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Abstract. We present a new method to handle a representative elementary volume (REV) with 
a mixture of columnar and equiaxed grains in ingot castings in the framework of an Eulerian 
volume averaged model. The multiscale model is based on a previously established fully 
equiaxed model. It consists of a three-phase (extra-granular liquid, intra-granular liquid and 
solid) grain-growth stage coupled with a two-phase (solid and liquid) macroscopic transport 
stage accounting for grain and nuclei movement. 
In this context, we take into account the formation of a columnar structure and its development 
using a simplified front-tracking method. Columnar solidification is coupled with the growth of 
equiaxed grains ahead of the columnar front. The particularity of the model is the treatment of 
concurrent growth of mixed columnar and equiaxed structures only in the volumes that contain 
the columnar front. Everywhere else, the structure is considered either fully columnar or fully 
equiaxed. This feature allows for reasonable computational times even in industrial size 
castings, while describing the solutal and mechanical blocking phenomena responsible for the 
Columnar-to-Equiaxed Transition.   
After a validation of the model, we discuss the numerical results for a 6.2-ton industrial steel 
ingot by comparison with experimental measurements. Final maps for macrosegregation and 
grain structures size and morphology are analysed. Furthermore, we quantify the impact of 
nuclei formation through fragmentation along the columnar front on the result. 
An attempt at predicting the occurrence of the Equiaxed-to-Columnar Transition in the later 
phases of the process is also made. 

1.    Introduction
The following work is based  on a multiphase  volume-averaged model  developed by Combeau and
Založnik, which makes use of a numerical splitting technique [1,2]. Several studies of this research 
group about industrial ingots have already been presented concerning macro-segregation and grain 
morphology [3-5]. However, the columnar and equiaxed structures were only distinguished by 
defining a zone close to the mold where the grains were set to be fixed. 

Efforts have recently been made to predict, thanks to multiphase models, the competition in 
industrial ingots between a columnar structure growing from the mold and transported equiaxed grains 
[6,7]. This multiphase model has been able to reproduce qualitatively the centerline macro-segregation 
in a 2.45-ton steel ingot. However, no comparison with CET observation was undertaken and the 
description of the equiaxed grain morphology remained simplified. 
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volume along the direction of	 ∇ 	. The velocity  of the front at the columnar tips as well as
the growth velocities of both the equiaxed envelopes and the columnar “sub-envelopes” are all 
calculated according to the LGK model [14]. 

In our model, a mixed volume containing both columnar and equiaxed structures as the one in 
Figure 2 is made of six phases. Three phases are associated with the equiaxed grains: the volume 
fraction of the solid phase	  as well as the inter- and extra-granular liquid fractions  and 
respectively. Similarly, we can define the variables	 ,  and for the columnar structures such 
that: + + + + + = 1. In order to simplify the calculations, we suppose
that the equiaxed grains present in a mixed volume containing the columnar front are fixed and only 
the liquid phase is allowed to move in these volumes. This approximation is only made for a layer of 
mixed volumes. The movement of equiaxed grains is accounted for ahead of the columnar front where 
columnar grains are not present. In the volumes containing only equiaxed structures, two flow regimes 
are considered. Where the local grains fraction  is larger than the packing limit	 , the solid 
phase is fixed. The flow of the intragranular liquid is then described by a momentum equation for 
porous media including a Darcy term for the drag interactions. The permeability of the porous solid is 
modeled by the Kozeny-Carman law. For local grains fractions smaller than the packing limit 	 < , the solid phase is considered to be in the form of free-floating equiaxed grains. 

In accordance to most volume-averaged models of the literature, two phenomena responsible for 
the Columnar-to-Equiaxed Transition (CET) are considered: 
1) Solutal blocking of the front. Its description is intrinsic to our model. Indeed, when the equiaxed
grains grow, they enrich the equiaxed extra-granular liquid and thus reduce the chemical undercooling 
used to calculate	 . This liquid medium becomes solutally well-mixed, in which case	 	is 
negligible and the columnar tips are effectively blocked.  
2) “Mechanical” blocking. It occurs when the equiaxed grain fraction  in a mixed volume 
containing the front reaches a critical value	 . This parameter has been used in previous studies 
with values ranging from 0.2 [15] to 1 [16]. In the present work, we used = 0.5 according to the 
geometric criterion proposed by Hunt [17].  

 At the top of industrial steel ingots, it is common to observe an oriented dendritic structure [3]. It 
is believed that this structure originates from a packed equiaxed zone when the sources of nuclei and 
fragments have been depleted [4]. As a consequence, this phenomenon can be assimilated to the restart 
of a columnar structure during what we call here the Equiaxed-to-Columnar Transition (ECT). 
Previously, it was necessary to artificially “renucleate” new equiaxed grains to be able to solidify the 
top of the ingots even with a non-uniform nucleation law [1]. We propose here a more physical way to 
deal with these zones according to the ECT idea: when the remaining liquid in front of an equiaxed 
packed zone is emptied of grains and nuclei, a new columnar structure is initiated in the volumes 
directly adjacent to the packed zone. These columnar trunks will interact with further remaining 
equiaxed grains and this will possibly lead to a subsequent CET. 

The sources of these equiaxed grains have already be mentioned. However, most of the models 
applied to industrial ingots use either a three-parameter model [13] or a simple uniform model [1] to 
simulate the volumic heterogeneous nucleation of [ . ] equiaxed grains at 
undercooling	Δ [ ]. Yet, it remains unclear if there are a significant number of nucleation sites in 
non-inoculated alloys [18]. Another potentially important source of grains is through fragmentation of 
the columnar dendrites, especially in industrial ingots [19]. That is why the goal of this work is also to 
study the effect of a surface injection model at the columnar front. During the growth of the front, we 
consider a constant surface flux of equiaxed grains 	[ . ] which will be added to the 
adjacent liquid volumes that do not contain columnar structures. Because the initial sizes of the 
fragments are unknown, they will all be fixed to	1	 , i.e. the same value as for the grains formed by 
heterogeneous nucleation. The only condition for the surface injection is that the quantity of solid in 
the mushy columnar zone is greater than the solid formed by the grains being injected. 
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at the bottom of the ingot and an inversion at the top, a strong positive segregation is predicted which 
is not in agreement with the experimental results. For other values of	 , the results without solid 
movement are qualitatively similar. Especially, the position and height of the main positive 
segregation are the same, even though the intensity of this segregation can differ. 

When taking into account the movement of the equiaxed grains, we notice a very dissimilar 
repartition of the structures in Figure 4. Starting from	 = 10 . , we see a clear 
distinction between a lower zone where the columnar thickness is very thin and an upper part which is 
entirely columnar. As  increases, the equiaxed zone becomes larger and its boundary with the 
columnar zone moves upward. The top of the ingot always remains columnar. This can be explained 
by the fact that the motion of the equiaxed grains is controlled primarily by sedimentation. The grains 
first appear in the vicinity of the columnar front where the undercooling is maximal. Then, the grains 
grow rapidly and slide down along this region, thus participating to the formation a packed layer at the 
bottom of the ingot. Because of liquid convection, the whole ingot quickly becomes undercooled 
(except the top part) and the majority of the nuclei are activated. The newly formed grains directly fall 
at the bottom of the ingot and favour the growth of the packed layer. The local packing times (the 
times it takes for the grain in the equiaxed zone to become locally packed) are short and the 
sedimentation ends at  ≈ 300	  in all cases. This value is to be compared with the total solidification 
time for the ingot, ≈ 9000	 .After that, virtually no equiaxed grains remain in the liquid as 
evidenced by the negligible values of   in the upper part of the ingot. Once the equiaxed grains 
have packed and nearly all the nuclei are activated, the columnar structure is free to develop in the 
remaining liquid. Remarkably, an ECT takes place at the top of the packed layer. The columnar 
structures originating from this ECT subsequently meet those growing from the mold. This is seen in 
Figure 4 with = 10 	[ . ] where a dashed blue region and a plain blue region are 
connected. The segregation profiles along the axis are shown in Figure 5 for three different densities 
of nuclei. The results are similar to previous calculations [5]. The best fit of the experimental results is 
found for = 10 	 .  but fails predicting the CET and is still not satisfying when considering 
the measured segregation profile. 

The results presented in Figure 5 remain qualitatively valid when considering different nucleation 
undercoolings	∆ . A three parameter heterogeneous nucleation model [20], based on a Gaussian 
distribution, has also been tried. Comparable results were obtained, albeit with a more cone-shaped 
equiaxed zone. 

It can be concluded that a volumic injection of nuclei fails to predict the observations. The volumic 
source of nuclei can be connected with heterogeneous nucleation or grains formed at the mold surface 
during the filling stage and then detached. It is already known that the fragmentation of dendritic 
columnar structures is another important source of equiaxed grains in industrial castings [19]. Thus, 
we investigate the influence of fragmentation on the results. The surface injection model mentioned 
earlier is now used for different flux values 	[ . ] at the columnar front. The results 
are summarized in Figure 6 where no volume densities of nuclei were considered for these 
calculations. All calculations include grain movement as simulations with fixed solid do not produce 
realistic results. This stems from the fact that the fragments appear only in the liquid besides the front 
and need to be carried by the liquid to fill the centre of the domain. It is first noticeable that for	 =10 . . , the equiaxed zone has a much more pronounced cone shape than in previous 
volumic injection scenario.  

The fraction of equiaxed grains entrapped in the columnar structures is also not negligible and the 
predicted structure can become considerably mixed especially at the top of the ingot, where remelting 
takes place. When the fragmentation flux is increased, a thin columnar zone is predicted in the lower 
part of the ingot whereas there is still a thick columnar zone in the upper part of the ingot. 
Nevertheless, the columnar zone at the bottom is not negligible with a CET at about 5 cm from the 
mold providing that		 ≥ 4.10 . . . The upper part is not entirely columnar in contrast 
with the case with the volumic density of nuclei scenario and the front is blocked at mid-radius. The 
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in steel ingots because the source of grain in the liquid are eventually exhausted and the top of the 
ingot exhibit a purely columnar structure. The use of a fragmentation mechanism seems to give better 
results for the structures repartition most notably at the top of the ingot. 

Both type of injection scenario give comparable results for the axial segregation. For example, 
using	 = 5.10 . .  yields final equiaxed densities in the central part between 
 = 10  and = 10 . . We can see on Figures 5 and 7 that calculations for 	 = 5.10 . .  and = 10 .  indeed show similar profiles for the axial 
segregation. The main difference is noticeable in the top third of the ingot, where the predicted 
structures are very dissimilar. 

It has been reported in the literature [21] that during the filling stage of the ingot, numerous grains 
grow at the contact of the mold, then become detached and survive in the liquid as fragments or 
inoculants for the heterogeneous nucleation law. This points to the fact that both mechanisms could 
operate at the same time. However, our calculations with both nucleation and fragmentation do not 
exhibit significantly better results at the moment. We can therefore conclude that more work needs to 
be done to better understand the relative importance of these two mechanisms. 
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