added to obtain consistent READ and WRITE effects. We want to keep these new accesses implicit to make further analyses and transformations easier, and to be able to regenerate a source code as close as possible to the original. Standard high-level use-def chains and DDG are unaware of these implicit dependencies. However, they are key when generating distributed code [START_REF] Wolfe | High Performance Compilers for Parallel Computing[END_REF] or when isolating statements [START_REF] Guelton | Beyond Do Loops: Data Transfer Generation with Convex Array Regions[END_REF].

Limitations

The problem with the standard Data Dependence Graph is that the ordering constraints are only linked to memory accesses. A conventional Data Dependence Graph does not take into account the address of the variables, and even less the declaration of new types, even when they are necessary to compute a location. In fact, when the C language, especially the C99 standard, is considered, many features imply new scheduling constraints for passes using the Data Dependence Graph:

Declarations anywhere is a new feature of C99, also available in C ++ . This feature implies for a source-to-source compiler to consider these declarations and to regenerate the source code with the declarations at the right place within the proper scope. Dependent types, especially variable-length arrays (VLA), are a new way to declare dynamic variables in C99. The declarations cannot be grouped at the same place, regardless of precedence constraints. User-defined types such as struct, union, enum or typedef can also be defined anywhere inside the source code, creating dependences with the following uses of this type to declare new variables.

Workarounds

A possible approach for solving these issues in a source-to-source compiler is to mimic the behavior of a standard compiler that generates machine code with no type definitions or memory allocations. In this case, we can distinguish two solutions.

The first one works only on simple code, without dependent types. The declarations can be grouped at the expense of stack size and name obfuscation at the beginning of the enclosing function scope.

The second one is more general. The memory allocations inserted by the binary compiler can be reproduced. Analyses and code transformations are performed on this low-level IR. Then the source code is regenerated without the low-level information.

Flatten Code Pass Code flattening is designed to move all the declarations at the beginning of functions in order to remove as many environment extensions (introduced by braces, in C) as possible and to make basic blocks as large as possible. So all the variables end up in the function scope, and declaration statements can be ignored when scheduling executable statements.

Some alpha-renaming must also be performed during this scope modification: if two variables share the same name but have been declared in different scopes, new names are generated, considering the scope, to replace the old names while making sure that two variables never have the same name.

This solution is easy to implement and can suit a simple compiler.

The result of Listing 1 after calling flatten code is visible on Listing 41 . Listing 5 is the result of a loop distribution performed on Listing 4. Note that the second loop is no longer parallel and that a privatization pass is necessary to reverse the hoisting of the declaration of x. However, this solution only works on simple programs without dependent types, because dependent types imply a flow dependence between statements and the declarations. As a consequence, the declarations cannot be moved up anymore.

Besides, even in simple programs, the operational semantic of the code can be changed. In our above example, flatten code implies losing the locality of the variable x. As a consequence, the second loop cannot be parallelized, because of the dependence to the shared variable x. Without flatten code, the variable x is kept in the second loop, which remains parallel.

Furthermore, code flattening can produce an increase in stack usage. For instance, if a function has s successive scopes that declare and use an array a of size n, the same memory space can be used by each scope. Instead, with code flattening, s declarations of different variables a1, a2, a3. . . are performed, so s×n memory space is used.

Code flattening also reduces the readability of the code, which is unwanted in a source-to-source compiler. The final code should be as close as possible to the original code.

Frame Pointer Another solution is to reproduce the assembly code generated by a standard compiler, e.g. gcc. A hidden variable, called the current frame pointer (fp), corresponds to the location where the next declared variable is allocated. At each variable declaration, the value of this hidden variable is updated according to the size of the variable type. In x86 assembly code, the stack base pointer ([e|r]bp) with an offset is used. Moreover, for all user-defined types, hidden variables are also added to hold the sizes of the new types. In this way, the source-to-source compiler performs like a binary compiler.

However, this method implies to add many hidden variables. All of these hidden variables must have a special status into the internal representation of the source-to-source compiler. Besides, this solution adds constraints between declarations that do not exist. Since all declarations depend on the frame pointer, which is modified after each declaration, no reordering between declarations is legal, for instance. With the special status of these new variables, the generation of the new source code is also modified and can be much harder to perform.

Listing 7 illustrates a possible resulting informal internal representation inside a source-to-source compiler. On the corresponding Data Dependence Graph, the declaration of the type mytype, the declaration of Variable x and the initialization of x and b are strongly connected, and therefore will not be separated when applying loop distribution.

Nevertheless, the regeneration of a high-level source code with the new internal representation has to be redesigned completely so as to ignore the hidden variables while considering the type and program variable declarations. Thus this solution is not attractive for a source-to-source compiler.

Effects Dependence Graph

Instead of modifying the source code or adding hidden variables, we propose to use the code variables, including the type variables, to model the transfor-mations of the environment and type functions. For this purpose, we extend the memory effects analysis presented in Section 3 by adding an environment function for read/write on variable memory locations, and a type declaration function for read/write on user-defined types. By extending the effects analysis with two new kinds of reads and writes, we define a new dependence graph that extends the standard Data Dependence Graph. We name it the Effects Dependence Graph (FXDG).

Environment function

The effects on the environment function ρ, read and write, are strictly equivalent to the effects on the store function σ, a.k.a. the memory. A read is an applicability of ρ, which returns the location of an identifier. A write updates the function ρ and maps a newly declared identifier to a new location. So when a variable is declared, a new memory location is allocated, which implies a write effect on the function ρ. Its set of bindings is extended by the new pair (identifier, location). Similarly, when a variable is accessed within a statement or an expression, be it for a read or a write, the environment function ρ is used to obtain the corresponding location, needed to update the store function σ. So effects on the function ρ track all accesses and modifications of ρ, without ever taking into account the value that σ maps to a location. Type function τ To support memory allocation, the type function τ maps a type identifier to the number of bytes required to store its values. It is used for all user-defined types, be they typedef, struct, union or enum. The effects on τ , read and write, correspond to apply and update operations. When a new user-defined type is declared, τ is updated with a new pair (identifier, size). This is modeled by a write effect on τ . When a new variable is declared with a user-defined type, the type function τ is applied to the type identifier, i.e., a read effect occurs.

The traditional read and write effects on the store function, a.k.a. memory, are thus extended in a natural way to two other semantic functions, the environment and the type functions. The common domain of these two new functions is the identifier set, for variables and user-defined types. In practice, the parser uses scope information to alpha-rename all identifiers. The traditional memory effects are more difficult to implement because they map locations and not identifiers to values. Static analyses should be based on an abstract location domain. However, a subset of this domain is mapped one-to-one to alpha-renamed identifiers. Thus, the three different kind of effects can be considered as related to maps from locations to some ranges, which unify their implementation.

The advantage of this solution is the preservation of the original source code, unlike the above flatten code solution. Also, no new variable is introduced to transform effects on the environment and types into effects on store, as is shown by the generated assembly code. Moreover, no modification is required for the source code prettyprinter. Furthermore, loop parallelization can be properly performed using this new dependence graph.

The new effects can be implemented in two different ways, with different impacts on the classical transformations based on the Data Dependence Graph.

The first possibility is to consider separately the effects on stores, environments and types, and to generate use-def chains and dependence graphs for each of them, and possibly fusing them when it is necessary.

The second possibility is to colorize the effects and then use a unique Effects Dependence Graph to represent the arcs due to each kind of functions. Passes based purely on the Data Dependence Graph have to filter out arcs not related to the store function. Merging different dependence graphs This first approach creates a specific dependence graph for each kind of effects, a Data Dependence Graph, an Environment Dependence Graph and a Type Dependence Graph. To obtain the global Effects Dependence Graph required as input by passes such as loop distribution, these three graphs are fused via a new pass in PIPS.

As an example, PIPS manages resources for effects on variable values and could manage two new resources for effects on environment and for effects on types. With three effect resources, it is now possible to generate three different dependence graphs, one for each of our effect resources: a Data Dependence Graph, an Environment Dependence Graph and a Type Declaration Dependence Graph. The union of the three different dependence graphs of the example in Listing 1, the total Effects Dependence Graph, is presented in Figure 2.

With these new dependence graphs, the loop distribution algorithm produces the expected Listing 8. The loops can then be properly parallelized, as shown in Listing 9. Since we have a dependence graph for each kind of effects, we can independently select which dependence graph we need to compute or use. Still, at the implementation level, these independent dependence graphs also imply to launch three different analyses and to fuse their results with a fourth pass to obtain the Effects Dependence Graph for loop distribution.

A unique dependence graph with three colors This second approach consists in extending the current use-def chains and data dependence graph with the different kinds of effects. On this Effects Dependence Graph, some colorization is used to distinguish between the different kinds of effects: data values, memory locations and types.

With this approach, the data structure for effects in PIPS is refined with information about the action kind as shown in Listing 10. Since the change is applied at the lowest level of the data structure definition, the existing passes dealing with reads and writes are left totally unchanged. The Effects Dependence Graph for Listing 1 is identical to the result of the first approach (Figure 2). This implementation leads to the same output of loop distribution and loop parallelization than the three-graphs approach (see Listing 8). Besides, only one dependence graph is generated; so we do not need to manage three different ones, plus their union.

However, since we only have one global dependence graph 2 , all the transformations that use the data dependence graph have access to all the dependence constraints on all kinds of effects. Sometimes, these new constraints might pre-Transformations That Should Filter the FXDG When the legality of a pass is linked to the values reaching a statement, the new arcs, which embody address or type information, are not relevant. For instance, a forward substitution pass uses the use-def chains, also known as reaching definitions, to determine if a variable value is computed at one place or not. Additional arcs due to the environment are not relevant and should not be taken into account.

When applying Forward Substitution to the loop body of Listing 8, the Read after Write Environment dependency between the statements mytype x; and b[i] = x; prevents the compiler from subtitution, x by i. Filtering out the Environment and Type Declaration effects is, in this case, necessary to retrieve the expected behavior.

The Isolate Statement pass [START_REF] Guelton | Beyond Do Loops: Data Transfer Generation with Convex Array Regions[END_REF] is used to generate code for accelerators with private memories such as most GPUs and FPGA-based ones. The purpose is to transform one initial statement S into three statements, S1, S2 and S3. The first statement, S1, copies the current values of locations used by S into new locations. The second statement, S2, is a copy of statement S, but it uses the new locations. Finally, the third statement, S3, copies the values back from the new locations into the initial locations. This S2 has no impact per se on the initial store and can be performed on an accelerator. Statement S1 is linked to the IN regions of Statement S, while Statement S3 is linked to the OUT regions of Statement S. Since only values are copied, it is useless to count variables declarations as some kind of IN effect, although type information may be needed to declare the new variables, especially if dependent types are used.

Transformations That Need Further Work Some transformations do not use scheduling information, but the standard implementations may not be compatible with type declarations or dependent types.

For instance, the pass that moves declaration statements at the beginning of a function in PIPS (flatten code) does not use data dependence arcs. When dependent types or simply variable-length arrays are used in typedef or variable declaration statements, scheduling constraints exist and must be taken into account. A new algorithm is required for this pass, and the legality of the existing pass can be temporarily enforced by not dealing with codes containing dependent types.

In the same way, loop unrolling, full or partial, does not modify the statement order and does not take any scheduling constraint into consideration. However, its current implementation in PIPS is based on alpha-renaming and declaration hoisting to avoid multiple scopes within the unrolled loop or the resulting basic block. This is not compatible with dependent types, and non-dependent types are uselessly renamed like ordinary variables.

Conclusion

C99 is a challenge for source-to-source compilers that intend to respect as much as possible the scopes defined by the programmers because of the flexibility of the type system and the lack of rules about declaration statement locations. We show that some traditional algorithms fail because the use-def chains and the data dependence graph do not carry enough scheduling constraints. We explore three different ways to solve this problem and showed that adding arcs for transformations of the current type set and environment was the most respectful for the original source code and existing passes. The new kinds of read and write effects fit easily in the traditional use-def chains and data dependence graph structures. Passes that need the new constraints are working right away when fed the effects dependence graph. Some passes are hindered by these new constraints and must filter them out, which is very easy to implement. Finally, some other passes are invalid for C99 declarations, but are not fixed by using the Effects Dependence Graph because they do not use scheduling constraints.

The newer C11 standard [12], released in 2011 by the ISO/IEC as a revision of C99, is more conservative in terms of disruptive features. In some ways, C11 is actually a step backwards: some mandatory C99 features have become optional. Indeed, due to implementation difficulties in compilers, Variable-Length Arrays (VLA) support is not required by the C11 standard. With VLAs out of the scope, declarations can more easily be moved around without modifying the code semantic. The solution proposed in this article is still valid for C11 code.

Listing 2 :

 2 After (incorrect) loop distribution of Listing 1 int mytype;), the variable declaration (mytype x;) and the two statements referencing variable x (x = i; b[i] = x;).

Fig. 1 :

 1 Fig. 1: Data Dependence Graph of Listing 1

 effects = effects : effect * ; effect = cell x action x [...] ; cell = reference + [...] ; reference = variable : entity x indices : expression * ; entity = name : string x [...] ; expression = syntax ; syntax = reference + [...] ; action = read : unit + write : unit ; Listing 3: READ/WRITE effects syntax in PIPS

Listing 6 :

 6 Initial code example from Listing 1 void example () { int fp =0; a = fp ; fp -= 10* $int ; b = fp ; fp -= 10* $int ; { & i = fp ; fp -= $int ; for (*(& i)=0;*(& i) <=9;*(& i)+=1) { a [*(& i)] = *(& i); $mytype = $int ; & x = fp ; fp -= $mytype ; *(& x) = *(& i); b [*(& i)] = *(& x);} fp += $mytype ;} fp += $int ; return ; } Listing 7: IR with frame pointer of Listing 6: sizeof(xxx) are represented as $xxx and dynamic adresses as &x

Fig. 2 :

 2 Fig. 2: Effects Dependence Graph for Listing 1. (full arc = data dependence (W, R), dashed arcs = environment dependence (WE, RE), dotted arcs = type dependence (WT, RT))

Generated variables are really new variables because they have different scopes.

We can also use a PIPS property to compute and use either the Data Dependence Graph or the Effects Dependence Graph, but it is hard to maintain consistency when properties are changed.

vent some optimizations, even though these constraints are always correct. These issues are studied in the next section.

Impact on Transformations and Analyses

The introduction of the Effects Dependence Graph allows source-to-source compilers to better support the C99 specification. However, not all classical code transformations and analyses benefit from this new data structure. In this section, we discuss the impact of replacing the Data Dependence Graph by the Effects Dependence Graph in source-to-source compilers.

Transformations Using the Effects Dependence Graph Some transformations require the new environment effects and the corresponding dependencies. In fact, in some passes, we cannot move or remove the declaration statements.

The first example is the Allen & Kennedy [START_REF] Allen | Automatic Translation of FORTRAN Programs to Vector Form[END_REF] algorithm on for loop parallelization and distribution that we used in Section 2. These algorithms were designed for the Fortran language initially. When proposing solutions to extend them for the C language, Allen & Kennedy [START_REF] Kennedy | Optimizing Compilers for Modern Architectures: A Dependence-based Approach[END_REF] only focused on pointer issues and not on declarations ones.

Another typical algorithm that requires our Effects Dependence Graph is Dead Code Elimination [START_REF] Aho | Compilers: Principles, Techniques, and Tools[END_REF]. Without our Effects Dependence Graph, the traditional dead code elimination pass either does not take declarations into count, i.e., never eliminates a type or variable declaration statement, or always eliminates them since no dependence arcs link them to useful statements. So, either the dead code elimination pass performs half of its job, or it generates illegal code when the classical use-def chains is the underlying graph, when applied to the internal representation of a source-to-source compiler instead of to three-address code.