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Abstract. In solidification processes  of large industrial castings and ingots , the transport of 
solid in the liquid has an important effect on the final grain structure and macrosegregation. 
Modeling is still challenging as complex interactions between heat and mass transfers at 
microscopic and macroscopic scales are highly coupled. This paper first presents a multi-scale 
numerical solidification model coupling nucleation, grain growth  and solute diffusion at 
microscopic scales with heat and mass transfer, including transport of liquid and solid phases at 
macroscopic scales. The resolution consists of a splitting method, which considers the 
evolution and interaction of quantities during the process with a transport stage and a growth 
stage. This splitting reduces the nonlinear complexity of the set of considered equations and 
provides an efficient numerical implementation. It is inspired by the work of Založnik et al. 
[1,2], which used a finite volume method (FVM). The present work develops the solution 
based on the finite element method (FEM). Numerical results obtained with this model are 
presented and simulations without and with grain transport are compared to study the impact of 
solid-phase transport on the solidification process and on the formation of macrosegregation. 
 

1.  Introduction 
Solidification modelling accounting for melt convection and solid movement has been limited. The 
first important works were proposed with a volume-averaged model consistently connecting 
microscopic phenomena to macroscopic transports [3-6]. The transport of the solid structure was based 
on a population balance written for the equiaxed grains. Similar solidification modeling was later 
further developed [1,2,7-10]. The numerical resolution algorithm proposed by Založnik and Combeau 
[1] efficiently dealt with the complexity of the strongly coupled problem by using a splitting method. 
This splitting method was successfully applied to large industrial castings [11]. It is worth noticing 
that these models were based on the finite volume method (FVM), while the use of the finite element 
method (FEM) has been rarely considered for volume-averaged multiphase multiscale modelling of 
solidification. Besides ongoing advancements with FVM, the present study aims at developing FEM 
solvers when solid transport is to be considered. In this paper, a numerical FEM solidification model is 
presented accounting for microscopic phenomena as well as for the motion of solid and liquid. First, 
the macroscopic conservation equations and the constitutive relations describing interfacial 
interactions and exchanges are summarized. The resolution method and the numerical implementation 
for the set of non-linear equations are then detailed. Finally, numerical simulations using the current 
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model are performed to validate the numerical implementation. Results demonstrate an efficient FEM 
resolution scheme implemented for the purely convective transport problem, which is difficult to solve 
numerically with the FEM in the absence of diffusive effects.  

2.  Model description 

2.1.  Macroscopic conservation equations and constitutive relations 
The macroscopic conservation equations of mass, momentum, species and energy for each phase α, 
(1)-(4) respectively, are obtained by averaging the microscopic equations over a representative 
elementary volume. Details on this averaging method can be found elsewhere [12].  
 
Mass  (    )

  
    (      〈  〉 )          (1) 
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where the superscript   represents phase α; the notation 〈 〉 indicates the average value;   is the 
volume fraction;   is the mass density;   is the velocity vector;   is the concentration;   is the 
enthalpy; p is the pressure;   is the viscous stress;   is the body force per unit volume;   is the species 
flux;   is the heat flux;     are the change rates of mass due to the phase change and the nucleation. 

Except    the other terms related to the nucleation, noted with the superscript  , are neglected. The 
change rates of momentum, solute mass and energy due to the phase change are expressed respectively 
as 

      ̅       
     ̅           ̅     (5) 

 
The solute flux at the solid/liquid interface (6) is defined as a function of the difference of the variation 

between the average solute concentration in the phase 〈  〉  and at the interface,    . Over a 
representative elementary volume, the temperature is considered to be uniform, therefore the heat flux 

     is equal to zero. 

     
      

 

  
 

(    〈  〉 )  (6) 

 
The interfacial terms for mechanical interactions between the solid and liquid phases are distinguished 
considering two regimes: the slurry regime in which solid grains are small and freely move in the 
liquid phase; and the porous regime in which they become larger, heavier and aggregate to fixed 
regions (e.g., packed beds of equiaxed grains or mold boundaries).  
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where  ̅  ,  ̅  ,  ̅   are respectively the averages of velocity, concentration and enthalpy of phase α 
over the interfacial area;    is the interfacial area concentration;    ,   represent the solutal and 
thermal diffusivities;       

  are the characteristic solutal and thermal diffusion lengths [13] ;      are 
the cross section area and the volume of grains respectively;    is the drag coefficient  [14]; the 
permeability   is modelled by the Kozeny-Carman equation. 
 
The distribution of solid grains is modelled by the population balance equation as 

   

  
   (   〈  〉 )        (9) 

where N is the grain density per unit volume and       represents the nucleation source.  

2.2.  Resolution method and numerical implementation 
Strong coupling exists between the quantities in the above equations, describing at the same time 
macroscopic transports and microscopic phenomena. It requires dedicated algorithms to find the 
solution of the set of non-linear equations. In this section, the implementation of a splitting method 
proposed earlier [1,2] is presented. The general resolution algorithm is shown in Figure 1. In the first 
step, the mixture energy conservation obtained by adding up equations (4), written for the solid and 
liquid phases with equal intrinsic average temperatures for the phases, i.e. equation (10) in Figure 1, is 
solved to determine the average specific enthalpy 〈 〉. Note that the phase densities are assumed 
constant and equal for all phases in the present model. In the next step, the evolution of the total mass, 
of the grain density and of the mass of species are computed in the transport stage. For that purpose, 
Eqs. (2), (3) and (9) are solved by keeping only the transport terms and neglecting those related to 
nucleation and growth of the equiaxed grains, which leads to Eqs. (11-13) in Figure 1. The values 
deduced from the transport stage for the solid fraction,    

 , and the compositions 〈  〉  
  and 〈  〉  

 , 
are used to initialize the subsequent nucleation and growth stage. The number of nucleated grains is 
determined by Eq. (14). The growth rate of solid grains,       , and the composition at the 
interface,    and    , are determined by the energy balance and the interfacial solute mass balance, 
Eqs. (15) and (16) in Figure 1 respectively. Knowing these quantities it is possible to determine the 
variations of the solid fraction as well as those of the intrinsic average compositions for each phase by 
Eqs. (17) and (18) and hence the actual solid fraction,      and compositions, 〈  〉    and 〈  〉   . The 
final evolution of quantities includes contributions of these two stages. The solid and liquid velocities 
as well as the pressure are determined by solving the momentum conservation Eqs. (2) and the 
continuity Eq. (19). At each time-step, iterations are performed until all variables are converged, as 
schematized by the CV diamond and the feedback arrow on the left hand side of Figure 1. This 
ensures coherency between the solution of the complete set of equations with the FEM at the 
macroscopic scale (Eqs. (10-13), (19) and (2) in Figure 1) with the local solutions for the microscopic 
processes described by Eqs. (14-18) in Figure 1. 
In the work presented here, a particular treatment is carried out by adding the artificial diffusion terms 
to Eqs. (11-13) in order to stabilize the FEM resolution of the purely advective transport equations. 
The artificial diffusion coefficient    used in this study depends on the characteristic mesh sizes, 
    
 , and on the spatial variation of velocities, as seen in Figure 1. This treatment is inspired by the 

treatments used for supersonic reacting flows [15] but it is modified to adapt to solidification 
modelling. In order to respect the mass conservation and to ensure consistence of all transported 
quantities, the same artificial coefficient is applied to the energy, Eq. (10). All terms related to the 
artificial diffusion are marked with yellow squares in Figure 1.   
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Figure 1. Resolution algorithm 

3.  Simulation results and discussion 

3.1.  1D simulation – Study of the growth stage  
For verification purposes the model is first tested for a case of pure diffusion. This tests its capacity to 
account for the grain growth kinetics at the microscopic scale. Both liquid convection and solid 
transport are neglected. Solidification occurs in a one-dimensional manner. This is achieved by 
defining a 1 mm thick and 100 mm wide domain cooled from one of its narrow sides. Six sensors are 
defined at along the sample, two at both ends and four between them with a regular spacing of 2 cm. 
The thermophysical properties of the material are taken from reference [16] and are representative of a 
binary Al-4wt%Cu alloy, except for the solute diffusivity coefficients and the grain density. These two 
parameters are control parameters. They are used to switch between a case with a very high solute 
diffusion, so-called “infinite” diffusion and the other case for a lesser diffusion, so-called “finite” 
diffusion, as indicated in Figure 2. 
Figure 2 shows a comparison of the cooling curves (left) and solid fraction evolutions (right) at six 
sensors between the “infinite” solute diffusion case (green curves) and the “finite” diffusion case (red 
curves): a) with high diffusion in the solid phase; b) with no solute diffusion in the solid phase. In the 
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case with “finite” diffusion, it can be noticed that the first red curve on the cold side presents a 
recalescence close to the liquidus temperature, which is not computed when liquid composition is well 
mixed, i.e. for the green curves. This phenomenon is captured by the present model because it takes 
into account nucleation and grain growth kinetics. It depends on both the values of the grain density 
and the liquid diffusion coefficient. Yet the red curves are found to depart very little from the green 
curves that were verified to exactly retrieve the lever rule approximation. With high values of the 
Lewis number (the ratio between heat diffusivity and mass diffusivity), solidification at microscopic 
scale is dominated by solute diffusion. A limited solute diffusion results in a slow phase 
transformation at the beginning of solidification which is illustrated by a discrepancy of solid fraction 
evolutions between the “infinite” and “finite” diffusion cases. The discrepancy decreases as 
solidification progresses. This can be explained by the fact that during solidification only a part of the 
liquid solute content is transferred to the solid due to solute partitioning. The rest that is rejected from 
the solid builds up in the liquid between grains. The increase of solutal gradients around the 
solidification front and the extension of solid-liquid surfaces accelerate solute mixing. In the case of 
no solute diffusion in the solid phase, a formation of eutectic structure is predicted toward the end of 
solidification when the eutectic temperature is reached, as shown in Figure 2b. The amount of eutectic 
is proportional to the final vertical jump of the solid fraction curves to reach unity. It was also checked 
that the green curves in Figure 2b tends toward the solution with the Gulliver-Scheil approximation, 
further validating the implementation of the microscopic growth stage. 
    

 

 

 

 

Figure 2. Cooling curves (left); Temporal evolutions of the solid fraction (right) 
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3.2.  1D simulation – Study of the transport stage  
In the previous section, the growth stage combined with the energy resolution showed the ability of 
the present model to model solidification without motion. In the present section, the transport stage is 
carried out by studying the sedimentation of solid grains. This is first done neglecting the nucleation 
and growth stages, i.e. with a given number of grains of constant size. The properties chosen for this 
test come from a binary Sn-5wt%Pb [2]. At the beginning, the grains are distributed with a fixed 
density, 109 grains m-3, within a subdomain of 20 mm to 80 mm of a 10 mm × 100 mm sample, as 
shown in Figure 3a at time t = 0 s. The fraction of solid in this subdomain, shown in Figure 3c-top, is 
0.1, thus fixing the grain radius to 288 µm. The intrinsic solute composition of the liquid is 5 wt%Pb 
in the entire sample and the intrinsic composition of the solid is 0.328 wt%Pb where the solid is 
present and zero elsewhere. The average composition is thus not homogeneous at 5 wt%Pb. The initial 
temperature, 498.057 K, is computed by using the lever rule so that it directly corresponds to the solid 
fraction and the compositions. An unstructured triangular mesh with a size of 0.5 mm and a constant 
time step 0.01 s are used. 
The sedimentation process is illustrated through the maps of solid fraction and its profiles at 2 s, 5 s 
and 10 s, as shown in Figures 3a and 3c-top. From the initial state, the solid grains fall with a velocity 
of around 7 mm s-1, computed through a balance of forces acting on the grains (Figure 3b). The first 
grains arrive at the sample bottom after 3 s and begin to accumulate until the characteristic packing 
fraction is reached (taken as 0.3).  During the computation, the velocity of the grains moving towards 
the zone near the packing area is adjusted so that these grains can land smoothly in the packed bed, i.e. 
reaching 〈  〉    at the packing limit. To be more specific, on the one hand, the solid velocity is 
reduced by viscous effect, as the viscosity strongly increases when the solid fraction is close to the 
packing value [17]. On the other hand, if the grains go so fast, their velocity is multiplied by a factor 
calculated by dividing their current distance to the packing limit by the distance which they can go due 
to their velocity projected on the gradient of solid fraction. Without these numerical remedies, the 
solid fraction of the packed zone can exceed the packing fraction, which is caused by a brutal stop of 
grains arriving in the packed area.  
As the grain motion involves the transport of other quantities, it is important to verify the consistency 
of their transports. Figure 3c-center presents the profiles of the average composition at 0 s, 2 s (before 
the grains have reached the bottom of the domain), 5 s (accumulation below the packing limit) and 10 
s (end of packing). They show consistency with those of the solid fraction. When the solid grains 
sediment, solute-rich liquid with 5wt%Pb rises and fills the region left by the grains. The average 
composition of 3.6 wt% Pb in the negative segregation zone at the bottom corresponds precisely to the 
final state of 30% of solid at 0.328 wt%Pb and 70% of liquid at 5 wt% Pb. In addition, as expected for 
a pure transport simulation, the temperature does not change during this process. This is seen in Figure 
3c-bottom. A good overall conservation of all quantities is also verified, the maximum relative errors 
of solute mass and energy being about 10

-6
 and 10

-5
, respectively. 

This section deals with difficulties in FEM modelling of purely advective transport, as its solution 
presents numerical instabilities. To remedy these difficulties an addition of adequate artificial 
diffusion is necessary along with the aforementioned modifications of the solid-velocity calculation.  
These remedies are necessary to be able to solve the equations of the present model with the FEM. In 
this work the addition of artificial diffusion was done and examined very carefully, in order to ensure 
consistency between all the quantities and the conservation of mass and energy. 
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b)  c) 

Figure 3. a) Solid fraction distribution at 0 s, 2 s, 5 s and 10 s. 
                b) Vectors of the solid phase (left) and of the liquid phase (right) at 2 s and 5 s. 
                c) Profiles of the solid fraction (top), the average composition (center) 
 and the temperature (bottom) at 0 s, 2 s, 5 s and 10 s. 

 
 

2s 5s 10s 0s 

Liquid velocity 

2s 5s 

Solid velocity 

2s 5s 
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3.3.  2D solidification simulations  
Following the 1D simulations, two 2D solidification cases are simulated and compared. Both cases 
involve a Sn-5wt%Pb alloy. Case 1 accounts for thermo-solutal liquid convection but considers a fixed 
solid phase and Case 2 includes both liquid convection and solid movement due to liquid advection 
and sedimentation. The sample of 0.06 m x 0.1 m size is cooled from the left hand side. The initial 
liquid metal temperature is 260°C. An unstructured triangular mesh with constant size, 1 mm, and a 
time step of 0.01 s are used. 
In Case 1 there is no solid transport, therefore the terms relating to the solid motion in the equations 
presented in section 2 are set equal to zero; the packing fraction is considered as equal to zero. In 
Case 2, the full model is applied accounting for grain growth and transport phenomena, in which the 
solid phase is supposed to be stationary when its fraction reaches the packing value.  
The simulation results of Case 1 and Case 2 are compared in Figures 4 and 5. Figure 4 displays the 
solid velocity vectors, the liquid velocity streamlines and the solid fraction distribution. The black line 
represents the limit between the packed and the slurry zones. The solidification sequence in these two 
cases is quite different. In Case 1, initial solid grains nucleated on the cooled side are fixed there and 
when solidification proceeds, newly formed solid grains attach to the existing solid layers. The global 
solidification front thus advances from left to right. This is close to a columnar growth situation. In 
Case 2, after nucleation due to the gravity force and the liquid advection, solid grains sink downwards 
to the bottom as well as are transported far away by liquid flow. During this process, some grains 
travel in the slurry region and strongly affect the movement of the liquid phase, while the largest 
grains settle and accumulate as an increasing solid layer forming from at the bottom.  
In addition, solidification progresses faster in Case 2 compared to Case 1. This can be explained by the 
fact that the solid grains that settle in the vicinity of the cold mold are replaced by a hotter liquid 
phase. Consequently, the global heat exchange between the metal and the mold takes place more 
efficiently and results in faster solidification, as shown at 360 s. 
The final macrosegregation maps are shown in Figure 5. Although higher solute content is found at the 
bottom area for both cases, its formation mechanism is quite different. In Case 1, it is primarily 
governed by natural convection in the zone with relatively high liquid fraction. The solid zone extends 
from left to right and the rejected solute is progressively accumulated in the bottom-right region due to 
the higher density of the solute-enriched liquid. A high solute concentration is therefore found at the 
bottom-right corner.  
For Case 2, at the initial stage, sedimentation of solute-depleted grains leads to a rigid solid layer and a 
negative segregation in the lower part. As the process evolves, an intergranular downward flow builds 
up in the packed porous zone, which brings the solute from the upper to the lower region. At the very 
bottom of the cavity, the intensity of the flow through the mushy zone is sufficient to lead to remelting 
and finally forms a positive segregation.  
Through this section, we study the effect of the solid transport on the solidification sequence as well as 
the formation of macrosegregation. The results of the solid fixed case obtained from the present 
formulation with high values of solute diffusion coefficients retrieve those simulated with the lever 
rule model from the literature using FVM [2], and our FEM simulation. For the solid transport 
modeling, further evaluation that would be necessary will be carried out in the future. 
  

MCWASP IOP Publishing
IOP Conf. Series: Materials Science and Engineering 84 (2015) 012007 doi:10.1088/1757-899X/84/1/012007

8



 
 
 
 
 
 

 

100 s 

 

Case 1 (Fixed solid) 

 

 Case 2 (Solid transport) 

 

360 s 

 

Figure 4. Solid fraction distribution displayed with (violet arrows) solid velocity vectors  
and (white contours) liquid velocity streamlines. 

 
 
 

 

 

 

Case 1 (Fixed solid) 

 

 Case 2 (Solid transport) 

Figure 5. Final macrosegregation maps. 
 

4.  Conclusion 
This paper presents a FE numerical model taking into account microscopic processes as well as the 
macroscopic transport phenomena. The resolution is based on splitting scheme, in which the transport 
stage is solved independently from the nucleation and growth stages. The coupling between the two 
stages is achieved through an iterative procedure. Simulations were first carried out to test the 
capabilities of this model to deal with pure growth and pure transport situations. Then the model is 
applied to solidification with a fixed solid phase and with the transport of solid grains. The main 
results can be summarized as follows. 

 The present model incorporates a microsegregation approach able to simulate solidification 
paths with finite diffusion in solid and liquid phases, including the recalescence phenomenon.  
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 The vertical sedimentation of particles has been simulated by the FE model and consistent 
time and space evolutions of all quantities during transport have been verified. 

 Compared to the fixed solid case, results obtained with this new FE model for solid transport 
show an important influence of solid motion on solidification progression and on formation of 
macrosegregation.  

Simulation results would be further assessed by comparing with other works and experimental results. 
Combined with mesh adaptation techniques, the present model should provide industry with a 
promising tool for modeling castings. Further development should encompass the extension to 
multicomponent alloys and the consideration of various morphologies of the solid phase. 
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