
HAL Id: hal-01251980
https://minesparis-psl.hal.science/hal-01251980

Submitted on 7 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An upwind least square formulation for free surfaces
calculation of viscoplastic steady-state metal forming

problems
Ugo Ripert, Lionel Fourment, Jean-Loup Chenot

To cite this version:
Ugo Ripert, Lionel Fourment, Jean-Loup Chenot. An upwind least square formulation for free surfaces
calculation of viscoplastic steady-state metal forming problems. Advanced Modeling and Simulation
in Engineering Sciences, 2015, 2 (1), �10.1186/s40323-015-0037-5�. �hal-01251980�

https://minesparis-psl.hal.science/hal-01251980
https://hal.archives-ouvertes.fr


An upwind least square formulation 
for free surfaces calculation of viscoplastic 
steady‑state metal forming problems
Ugo Ripert1*, Lionel Fourment2 and Jean‑Loup Chenot1

Background
One or two decades ago, when computers resources were much lower, steady-state for-
mulations have attracted considerable interest in the field of material forming simulation 
More precisely in the metal forming field, it was extensively applied for rolling processes. 
Early simulations were done for thick plates [1] and simple shape rolling [2]. They were 
extended to seamless tube rolling [3, 4] and complicated shape rolling [5] before being 
applied to more complex material behavior [6] and to rolling stand deformation [7].

Abstract 

Despite using very large parallel computers, numerical simulation of some forming 
processes such as multi‑pass rolling, extrusion or wire drawing, need long computa‑
tion time due to the very large number of time steps required to model the steady 
regime of the process. The direct calculation of the steady‑state, whenever possible, 
allows reducing by 10–20 the computational effort. However, removing time from the 
equations introduces another unknown, the steady final shape of the domain. Among 
possible ways to solve this coupled multi‑fields problem, this paper selects a staggered 
fixed‑point algorithm that alternates computation of mechanical fields on a prescribed 
domain shape with corrections of the domain shape derived from the velocity field 
and the stationary condition v.n = 0. It focuses on the resolution of the second step 
in the frame of unstructured 3D meshes, parallel computing with domain partitioning, 
and complex shapes with strong contact restraints. To insure these constraints a global 
finite elements formulation is used. The weak formulation based on a Galerkin method 
of the v.n = 0 equation is found to diverge in severe tests cases. The least squares 
formulation experiences problems in the presence of contact restraints, upwinding 
being shown necessary. A new upwind least squares formulation is proposed and 
evaluated first on analytical solutions. Contact being a key issue in forming processes, 
and even more with steady formulations, a special emphasis is given to the coupling 
of contact equations between the two problems of the staggered algorithm, the 
thermo‑mechanical and free surface problems. The new formulation and algorithm is 
finally applied to two complex actual metal forming problems of rolling. Its accuracy 
and robustness with respect to the shape initialization of the staggered algorithm is 
discussed, and its efficiency is compared to non‑steady simulations.

Keywords: Steady‑state, Free surface, Least square formulation, Upwind shift, SUPG, 
Contact, Metal forming, Rolling, Finite elements
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This was often justified by the fact that it was not possible to simulate the unsteady 
problem in all its complexity at that time. Nowadays, few publications using these meth-
ods can be found in the open literature, either because software codes are now quite 
mature and currently used in R&D [8] or because present computer resources make full, 
time-dependent simulations possible. However, some metal forming simulations still end 
up with computational times (several weeks or months) that are much too large for prac-
tical use by the engineer. This mainly occurs wherever resolution requires a very large 
number of time steps—such problems cannot therefore be accelerated by a larger number 
of processors. Moreover, as the efficiency of computing processors does not increase as it 
used to, perspectives to reduce the computational time of these problems are shrinking. 
Therefore, for appropriate problems, the steady-state formulations arise again as a way to 
reduce the computational times by one to two orders of magnitude. The work presented 
in this paper is carried out in the frame of material forming in order to adapt and general-
ize some steady-state formulations to today’s numerical methods (unstructured meshes 
and parallel computations) and problems complexity (geometries and robustness).

Semi-continuous metal forming processes such as rolling or wire drawing can be sim-
ulated by the same numerical methods that are utilized for more conventional processes, 
like an incremental formulation within a Lagrangian framework [9]. Such an approach is 
indispensable in studies of intrinsically transient phenomena such as end geometry, edg-
ing strategies, crocodiling, twisting… However, when it comes to long products, most 
of the process can be regarded as stationary, and the forming of product ends is of sec-
ondary interest. In order to reach this stationary regime by passing the initial transient 
regime, very long sections of the product must be considered and consequently very 
large finite element meshes. In addition, the time steps must be small enough to properly 
capture the local contact phenomena between the tools. These two features result in a 
dramatic increase of the computational time, which can range between several hours to 
several weeks even on highly parallel computers.

If only the steady-state is of interest, more specific formulations can be considered for 
reducing both computational times and memory. They have in common a great reduc-
tion of the computational domain, which is fixed in the flow direction [10], and an Eule-
rian type of flow formulation (see Figure 1). It allows a better and more optimal control 
of the mesh size distribution without compromise on accuracy, in particular in the large 
gradients zones at the inlet and outlet of the roll bite. Domain geometry being unknown 
and closely coupled to material flow, its initial shape is often designed as the best possi-
ble estimation of the final, steady-state, geometry of the product.

computational 
domain

inlet plane Γinlet

out plane Γoutlet

tool
billet

Figure 1 Eulerian window around the forming zone for a rolling problem, definition of the inlet Ŵinput and 
outlet Ŵoutput planes.
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In the continuity of the Lagrangian approach, the steady regime can be incremen-
tally computed using an Arbitrary Lagrangian or Eulerian (ALE) formulation inside 
the so-called Eulerian window, as in [11] so benefiting from the computational domain 
reduction and mesh adaptation [12]. However, the approach being basically the same 
(lagrangian step followed by mesh repositioning and field transfer), it still requires 
many time increments to properly propagate the domain deformation from the input 
plane to the output plane. Therefore the computational time is of the same order of 
magnitude (time reduction is only about 30% in [9] for the test case investigating in 
“Applications to metal forming problems” and 15% for a U channel with 6 stands [13]). 
Only the direct computation of the steady regime through directly solving steady-state 
problems equations allows reducing computing time by an order of magnitude or more 
[10, 14, 15].

In [16], Tortorelli and Balagangadhar introduced the reference frame concept that 
allows extending the ALE framework to steady-state problems. Within a displacement-
based formulation, the domain geometry is directly computed by solving a multi-field 
problem and integrating state variables on the undeformed configuration. A simplified 
formulation was applied for welding [15], and also for drawing and rolling processes in 
2D [17] using a penalty contact formulation instead of the more specific contact treat-
ment initially developed in [16].

Within a velocity-based formulation, the multi-field steady-state problem was directly 
solved by Ellwood et  al. [18] for simple polymer extrusion process. This fully coupled 
resolution is achieved by adding free surface conditions (29) to the mechanical problem 
and thus considering geometry corrections in addition to velocities and pressures. How-
ever, due to strong couplings between material flow computation, free surface computa-
tion and contact with tools constraining free surface correction a decoupled approach 
is preferred in literature [2, 5, 19]. It consists of a staggered fixed-point algorithm where 
the thermo-mechanical equations and convection equations are first solved for a given 
and fixed shape, and then the domain shape is corrected according to the newly com-
puted material flow. Few iterations generally allow finding the domain shape, provided 
that the initial shape is not too distant from the final shape [4]. All these approaches only 
differ in the way the domain free surface is corrected, either by streamline integration, 
one by one, or by resolution of a global free surface problem.

The first approach is almost exclusively based on structured meshes, the nodes of 
which can be aligned along the streamlines, thus providing an easy and accurate way to 
integrate shape corrections [6]. Contact is a recurrent problem of these formulations. 
Contact equations are left aside during streamlines integration to avoid any discontinui-
ties. A next step is therefore needed to project nodes on the tools using simple [20] or 
complex smoothing operations [5, 6].

The second approach is more general and applies both for unstructured meshes and 
complex flows (where using a structured mesh aligned with streamlines is inconceiv-
able) [21]. In [22], the domain shape computation is regarded as a convection problem, 
namely the integration of the normal velocity along the free surface. Alternatively, as in 
[19], the domain correction can be directly computed from the velocity field by solving 
the free surface equation (see Eq. (29)), either using a least square formulation [19] or a 
Galerkin formulation [2].
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The aim of the present work is to develop a steady-state formulation compatible with 
a velocity-based formulation, parallel computations and unstructured meshes. It is also 
expected to be sufficiently robust to handle all kinds of complex geometries met in metal 
forming applications. Therefore, the iterative fixed point approach is used to ensure 
compatibility with velocity formulation, and the free surface correction is computed 
through a global resolution to ensure compatibility with unstructured meshes and paral-
lel computations.

“First step: position of the thermal-mechanical problem and velocity field compu-
tation” presents the simple forming problem over a known domain; it consists of the 
thermo-mechanical equations of the metal forming problem. “Second step: free surface 
correction” gives a general description of the computation of the free surface correction 
for a known material velocity field with a non-null normal velocity, and presents differ-
ent weak formulations used in literature. Section 4 introduces the new weak formulation 
for the free surface correction that shows necessary to handle complex contact condi-
tions in 3D, along with the coupling of contact equations between the two alternatively 
solved problems (simple forming problem and free surface correction). Resolution of 
simple analytical problems in “Evaluation on analytical tests” assesses the quality and 
robustness of several variants of the proposed formulation and “Applications to metal 
forming problems” applies the most promising one to actual metal forming problems.

First step: position of the thermal‑mechanical problem and velocity field 
computation
In this section, the shape of the computational domain � is supposed to be known as 
its contact surface Ŵc, (the part of Ŵ = ∂� that is both geometrically in contact with 
the forming tools and undergoing a negative contact pressure). The resolution of the 
thermo-mechanical equations aims at finding the steady-state velocity field associated to 
this domain and contact surface.

Conservation equation and boundary conditions

Conservation equations: mechanics

The considered formulation is presently restricted to hot forming processes where the 
elastic part of the deformation can be neglected [23]. The material is assumed to be 
incompressible. Inertia can also be neglected because of low acceleration forces in com-
parison to the plastic forces [2, 5]. The Cauchy stress tensor σ and the velocity v satisfy 
the equilibrium and volume conservation Eq. (1)

The constitutive equation is written for s, the deviatoric part of σ and follows the Nor-
ton–Hoff model (2).

(1)

{∇ · σ = 0 in �

∇ · ν = 0 in �

(2)







s = σ + pI = f (ε̄, ˙̄ε,T ) = 2K (ε̄,T )

�√
3 ˙̄ε
�
(m−1)

ε̇

p = −1

3
tr(σ )

.
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T is the temperature, ε̇ the strain rate tensor, ˙̄ε the equivalent strain rate, ε̄ the equiv-
alent strain (3) and K (ε̄,T ) the material consistency, which is here supposed to only 
depend on T and ε̄ to model temperature softening and strain hardening or softening.

During this resolution, the geometry (free surface) and boundaries (contact surface) 
of the domain are thus assumed to be known. The free surface condition is written on 
Ŵf  through Eq. (4), where n is the outside normal to the surface. On the contact surface 
Ŵc, non-penetration conditions are expressed, in a steady and Eulerian framework for a 
unilateral contact, by the Signorini conditions in (5), where νtool is the tool velocity, and 
friction is modeled by the velocity-dependant Norton law (6) where �νs is the sliding 
velocity, αf and p the friction coefficients.

Domain upstream and downstream boundaries

Inlet and outlet planes (Figure 1) of the computational domain are introduced arbitrarily. 
The conditions written there are therefore more or less artificial. To avoid perturbations, 
it is therefore necessary to apply these conditions far enough from the plastic deforma-
tion zone, at a position where it can be ascertained than the material flow is a Rigid Body 
Motion (RBM), i.e. the gradient of the velocity field is null there. Two implementations 
are proposed in [6]:

  – stress-based the stress vector in these boundary planes is set to the average tension stress 
at each point (FE node), the shear component being zero: 

 – velocity-based the in-plane velocity is cancelled (8) and the normal velocity (in the main 
flow direction) is imposed homogeneous on the Sect. (9); there remains one equation to 
write to obtain a well-posed problem, the integral of the stress normal to the section is 
set equal to the imposed tension force (10).

(3)ε̇ = 1/2(∇ν +t ∇ν); ˙̄ε = 2/3

√
ε̇ : ε̇; ε̄ =

t=tend∫

t=tbeg

˙̄εdt.

(4)σn = 0 on Ŵf

(5)

{

(σn) · n ≤ 0
(
v − vtool

)
· n ≤ 0

on Ŵc ⇒ ((σn) · n)
((

v − vtool
)

· n
)

= 0 on Ŵc

(6)τ = −αf K�∆vs�p−1
∆vs on Γc

(7)σ · n = F tension
/S

(8)v − (v · n)n = 0

(9)vi · n = vj · n ∀i, j ∈ Ŵinlet (Ŵoutlet)

(10)

∫

Ŵinlet

σ n dS = F tension
inlet
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Here, the first (stress-based) formulation is used and furthermore Ftension  =  0 for 
simplicity.

The weak forms of these equations [24] provide a mixed velocity and pressure formu-
lation that is summarized by:

This set of equations is discretized using tetrahedral finite element with the quasi-lin-
ear P1+/P1 “mini element” interpolation [25] satisfying the compatibility condition [26]. 
Contact is enforced by a penalty method using a node-to-facet formulation [24].

Conservation equation: energy

Within a steady-state formulation, time partial derivative vanishes so thermal equations 
only consist of convection and diffusion terms (12) associated to a source term ẇ result-
ing from a fraction of the plastic strain power σ : ε̇pl dissipated during mechanical work:

where ρ is the density, c is the specific heat and k is the material conductivity.
On the inlet surface, the initial temperature is imposed (either homogeneous, or a map 

obtained by computing former history…).
On the free surface, there are thermal exchanges with the environment by convection 

and radiation. They are modeled by the Fourier law presented in Eq. (13a). On the con-
tact surface, heat is produced by friction and exchanged by conduction (13b):

where hconv is the convection transfer coefficient, εr is the material emissivity, σr is the 
Stefan–Boltzmann constant, hcond is the conduction exchange coefficient with tools, bm 
and btool respectively are the material and tool effusivities (b =

√

k .ρ.c), while Text and 
Ttool respectively denote the ambient and tool temperatures that are supposed constant 
here.

In the temperature steady-state Eq. (12), convection is dominating conduction because 
of high Péclet numbers [3, 6]. In this case, a standard Galerkin formulation produces 
numerical oscillations. They are avoided by appealing to a Streamline Upwind Petrov–
Galerkin (SUPG) formulation [27] that is more precisely presented in “Second step: free 
surface correction”. The resulting weak form of thermal equations is summarized by:

State variables equations

For state variables, similarly, time partial derivatives vanish so that time integration 
results into pure convection problems. With the considered constitutive model (2) only 
the equivalent strain rate (3) needs to be integrated into the equivalent strain (15) by tak-
ing into account the initial values ε̄imp of ε̄ on Ŵinlet:

(11)R(x,Ŵc, ε̄,T , v, p) = 0

(12)ρcv · ∇T = k�T + ẇ in �

(13)q · n = −k∇T · n =
{

hconv(T − Text)+ εrσr

(
T 4 − T 4

ext

)
on Ŵf

hcond(T − Ttool)− bm
bm+btool

(τ ·�vs) on Ŵc

(14)T (x,Ŵc, ε̄, v,T ) = 0

(15)

{

v · ∇ ε̄ = ˙̄ε in �

ε̄ = ε̄imp on Ŵinlet
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ε̄ (and more generally any state variable, such as e.g. pertaining to microstructural, 
metallurgical models) and ˙̄ε are computed at integration points so their finite element 
discretization are not continuously interpolated. With the P1+/P1 quasi-linear interpola-
tion used here, ˙̄ε can be regarded as piecewise per element or P0. In order to avoid using 
a more complex and not necessarily more accurate discontinuous Galerkin method as in 
[15], it is preferred to project the P0 equivalent strain rate ˙̄ε onto a P1 continuous linear 
mapping in order to use the standard SUPG formulation to solve Eq.  (15) and then to 
use the P1 linear continuous interpolation of ε̄ to compute the equivalent strain values 
at integration points. Referring to [28], this method provides accurate results and allows 
using the same resolution method as for the temperature equation.

Finally, integration of state variable equations can be symbolically summarized as:

Thermo‑mechanical coupling

For the applications studied, thermo-mechanical coupling is not very strong so rather 
than directly solving the full (ε̄,T , v, p) problem, which increases very significantly the 
problem size, equations are solved in an iterative manner until convergence, as follows:

However, the algorithm is not suited for more complex thermo-mechanical behav-
iors such as Friction Stir Welding (FSW), continuous casting or elasto-plastic behav-
iors. Some changes have to be made to help the convergence. Adding simple relaxation 
methods for reducing potentially large changes can be highly beneficial. For even more 
stronger coupling behavior, sub fixed points should be added to insure the thermo-
mechanical convergence at each iteration [6].

Second step: free surface correction
In this section, the velocity field v is supposed to be known and to be the solution of the 
steady-state flow on the considered domain, which needs to be corrected in order to sat-
isfy the free surface condition (18).

Governing equations

When the flow is steady, the velocity field is tangential to the surface Ŵ of the domain �;  
streamlines of surface particles are on the surface and there is no material flow through 
this surface. In other words, the normal component of the velocity field is null on Ŵ, 
which provides the fundamental equation for the stationarity of the free surface (18).

where n(x) is the outside normal of Ŵ at x, and v is the velocity field on �. If this condi-
tion is not satisfied with the current position X of the surface shape (v · n(X) �= 0), then 
X must be corrected by a displacement t (19) in order that Eq. (18) is satisfied.

(16)L(x, v, ε̄) = 0

(17)







Given
�

x(i),Ŵ
(i)
c

�

:
− compute

�
v(i+1), p(i+1)

�
from : R

�

x(i),Ŵ
(i)
c , ε̄(i),T (i), v(i+1), p(i+1)

�

= 0

− computeT (i+1) from : T
�

x(i),Ŵ
(i)
c , ε̄(i), v(i+1),T (i+1)

�

= 0

− compute ε̄(i+1) from : L
�
x(i), v(i+1), ε̄(i+1)

�
= 0

(18)ν · n(x) = 0 on Ŵ
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Following the bibliography and previous works [2, 6], a fixed-point algorithm is used to 
solve the steady-state equations. Therefore, in this section, the dependence of v on t is 
neglected [19], just like x was supposed to be independent of v in the previous section, 
so that: ν = ν(X) = ν(x).

On the input surface, supposed “far enough” that the movement is a RBM and the sec-
tion is perfectly known, Ŵinlet (see 1), the points are fixed (20), t = 0. On the output sur-
face Ŵoutput, the points have to remain in the plane but must move in it for searching the 
unknown final section; their correction t is thus tangent to Ŵoutput (20).

In many works of literature [2, 22, 29] the free surface correction (FSC) problem is 
simplified by imposing that the correction t is collinear with the normal of the surface 
n(X) (21), leading to a one degree of freedom formulation.

After finite element discretization, the normal vector n(x) (22) is not defined at the 
finite element nodes but it can be computed on any surface facet by:

where (ξ , η) denotes the local coordinates system of the surface facet.
It can be noticed that u(t) is linear with respect to t, if t has a fixed and constant direc-

tion, and that it is quadratic with respect to t in the general case.

Contact condition

The corrected surface also has to satisfy the non-penetration Eq. (23) on Ŵf , where h(t) 
(24) is a linear approximation of δ(x), the signed distance of x to the closest tool (nega-
tive if the point penetrates the obstacle and positive otherwise).

where ntool denotes the inside normal to the tool surface.
This unilateral contact condition is not sufficient because it does not prevent the com-

plete release of all contact conditions during the free surface correction [20] leading to 
oscillations or even divergence. It proves necessary to enforce a bilateral contact condi-
tion (25) on ŴFSC

c , the contact surface of Ŵ. It is defined using both the sign of contact 
normal stress associated to the current velocity field and the penetrations occurred after 
the free surface correction (its definition is presented into more details in “Contact con-
ditions transmission between velocity field computation and free surface correction”).

(19)x = X + t on Ŵ

(20)

{

x = X on Ŵintlet

t · noutlet = 0 on Ŵoutlet

(21)t = t · d with d ≈ n(X)

(22)n(x) = u(x)

�u(x)� where : u(x) ≡ u(t) = ∂x

∂ξ
∧ ∂x

∂η

(23)h(t) ≥ 0 on Ŵf

(24)with: h(t) = δ(X)− t · ntool
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Turning now to the tangential plane, if a sticking contact condition is applied on ŴFSC
c  

[22], chances are that the mesh degenerates (as described in [29]). Hence, a sliding bilat-
eral contact condition is preferred (25).

Weak formulation

Different weak formulations of Eq.  (18) are encountered in literature: the standard 
Galerkin formulation is used in [2], while the stabilized SUPG form is preferred in [22] 
and the least square approach is selected in [19]. In the case where t has a single degree 
of freedom per node as in (21), all these variants can be gathered under a generic form 
(26) with different choices for the test functions N*:

Galerkin and SUPG formulations are characterized by different choices for N ∗, 
namely:

where le and ve respectively are characteristic element length and velocity. These values 
are simply the average of segments length and nodal velocity of a triangle.

The Galerkin formulation amounts to using N ∗ = NGalerkin = N  (28), where N is the 
isoparametric finite element shape function. For problems more complex than those 
presented in [2], this formulation often leads to an indeterminate system of equations. In 
fact, the free surface Eq. (18) results in a pure convection problem of the surface correc-
tion t from the input plane. The SUPG formulation is therefore much better adapted [22, 
30] as the solution is stabilized by involving the flow direction in the test function NSUPG 
(28) [upwind facets have more weight in the formulation (see Figure 2)].

An alternative to SUPG, least square (LS) formulation [19] consists in minimizing the 
integral of the square of Eq. (18) which leads to a parabolic problem. In the present work, 
the formulation is slightly modified (29) in order that the resulting system of equations is 
linear in the simple cases when d (21) is constant.

(25)h(t) = 0 on Ŵ
FSC
c

(26)∀N ∗, r(t) =
∫

Ŵfinal

N ∗
(ν · n(t))dSfinal =

∫

Ŵref

N ∗
(ν · u(t))dξdη

(27)with: dSfinal =
�u(t)�
�u0�

dSinitial and dSinitial = �u0�dξdη

(28)NGalerkin = N NSUPG = N + 1
2

le

ve
(v · ∇N )

k k+1k-1

Galerkin SUPG Least squares

Figure 2 Different test functions at node k in 1D when the flow is from left to right.
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The differentiation of (29) provides a system of equations similar to Eq.  (26) where 
N ∗ = NLS (30)

It can be noticed that the LS formulation naturally extends to the case where t is a vec-
tor with several degrees of freedom. Both SUPG and LS formulations provide non sym-
metric weights (see Figure 2) which enable them to handle the convection terms.

Contact Eqs. (23) and (25) are imposed at the finite element nodes by a node-to-facet 
penalty formulation:

where tk is the surface correction of node k and Sk is the associated surface, Sk =
∫

Ŵ

NkdS.  
The operator [x]+ = 1

2 (
|x| + x) keeps only positive values. ρFSC

c  is a specific penalty coef-
ficient for the free surface correction (FSC) which is set to 10,000. This value was chosen 
empirically and leads to a great accuracy without any convergence difficulties.

Volume mesh regularization

The correction of node positions on the domain surface causes distortions of the volume 
mesh or at least degeneration of its quality. In order to maintain the elements quality 
during the free surface iterations, a volume mesh regularization is carried out by using 
a Laplacian operator. The volume mesh correction t is the solution of the linear Laplace 
Eq. (32) subjected to imposed values on the entire mesh surface, resulting from the free 
surface correction.

New formulation for free surface correction
As discussed in “Weak formulation”, the Galerkin formulation is limited to specific and 
rather simple configurations; both Galerkin and SUPG formulations are well adapted 
when the correction t is a scalar, while the LS formulation allows an easy extension to 3D 
problems when t is a vector. However, studies of analytical problems (see “Evaluation on 
analytical tests”) show that the LS formulation is not converging to the expected solution 
when contact is taken into account and when the flow is significantly oriented. There-
fore, the LS formulation should be improved to be applied to 3D forming problems. Two 
modifications are presented hereafter.

(29)Min
︸︷︷︸

t

(Φ(t)) , Φ(t) = 1
2

∫

Ŵ

(v · u(t))2dξdη

(30)NLS =
(

v · ∂u
∂t

)

(31)Min
����

t

(Φc(t)), with Φc(t) = 1
2ρ

FSC
c




�

k∈Ŵf

Sk [ h(tk) ]
+2 +

�

k∈ŴFSC
c

Skh(tk)
2





(32)

{

� t = 0 in �

t = t imp on Ŵ
.
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Upwind least square formulation

As mentioned in “Weak formulation”, the free surface correction can be regarded as a convec-
tion problem, so that the flow direction has to be taken into account in the test functions of 
the weak equations as in the SUPG formulation. The least square formulation also provides 
a dissymmetry in the flow direction but gives the same absolute values to the weights of the 
up-flow and down-flow. Therefore, a new formulation aiming at combining the advantages of 
the LS and SUPG formulations is developed. It consists in modifying the LS equivalent test 
function N ∗ = NLS (30) by introducing in the definition of the normal (vector u) a sensitivity 
to its position with respect to the flow, as presented in Figure 3 and in Eq. (34), through the Ck 
coefficient (−1 ≤ Ck ≤ 1) calculated like in the SUPG formulation (34).

The resulting formulation is called LS_supg because its shape functions (33) combine 
the SUPG shift with LS shape function:

The (1+ Ck) coefficient is equal to 2 for perfectly upwind facets and to 0 for perfectly 
downwind facets. Thus, except these very particular facets, all other facets contribute 
to the weak form (see schematic representation of Figure 4), contrary to the streamline 
integration approach where only upwind terms contribute. Therefore, another variant 
to the LS formulation is considered by only taking into account the upwind terms (see 
Figure 4). Its shape functions (34) combine the streamline integration approach with LS 
shape function, so it is called LS_sl:

It should be noticed that the matrices symmetry of the LS formulation is consequently 
lost with these new formulations.

(33)u
∗
(t) = u(t)+

∑

k=1,3

Ck

(
∂u(t)

∂tk
tk

)

, with Ck = ∇Nk · vk
�∇Nk� · �vk�

(34)NLS_ sup g = (1+ Ck)

(

v · ∂u
∂tk

)

(35)NLS_sl = [Ck ]
+
(

v · ∂u
∂tk

)

velocity 

less influential 
facets more influential 

facets 

Figure 3 Upwind shift in the calculation of the weights for the LS_SUPG formulation—flow is from left to 
right.
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Full 2 degrees of freedom (DoF) formulation

A free surface algorithm with only one degree of freedom per node reduces its field of appli-
cation to only simple processes and geometries. It is mainly due to the displacement direc-
tions that do not always coincide with the real displacements. Calculation of these directions 
is an intuitive guess based on the last geometry from the iterative algorithm. It is thus com-
plicated to predict the displacement of an edge (Figure 5). Adding a second degree of free-
dom makes the search of the directions automatic. Furthermore, it introduces the possibility 
of more complex displacements, which is useful for mesh regularization (Figure 5).

The least squares formulation can easily be extended to two degrees of freedom. Each 
Eq.  (36) is computed from the differentiation of the normal velocity functional (29) in 
each direction. Whereas it is more complex for the SUPG formulation as only one equa-
tion per node can be calculated. Thus, the SUPG formulation is set aside. For the ease of 
the implementation, three degrees per node are set and a penalization method is used to 
cancel the displacements in the rolling direction (38a), or in the flow direction (38b) for 
a more general formulation. The penalty factor ρd is set to 100. This value is not set to 
high because slight displacements in the flow direction are not problematic.

However, this increase of the number of degrees of freedom leads to ill-conditioned 
problems. For instance, surface nodes can slide freely along the solution surface with-
out making any change of the functional (29) (Figure  6). Therefore it is necessary to 
introduce a criterion for obtaining a solution. In this work, smoothed displacements are 
favored, which is done by adding a Laplacian operator for the diffusion of corrections t 
in each spatial direction ei (39). In order to preserve the free surface solution, a relative 

(36)∀t∗ ∈ Ŵ, r(t) = ∂Φ(t)

∂t∗
=

∫

Ŵ

(

v · ∂u(t)
∂t∗

)

(v · u(t)) dξdη.

LS_supg LS_sl 

Figure 4 Schematic representation of LS_supg (left) and LS_sl (rigth) test functions at node k in pseudo‑1D 
when the flow is from left to right.

Initial section 

Solution section 

Displacements for 1 degree of freedom  
Displacements for 2 degrees of freedom 

tool 

billet cross section 

symmetry 
planes 

Figure 5 Use of two degrees of freedom to handle edges in different configurations where an intuitive 
guess of displacement direction would fail.
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small weight wr is used in Eq. (37) which already contains free surface, contact and DoF 
reduction problems. This solution provides surface mesh regularization, which is very 
useful when domain corrections are large.

Unfortunately, the algorithm is extremely sensitive to the regularization weight wr. For 
small values, the problem is ill-conditioned and fails to converge. For larger values that 
make the convergence possible, the impact of regularization on the free surface solution 
is far from negligible. Therefore, the stabilization is only applied to the Newton–Raphson 
corrections, as presented in Eq. (40). In this way, the non-linear equations of the problem 
are not changed by the regularization, which only affects the corrections within the New-
ton–Raphson iterations, so the algorithm converges toward a solution of the free surface 
equations without any compromise. On the other hand, this approach increases the num-
ber of Newton–Raphson iterations, but as most of the computational cost is spent for the 
resolution of the velocity calculation, this additional cost is not significant.

Contact conditions transmission between velocity field computation  

and free surface correction

During the first step, velocity computation (VC) (“First step: position of the thermal-
mechanical problem and velocity field computation”), the contact surface Ŵc is assumed 
to be known, while during the free surface correction (FSC) (“Second step: free surface 

(37)Φ
′
(t) = Φ(t)+Φc(t)+Φd(t)+ wrΦr(t)

(38)Φd(t) = 1
2ρd

∑

k ∈Ŵ

(
dimp · t

) 2; Φd(t) = 1
2ρd

∑

k ∈Ŵ

(
vk · t
� vk �

) 2

(39)
∂Φr(t)

∂t
≡ �t = 0 ⇒

{

∀k ∈ Ŵ

∀i = {1, 2, 3} , rk ,i(t) =
∫

Ŵ

∇Nk · ∇(t · ei)dS = 0.

(40)

(

H (i) + wrH
(i)
r

)(

t(i+1) − t(i)
)

= −r(i) with r = ∂
(
Φ

′ − wrΦr

)

∂t
and H = ∂r

∂t

initial mesh 

multiple solutions most homogeneous displacement is kept 

surface solution mesh solution 

Figure 6 A criterion is needed to avoid ill‑conditioned problems when using two degrees of freedom.
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correction”), bilateral contact conditions are enforced on ŴFSC
c . The coupling between 

these two contact surfaces is a master key for the convergence of the fixed-point algo-
rithm. However, each step is not self-sufficient to detect accurately the contact area. The 
chosen algorithm gradually establishes the contact during iterations by both the velocity 
calculation and the free surface correction. Using a penalty method for non-penetration 
conditions leads to the calculation of two nodal contact forces, one for each stages: �VCk  
and �FSCk . It is worth mentioning that penalty weights are not similar, the VC is a rough 
problem and its coefficient has to be lowered to 100.

At the first iteration, Ŵinit
c  is defined geometrically from the initial domain shape, by 

the contact distance (41). This contact zone is then used for the resolution of the velocity 
field calculation to apply unilateral contact (5) and friction (6) conditions. From the pen-
alty formulation, with ρc the contact penalization factor, the resolution allows computing 
contact forces �VCk  at any node k (42). During the free surface correction, these contact 
forces define the zone ŴFSC

c (42) where a sliding bilateral contact condition is applied (25). 
It should be noted from Eq. (23) that the non-penetration equations are always enforced 
for free surface nodes. Symmetrically to the velocity field calculation, a pseudo-contact 
force �FSCk  can be defined at any node k (43) after the free surface correction. The contact 
surface ŴVC

c  is now defined by (43) for the next iterations.
For a forming problem like the rolling application of Figure 7, the contact zone is the 

intersection between ŴVC
c  and ŴFSC

c  (44). The contact forces from the velocity calculation 
�
VC
k  allow releasing the contact nodes downstream of the obstacle (but not upstream 

because they happen to be always negative). On its part, the pseudo-contact forces �FSCk  
from the free surface correction allow releasing the contact nodes upstream the obstacle 
[but they are not reliable as a criterion to release downstream nodes because of the coef-
ficient ε in (43)].

(41)Ŵ
init
c =

{
k ∈ Ŵ, δ(Xk) < 0

}

(42)Ŵ
FSC
c =

{

k ∈ Ŵ, �VCk < 0
}

, with �
VC
k = −ρ

VC
c

[ (

vk − v
tool
k

)

· ntool
k

]+

(43)Ŵ
VC
c =

{

k ∈ Ŵ, �FSCk < 0
}

, with �
FSC
k = −ρ

FSC
c [ ε − h(t) ]+

(44)Ŵc = Ŵ
FSC
c ∩ Ŵ

VC
c

velocity calculation 
free surface calculation 

Figure 7 Flow and free surface calculation are both complementary for contact analysis. They respectively 
lead to the outlet and inlet detection of the contact zone.
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It is worth mentioning for the calculation of �FSCk  in Eq. (43) that the free surface cor-
rection equations are not mechanical equations, so that it is more questionable to con-
sider �FSCk  as a real contact force; it is rather related to the accuracy of the free surface 
movement. Consequently, it shows necessary to introduce a numerical pseudo-adhesion 
coefficient ε in the definition of �FSCk . In practice, ε is taken equal to 2% of the mesh size.

Evaluation on analytical tests
Presentation of the tests

The free surface correction is calculated for several analytical test cases involving different dif-
ficulties in order to assess the accuracy of the weak formulations, the contact treatment and 
the application to 3D problems with edges. All the analytical problems are built according 
to the same scheme, presented in Figure 8. First, a long 2D sheet is deformed in the vertical 
direction by an analytical function f (y = f(x)) (Figure 8a). The tangent vector is analytically 
computed at each node of the deformed sheet (Figure 8b) and is used to define the velocities 
of the nodes of the undeformed sheet (Figure 8c), the free surface correction problem is now 
posed (Figure 8d). Its resolution should provide the original shape of the deformed sheet.

DoF test cases

A smooth surface is obtained using a Gaussian function for f(x) (Eq. (45a) and Figure 9 
top). For a more complex pattern a bidimensional sine-shaped function with growing 
amplitude is developed ((45b) and Figure 9 bottom).

In order to first compare the different weak formulations, only one degree of freedom 
per node is authorized, in the direction normal to the flattened mesh. Thus the Laplacian 
regularization (39) can be omitted. 2D meshes of respectively 6000 and 36,000 nodes are 
used to evaluate the finite element convergence of the methods tested.

DoF test case with edges

A three-dimensional test case is set: a square section is progressively enlarged (Figure 10 
right) by following a quadratic function in the direction normal to the surface (46). For this 
problem, the Laplacian smoothing procedure (39) is enabled. To prevent displacements in 

(45)(a) y = 5 exp(−0.01(x − 40)2) (b) y = 0.05x sin(πx) sin(πz)

( )xfy = ( )
xxy v

dx
xdfv

dx
dyv ==

d free surface computation c the velocity is mapped to a flat mesh

b Computation of a surface velocity fielda building an analytic surface

Figure 8 Scheme of the construction of analytic test cases for the study of free surface algorithms.
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the x direction, the functional (38a) is used. The Galerkin and SUPG are not tested because 
this problem has two degrees of freedom per node.

DoF test cases with contact

For the Gaussian function (45a), a tool is set to bound the upward movement (Figure 11). 
This obstacle can be considered as a flat sheet parallel to the flattened mesh placed at a 
height about 2.5  mm, i.e. half the expected displacement. During the resolution, pen-
etrations occur and enable the unilateral contact condition. The resulting solution has to 
respect both free surface and contact conditions.

Results for test cases without contact

For test cases with only one DoF, a simple criterion is used to quantify solutions accuracy 
(47), while it is more complicated for the test case with edges as the mesh regularization 
makes nodes slide on the surface. Instead of comparing directly correction displacements, 

(46)r = r0 + 0.1 x2

5 mm 
10 mm 

100 mm 

10 mm 

fixed nodes 

main velocit  direction 

x 
y 

z 

Figure 9 Analytical surfaces: Gaussian function (top), sine function (bottom).

analytical 
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Figure 10 A 3 dimensions analytical test case where the geometry contains sharp edges. On the right, inlets 
sections are compared to the analytical solution.
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the closest distance of the solution for outlet nodes is used. Table  1 summarizes the 
results for both test cases with one and two DoF for both infinite and L2 norms.

DoF test cases

On these test cases, the Galerkin method (28a) fails to converge (see Table 1). LS_supg 
and LS_sl (resp. (33) and (34)) are either as accurate (sine function) or more accurate 
(Gaussian function) as the LS formulation. The SUPG formulation (28b) is the most 
accurate because it has the best nodal accuracy on the sheet edges, whereas least squares 
methods tend to smooth the solution. In other words, these nodal boundary conditions 
are more favorable to Galerkin-like formulations.

DoF test case with edges: effect of mesh smoothing

The convergence of the LS formulation is significantly affected by the Laplacian smooth-
ing for 3D examples (Table  1). Nonlinear corrections decrease significantly at each 
iteration, making the convergence really slow. Even after 60 nonlinear iterations, the 
solution is far from the exact solution (Figure 10 right) and the convergence appears to 
be blocked. The introduction of an upwind shift solves this non-convergence issue. Ls_
supg and Ls_sl formulations give accurate results within less than 20 iterations (Table 1): 
the surface is precisely retrieved, the edges are perfectly preserved and the mesh is prop-
erly regularized (Figure 10).

(47)Θk = tk − tthk

tthmax

Solution with no tool

Least squares formulation

Upwind formulations

Obstacle

rolling direction

v.n 0

Figure 11 Adding a horizontal tool shows up physical and non‑physical behavior if an upwind formulation 
is used or not.

Table 1 Error (%) for  nodes position displacement on  analytical test cases for  different 
refinement of 2D meshes

Infinite and L2 (in parenthesis) norms are presented.

Mesh size Gaussian function Sine function 3D example

Coarse Fine Coarse Fine Coarse Fine

Galerkin No convergence Not tested

SUPG 0.08 (0.91) 0.02 (0.38) 1.69 (0.21) 0.42 (0.08)

LS 0.80 (6.42) 0.22 (2.98) 7.41 (1.48) 1.67 (0.56) 51.9 (353) 62.1 (945)

LS_supg 0.22 (2.36) 0.04 (0.85) 5.19 (0.57) 1.85 (0.26) 2.7 (9.6) 0.5 (3.37)

LS_sl 0.18 (3.78) 0.04 (2.47) 4.84 (0.56) 1.84 (0.28) 2.6 (10.6) 1.6 (11.5)
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Interaction with contact

The LS formulation is unable to compute the expected shape (see Figure  11). 
Although this formulation is sensitive to the flow direction, it is not sensitive to its 
orientation so the contact information is transported both downwind and upwind. 
The contact equations are satisfied but the contact area is underestimated; the nor-
mal component of the velocity is minimized all over the domain but the formula-
tion does not succeed to cancel it; an unexpected shape is consequently obtained 
(see Figure  11). On the other hand, contact and free surface conditions are per-
fectly satisfied all over the domain for all the upwind formulations, not only the 
SUPG formulation but also for the newly LS_supg and LS_ls formulations. It is 
worth mentioning SUPG and LS_supg tend to create really slight oscillations on 
the free surface before the contact area. These oscillations are proportional to the 
discontinuities introduced by contact constraints, which can be regarded as Dir-
ichlet conditions. For non-fully upwind formulations some strategies exist to pre-
vent these problems [31]. However, these oscillations can be neglected in forming 
processes applications where the material flow and the contact conditions are not 
fully incompatible; they do not introduce any discontinuities.

Summary

To sum-up, Galerkin formulation does not converge on the test cases chosen (the 
problem solution is not unique) while SUPG formulation provides the most accurate 
results on such analytical functions. LS-based formulations are properly converging 
toward the exact solution with decreasing finite element mesh size, and their accuracy 
is quite satisfactory. These formulations can be easily extended to 3D problems with 
a correction vector (rather than a scalar in a prescribed direction) where they make 
it possible to properly preserve the problem shape edges without requiring specific 
techniques to detect and deal with these surface singularities, a difficult and hazardous 
issue. When contact comes into play, the original LS formulation has a non-physical 
behavior resulting from the lack of a direction for contact corrections propagation. 
Introducing an upwind shift, either with the LS_supg or LS_sl formulation allows fix-
ing this issue while preserving or even improving the accuracy of the LS formulation. 
Therefore, the following forming applications will be studied using LS_sl. Even if LS_
supg seems better, a full upwind formulation is preferred for avoiding issues with con-
tact like the original LS formulation.

Applications to metal forming problems
Introduction

Steady-state formulations are applied to two simulations of rolling processes. Their results 
in terms of thermo-mechanical variables and product shape will be compared to non-
steady simulations using Forge® [24] software as well as steady-state simulations using 
Lam3 [6], a finite element software based on structured meshes, brick elements, stream-
line integration and using a dedicated pre-processor providing best possible initial shape 
for the mesh. For these computations, material consistency is supposed to be constant 
and tools are assumed to be perfectly rigid. Values for material behavior and friction are 
specified in (48). Free surface correction formulation LS_sl is used in these simulations. 
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The Eq. (38b) is used to penalize any corrections along the material flow. The initial com-
putation domain is constructed with an “extrusion” method (Figure 12), giving an almost 
optimal initialization. The construction can be obtained by extruding the input plane in 
the forming direction through the tool set, in order to create a sequence of sections that 
are then connected together. When nodes of a section penetrate an obstacle, their posi-
tion is projected back on its surface. The “extrusion” approach is used in the following 
applications, as presented in Figures 13 and 14 schematized in Figure 12.

Rolling of thick plate

A thick metal sheet is rolled as presented in Figure 13. The tools are cylinders with a 
600 mm diameter and separated by 18 mm. Their rotational velocity is about 27.5 rpm. 
This problem includes an edge, the displacement of which should not be restricted to the 
mesh surface normal direction. Consequently, a 1 DoF approach would fail and a more 
general free surface formulation is required. Two symmetry planes are used to reduce 
the problem size (Figure 13). A coarse mesh of about 5000 nodes and a finer one with 
15,000 nodes (Figure 13) are used for the computations.

The geometries of the final section obtained with non-steady Forge®, steady Lam3 on 
the finer mesh and both meshes for the LS_sl formulation are very similar (Figure 15). 
By looking more closely at the zoom of Figure 16, it first appears that reference solutions 
proposed by Lam3 and Forge® differ. It can be explained by the use of different finite ele-
ments (tetrahedron versus hexahedral) where the hexahedra happen to be stiffer (they 
do not formally satisfy the velocity/pressure compatibility condition). Moreover, it could 
be caused from the non-similar implementation of behavior and friction laws, or even 
from the integration methods: streamlines versus time step. However the difference 
is only about 0.2 mm for a 3 mm widening. Comparing solutions with the same finite 

(48)K = 30; m = 0.15; αf = 0.3; p = 0.15

Figure 12 Initialization of the computational domain by an “extrusion” method.

tools 

200  

40  

12.5  

rolling direction 

9 

initial outlet solution
Figure 13 Simulation of a thick plate rolling with a steady state formulation. The computational domain 
represents only ¼ of the slab (mm).



Page 20 of 27Ripert et al. Adv. Model. and Simul. in Eng. Sci.  (2015) 2:15 

elements, results are very close. Solution obtained with the finer mesh provides a very 
good conservation of the edge profile, which is also in excellent agreement with the non-
steady solution of Forge® (Figure 16).

initial outlet

solution

Figure 14 Simulation of a rolling process “oval to square” with a steady state formulation. The computational 
domain is only ¼ of the billet.

Figure 15 Initial and final sections obtained for the simulation of thick plate rolling process.

Figure 16 Final sections obtained for the simulation of thick plate rolling process (zoom of the bulged end).
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Rolling of long product

A case of rolling process “oval to square” is studied and presented in Figure 14. The 
input section is an oval with main axis 108 mm and small axis 36 mm. Reduction 
brings the maximum height axis to 56  mm. These tools have a 600  mm diameter, 
are separated by 3.5 mm and have a rotational velocity of 48 rpm. Similarly to the 
previous simulation, two symmetry planes are used (Figure  14). This problem is 
a tough challenge for evaluating the conservation properties of free surface algo-
rithms because the domain is very long (1,000 mm), the section reduction rate and 
shape change are very high and the contact area is much harder to compute than 
in previous problem due to more complex tools. With this problem, the Lam3 soft-
ware gets stuck in its convergence. The algorithm periodically sets a portion of a 
“stream line” in contact and then releases it. Lam3 solution does not vary at the 
end because of high relaxations enabled for handling major contacts changes. With 
the present formulation, a first coarse mesh (of about 5,000 nodes) finds difficulty 
to correctly propagate the bar enlargement from the tools exit to the output plane: 
the upper free surface is slightly flattened (see Figure  17). A much more refined 
mesh (of about 40,000 nodes—Figure 14) provides very accurate solution which is 
in excellent agreement with non-steady Forge® (Figure 17).

Convergences and speeds‑up

In all the tests, and particularly in the two rolling problems presented, the free surface algo-
rithm converges toward the solution within a reasonable number of iterations, about 50, as 
presented in Figure 18 for the bar rolling. However, it can be noticed that an approximate 
and rather coarse solution can be quickly found after less than 15 iterations but that 25 or 
more additional iterations are needed to reach an accurate and stable solution (Figure 18). 

Figure 17 Left initial and final shapes obtained for the simulation of shape rolling “oval to square”. Right 
shapes obtained on the output plane with the different formulations.
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In fact, mesh regularization is conflicting with the resolution of the free surface equations, 
so close to the problem solution, the regularization induces slight mesh displacements along 
the free surface, of about 1% of the mesh size, which results into additional iterations. For 
too much iteration, it can lead to a degenerated mesh since no criterion is used to enforce 
the mesh quality. Anyway, the obtained accuracy is fully consistent with the finite element 
size and precision of the penalty contact formulation.

The volume loss on the final configuration for each formulation is presented in Table 2. 
For the incremental formulation, it is simply a comparison between initial and final 
mesh volume (49), whereas for iterative formulations, inlet and outlet material fluxes are 
considered as in Eq.  (50). A finer mesh leads to a better accuracy and a reduction of 
the volume loss for the thick plate test case. However, for the shape rolling test case it 
does not produce the expected improvement. Indeed, in this particular configuration, 
the coarse mesh simplifies the surface curvatures helping the free surface algorithm to 
convect the section shape. Using a finer mesh means the curvatures are still present and 
have to be transported. However, the mesh is not fine enough to deal with unstructured 
topology. As the convection is more complex for the free surface algorithm, the mesh 
regularization appears to smooth the shape progressively in the rolling direction. Solv-
ing this problem is the scope of a new formulation which would be detailed in a future 
paper.

(49)�Vincremental =
Vfinal − Vinit

Vinit

Figure 18 Convergence of the shape rolling “oval to square”.

Table 2 Volume loss (%)

Thick plate Shape rolling

Incremental 0.115 0.40

Lam3 0.008 0.38

Steady‑state (coarse) 0.260 0.45

Steady‑state (fine) 0.023 1.15
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Directly computing the steady state using an iterative approach however brings impor-
tant speed-ups with respect to the incremental computation of this regime. In fact, 
in transient computations time steps must be small enough to be consistent with the 
expected accuracy in the contact area, whereas in steady state modelling, the domain 
inlet and outlet must be set sufficiently far away from the plastic deformation zone. Both 
result in an increase of the total number of times step, in addition to the increase of the 
size of the computational domain. For the thick plate simulation, the steady-state version 
of Forge® is 8 times faster than the incremental version (see Table 3). It can be noticed 
that it requires more iterations and more nodes than the Lam3 software, so making it 
less efficient. On the other hand, the software is stopped when the maximum number of 
100 iterations is reached but the solution is not fully satisfactory. In this case, the speed-
up with respect to the incremental approach is even more impressive (see Table  4) 
because the domain length is much larger: the steady-state version is 21 times faster 
than the transient computation with Forge®.

Sensitivity to domain initialization

In steady-state formulations, initialization of the computational domain may become 
tricky because of its influence on the convergence. Less iterations are needed if the initial 
geometry is closer to the solution, but also convergence may not be reached if the initial 
geometry is too far or not adequate as in the “oval to square” example with Lam3 or as 
mentioned by Mori [10]. It is important to figure out that the formulation developed in 
this article is based on a small correction approach. From an engineering standpoint, it 
is crucial to have a robust method that is able to converge from almost any reasonable 
initial solution satisfying the basic boundary conditions.

An almost optimal initialization of the computational domain can be obtained by the 
“extrusion” method (Figure 12), which was used in previous cases. For the purpose of 
testing the approach robustness, two non-optimal methods are analyzed.

Both start from a simple extrusion of the input plane without taking care of the tools. 
A first approach consists in lifting the tools up so that they are no longer in contact with 

(50)�Viterative =
Qinlet + Qoutlet

Qinlet

with Qinlet =
∫

Ŵinlet

�v · �ndS Qoutlet =
∫

Ŵoutlet

�v · �ndS

Table 3 CPU times for the simulation of thick plate rolling

Number of nodes Number of iterations/increments CPU time Speed up

Incremental 10,000 → 16,000 280 2 h 57 min 1

Lam3 12,000 28 5 min 35

Steady‑state 15,000 40 22 min 8

Table 4 CPU times for the simulation of “oval to square” rolling

Number of nodes Number of iterations/increments CPU time Speed up

Incremental 20,000 → 37,000 1099 24 h 45 min 1

Lam3 12,000 100 38 min 39

Steady‑state 37,000 40 1 h 10 min 21
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the workpiece, then moving them back to their original position by performing a non-
steady forging simulation (Figure  19a). Another simple approach consists in deleting 
all the finite elements that penetrate inside the obstacle before projecting new surface 
nodes on the tool surface (Figure 19b). Boundary conditions are thus properly enforced 
by these last two methods although the height of the downstream part of the workpiece 
is far from being correct. Moreover, the spread between the tools is significantly overes-
timated by the forging method, as shown in Figures 20 and 21.

The first application case is studied again, raising the sliding friction coefficient αf from 
0.3 to 0.5 with the three different possible initializations (see the outline of the initial 
shape produced by forging in Figure 20). Figure 22 shows that the free surface algorithm 
is robust enough to converge for all of them, toward very similar solutions that are pre-
sented in Figure 20. Obviously, the convergence is faster with the extruded initial geome-
try. The other two methods are quite comparable. The observed convergence oscillations 
are only 1% of mesh size in magnitude. It is noticed that the different sections obtained 
(Figure 20) are quite comparable up to the finite element accuracy.

Similarly, the three different initializations are used to study the robustness of the 
algorithm for the second and more complex application problem. Figure 21 left shows 
that here again, the algorithm converges towards almost the same solution whatever 
the initial geometry, even if it is very far from the final solution, as shown in Figure 21 
top–right with the forged initial shape. This robustness property mainly results from the 
mesh regularization introduced inside the free surface algorithm; it acts like a relaxa-
tion and allows a progressive convergence toward the final shape, as shown in Figure 21 
bottom–right.

forging material  
removing

Figure 19 Different ways for initializing the computational domain: forging, material removing.
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using an initial domain created by forging (green contour).
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Conclusion
An iterative approach for the search of continuous processes steady state has been pre-
sented in this paper. The aim was to reduce computational times encountered with incre-
mental formulations by searching directly the steady state with a staggered algorithm. A 
staggered fixed-point algorithm is used where a first velocity field is solved for on a fixed 
and known geometry, and then a domain correction is performed. The second stage is 
controlled by a free surface calculation that needs to be solved in the most general way 
in terms of mesh type (unstructured), geometries complexity and parallel computation 
compatibility. A global resolution using the finite elements method and two DoF satisfies 
all imposed constraints.

Simple analytical test cases with only one DoF evidence the purely convective aspect 
of the free surface problem. Thus, shape functions for the variational problem have 
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Figure 21 Left, final shapes calculated from different initializations with a steady state formulation. Right, 
visualization of both initial and final geometries for a “forging” initialization.
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to take into account the flow direction. Two new weak formulations based on the LS 
method, for facilitating the transition to a 2 DoF algorithm, and using SUPG advantages 
are developed in this study: LS_supg and LS_sl (streamline-like). However, LS_sl takes 
benefit from its fully upwind formulation to eliminate the oscillations which could occur 
with imposed contact constrains.

Using a two DoF formulation in the cross section helps to generalize the free surface 
algorithm by handling mesh singularities, like edges where displacement directions can-
not be easily guessed. To obtain a solution, a Laplacian operator is added to the free 
surface problem introducing a mesh regularization. The final algorithm retrieves the 
geometry with accuracy while preserving edges and mesh quality.

Contact equations are considered during the free surface calculation by using both 
unilateral and sliding bilateral conditions. The second condition prevents a complete loss 
of contact and is possible through the mesh regularization. A contact analysis is then 
crucial to enforce the coupling between the two stages of the staggered fixed-point algo-
rithm. Detection of compressed nodes is performed progressively by using specific and 
complementary data from both mechanical and geometrical resolution stages.

The developed algorithms were applied with success on various analytical test cases 
and for material forming processes like shape rolling. Accuracies are similar to the 
unsteady formulation and important speeds-up are gained, ranging from 10 to 20. The 
method appears to be robust even when using on purpose non-optimal initial domains 
to increase the convergence difficulty.

However, the two DoF formulation for the free surface computation has too much 
freedom leading to some issues: relatively slow convergence of the free surface calcu-
lation, parasite displacements after both geometry and contact are stabilized. Adding 
more control upon each DoF by making a differentiation between surface and edge 
nodes during the free surface calculation would correct these problems, as the first ones 
need one DoF to be optimal whereas the last ones require a second DoF. This is subject 
of a future paper.
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