
HAL Id: hal-01251185
https://minesparis-psl.hal.science/hal-01251185

Submitted on 5 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Team-Based Methodology of Memory
Hierarchy-Aware Runtime Support in Coarray Fortran
Dounia Khaldi, Deepak Eachempati, Shiyao Ge, Pierre Jouvelot, Barbara

Chapman

To cite this version:
Dounia Khaldi, Deepak Eachempati, Shiyao Ge, Pierre Jouvelot, Barbara Chapman. A Team-Based
Methodology of Memory Hierarchy-Aware Runtime Support in Coarray Fortran. IEEE Cluster 2015,
Sep 2015, Chicago, United States. p.448-451, �10.1109/CLUSTER.2015.67�. �hal-01251185�

https://minesparis-psl.hal.science/hal-01251185
https://hal.archives-ouvertes.fr


A Team-Based Methodology of Memory Hierarchy-Aware Runtime Support
in Coarray Fortran

Dounia Khaldi∗, Deepak Eachempati∗, Shiyao Ge∗, Pierre Jouvelot† and Barbara Chapman∗
∗Department of Computer Science

University of Houston, Houston, Texas
{dkhaldi,dreachem,sge2,bchapman}@uh.edu
†MINES ParisTech, PSL Research University, France
pierre.jouvelot@mines-paristech.fr

Abstract—We describe how 2-level memory hierarchies can
be exploited to optimize the implementation of teams in the
parallel facet of the upcoming Fortran 2015 standard. We focus
on reducing the cost associated with moving data within a
computing node and between nodes, finding that this distinction
is of key importance when looking at performance issues. We
introduce a new hardware-aware approach for PGAS, to be
used within a runtime system, to optimize the communications
in the virtual topologies and clusters that are binding different
teams together. We have applied, and implemented into the
CAF OpenUH compiler, this methodology to three important
collective operations, namely barrier, all-to-all reduction and
one-to-all broadcast; this is the first Fortran compiler that
both provides teams and handles such a memory hierarchy
methodology within teams

Keywords-Coarray Fortran; teams; PGAS; memory hierar-
chy; intra- and inter-node runtime; collective operations

I. INTRODUCTION

The emergence of many-core computing nodes in large-
scale distributed systems requires programming model im-
plementers to consider more carefully memory hierarchy
when looking at performance issues. Most parallel applica-
tions are programmed using the Message Passing Interface
(MPI) [1], where multiple processes execute in a coordinated
manner, communicating by performing send and receive
operations. More recently, several languages and libraries
have added support for explicit or implicit remote memory
access (RMA) using so-called “one-sided communication”,
including languages following the Partitioned Global Ad-
dress Space (PGAS) paradigm as well as MPI (MPI-2
added RMA to the interface and MPI-3 made significant
refinements to better support it). Of special note is the
Fortran 2008 addition for supporting coarrays, a language
mechanism that enables RMA as a natural extension to
Fortran’s array syntax, informally named CAF1. In this
paradigm, an image is an executing process in a Single
Program Multiple Data (SPMD) program with its own copy

1This acronym describes the Co-Array Fortran extension proposed by
Cray Computer several years before it was adopted into the standard. We
refer to the implementation of CAF in the OpenUH compiler as UHCAF.
CAF 2.0 is an alternative Fortran language extension for supporting coarrays
proposed by Rice University.

of data.
The purpose of this paper is to provide new optimization

strategies for coarrays. We suggest, first, to decompose
applications into subproblems that may be worked upon
concurrently, and organize this work among subsets of so-
called image teams. These groups of images make it possible
to divide applications into loosely-coupled subproblems that
are handled by different subsets of images. Teams, already
present for instance in MPI, are expected to be adopted
in Fortran 2015. We, then, address the ensuing challenge
of reducing the costs associated with moving data within
a computing node and between nodes. Our approach is
thus to combine a hierarchical decomposition of applications
across two dimensions: (1) a logical partitioning in teams
of the work, based on the application, and (2) a processor
layout hierarchy, based on the underlying memory and
communication hardware.

We applied this methodology to three common operations
which may be executed collectively by a team of images in
CAF: barrier, all-to-all reduction and broadcast (for these
last two, see [2]). The classical algorithms for all three
of these operations entail a fixed communication pattern
among the images, making their total communication cost
sensitive to the placement of images in parallel systems.
Since a significant part of the execution time of an ap-
plication is consumed while waiting for the completion of
these operations, ensuring that their implementations are
efficient, irrespective of image placement, is paramount. In
this paper, we exploit the knowledge of the architecture
that a run-time system can have, and describe, for the
barrier collective operation, how we applied inside every
team a new, two-level algorithm called Team Dissemination
Linear Barrier (TDLB). Experimental evaluations using our
implementation in the OpenUH compiler indicate that our
proposed runtime awareness approach of memory hierarchy
yields an up to 26-time execution time improvement over
the basic dissemination algorithm for barriers [3].

The contributions of this paper are thus:
• the support of teams in Coarray Fortran within the

OpenUH compiler;



• the design of a two-step methodology for achieving bet-
ter performance of collective operations, using runtime
awareness of the memory hierarchy;

• the application of this methodology to the implemen-
tation of barriers, via the new TDLB algorithm, reduc-
tions and broadcasts; the novelty is to adapt existing
techniques such as the dissemination algorithm to the
PGAS model using one-sided communications;

• an evaluation of this methodology on two benchmarks:
(1) our newly developed Coarray Fortran, CAF 2.0 and
MPI (communicator concept) Teams Microbenchmark2

suite [4] and (2) our porting to Coarray Fortran of
the High Performance Linpack (HPL) benchmark [5],
which uses teams.

We describe Coarray Fortran in Section II. The design
and implementation of teams in the OpenUH compiler are
introduced in Section III. In Section IV, we define our
memory hierarchy awareness methodology and apply it to
barrier, reduction and broadcast operations. Experimental
results using our microbenchmarks and HPL are discussed
in Section V. We survey other approaches for the implemen-
tation of teams in Section VI. We discuss future work and
conclude in Section VII.

II. COARRAY FORTRAN

Coarray Fortran is an explicitly-parallel extension of the
Fortran 2008 standard that adheres to the PGAS program-
ming model. Coarray Fortran programs follow an SPMD
execution model, where all execution units, called images,
are launched at the beginning of the program; each image
executes the same code and the number of images remains
unchanged during execution. Coarrays are shared data enti-
ties that are declared with the codimension attribute specifier
and allocated collectively across all images. Subscripts of
coarrays are specified with square brackets and provide a
clear and straightforward representation of access to data
on other images using 1-sided communication semantics.
For example, the statement A(:)[k] = B(:) writes the
elements of Coarray A on Image k with those of B.

Teams, added to Coarray Fortran, induce a hierarchical
SPMD model. The initial team contains all the images. Sub-
sets of images in a team may collectively form a new team,
which are referenced using a handle of type team_type,
using the form team statement. Every team has a unique
identifier and a unique parent. Teams can be used to partition
an application into different tasks executed by subteams. For
instance, one can divide a logical grid into arbitrary subgrids.
This could be used to group subsets of images performing
computations on dense matrices into row- and/or column-
oriented teams.

2Since teams are a relatively new concept for Coarray Fortran, there
is no reference test suite for them; Teams Microbenchmark suite has been
made publicly available for other implementers to get a baseline to compare
themselves to.

Regarding performance, using teams, many collective
operations can be overlapped; these collectives will work on
just a subset of images; no global synchronizations among
all the images are thus needed. Regarding memory, using
Coarray Fortran teams, one can declare and allocate coarrays
within a change team block. This allows a coarray to be
allocated only in the images operating on it, thus utilizing
more efficiently the available memory on each image.

III. TEAM SUPPORT IN OPENUH
OpenUH [6], a branch of the open-source Open64 com-

piler suite that has been developed at the University of
Houston, provides a solid base infrastructure for exploring
implementation strategies for Coarray Fortran. The Fortran
95 front-end, originating from Cray, recognizes coarrays and
parses the cosubscript syntactic extension.

We extended OpenUH to parse the form team,
change team, end team and sync team constructs.
We added the new type team_type to the type system
of OpenUH and support for get_team and team_id in-
trinsics. We also adapted the CAF intrinsics this_image,
num_images and image_index for teams.

During the back-end compilation process in OpenUH,
team-related constructs are lowered to subroutine calls. In
the runtime, we added a team_type data structure for
storing image-specific information, such as the mapping
from a new index to the process identifier in the lower
communication layer. Also we provided support for team-
related intrinsics, for example get_team and team_id.

Finally, we adapted atomic operations (atomic_add,
atomic_and, etc.), synchronization operations (sync
images and sync all), broadcast (co_broadcast)
and reduction operations (co_sum, co_max, co_min)
to work when executed by non-initial teams. Each subroutine
works by using the global pointer to the current team,
quickly obtaining the mapping of the image identifiers to
the process identifiers in the team_type structure’s image
index mapping array.

IV. MEMORY HIERARCHY AND TEAMS
To make applications more scalable when running on

nodes with many cores, the runtime should have some
knowledge about the mapping of images on nodes and/or
cores. If teams create subsets of images, there may be no
simple relationship between the image structure and the
actual underlying physical structure of the parallel system.
Therefore, as a research methodology towards an efficient
implementation of teams, we propose to introduce a memory
hierarchy-aware runtime for PGAS, in order to optimize
communications within teams via the distinction between
local and remote memory accesses.
A. Methodology

To illustrate our methodology, we apply it to barriers,
since the classic dissemination barrier algorithm is well-
suited for distributed memory systems but not as efficient
for the shared memory case ([2] also addresses reduction



and broadcast operations). In the dissemination algorithm,
for n images, there are n log n synchronization notifications.
On a shared memory system, in the worst case, all those
notifications would have to be serialized. Contrast this
with a centralized linear algorithm. There, only 2(n − 1)
notifications are needed, in two steps: first, notifications are
sent from n− 1 images to a dedicated, leader image; then,
notifications proceed from the leader image to the n − 1
slave images. Even if all those notifications are serialized, it
is not as expensive as the dissemination algorithm.

If we consider instead a distributed system, where each
of the n images is on its own node, then dissemination
becomes faster. There are n log n total notifications, with
n notifications performed in parallel in log n steps. For a
centralized linear algorithm, everything would have to be
serialized through a single node, so yielding 2(n− 1) steps.
These results are confirmed by Mellor-Crummey et al [7].
Our methodology will thus rely on detecting the images
within a team that run locally on the same node (intranode
set), assigning a leader for them and handling them with
an intra-node strategy. After that, the leaders, which are on
different nodes, are handled in a remote manner.
B. The TDLB Synchronization Algorithm

Our new memory hierarchy-aware barrier is a three-
stepped, two-level algorithm: (1) a designated leader on
each node waits for the remaining images on the same
node to arrive at the barrier; (2) all leader images, one
from each node with at least one image in the team,
synchronize using a dissemination algorithm; and (3) each
node leader notifies the remaining images on the same node
that they may leave the barrier. Our Team Dissemination

ALGORITHM 1: Team Dissemination Linear Barrier, run by each
image in Team team

procedure TDLB(team)
me = this_image(team)
cocounter = team.cocounter
ιleader = get_leader(team, me)
//Step 1: slaves synchronize with the leader
linear_counter_1(team,me,ιleader,cocounter);
if (ιleader == me) then
pgased_dissemination(team, ιleader);
//Step 2: leaders notify their intranode set
linear_counter_2(team,me,ιleader,cocounter);

end

Linear Barrier (TDLB) algorithm is specified in Algorithm 1
(see [2] for details). Nodes’ leaders are synchronized via
the dissemination algorithm (fit for message passing), while
synchronization within a node uses a linear barrier (well
adapted to shared memory systems). Note that cocounter
is a variable used in counter-based algorithms for barriers.

V. EXPERIMENTAL RESULTS
We ran the Teams Microbenchmark suite [4] and a porting

of HPL on a cluster of 44 nodes connected via a 4xDDR

InfiniBand (IB) switch, with dual quad-core AMD Opteron
processors running at 2.2GHz on 16GB of main memory per
node. We compared the implementation of these benchmarks
in OpenUH 3.0.40 with two other implementations: (1) the
source-to-source Rice CAF 2.0 compiler version 1.14.0,
which uses ROSE [8] and GFortran 4.4.7 as backends, and
(2) an MPI version, which we ran using both Open MPI 1.8.3
and MVAPICH 2.0beta. Both OpenUH and Rice CAF 2.0
implementations rely on GASNet’s Infiniband verbs runtime
implementation. We used GASNet 1.22.2.
A. Teams Microbenchmarks

We applied the methodology of Section IV-A to barrier
operations (see [2] for all-to-all reduction and one-to-all
broadcast operations). The performance of our implemen-
tation of teams for these collectives is assessed via our
microbenchmarks. Contrarily to Algorithm 9 in [7], which
relies on two synchronization arrays for its implementation
of a barrier operation, and the one described in [3], which is
using two waits, our dissemination algorithm is based on a
sync_flags carry, thus taking advantage of the features
of a PGAS model with only one wait.

We compared TDLB with (1) the GASNet RDMA dis-
semination algorithm, which uses put operations to imple-
ment the dissemination barrier described in [7], (2) the
GASNet IB dissemination algorithm, which directly uses
Infiniband verbs for communication to implement the same
algorithm, (3) CAF 2.0, which uses also the dissemination
barrier described in [7], (4) MPI using MPI_Barrier
of MVAPICH, default Open MPI and Open MPI with the
hierarchy-awareness options (hierarch and sm modules)
and (5) the current version of UHCAF, which uses the pure
dissemination algorithm described in [7].

Even though TDLB is portable and can be used with any
communication layer or conduit, our experiments show that
(1), with one image per node, it performs as well as a pure
dissemination algorithm in the case of a flat hierarchy and
(2), with 8 images per node, it is well optimized to handle
the memory hierarchy and is only marginally more expensive
than the low-level dissemination algorithm implemented
directly over the IB verbs that GASNet provides.
B. HPL

We implemented a Coarray Fortran version of HPL [5],
which solves systems of linear equations, thus testing tem-
poral and spatial run-time localities. We based our version of
HPL on its CAF 2.0 port [9]. HPL makes use of row teams
and column teams for performing updates of the matrix data.

Figure 1 compares the performance results using the two-
level approach in UHCAF, the one-level approach in UH-
CAF, CAF 2.0 using GFortran as backend, CAF 2.0 using
OpenUH as backend compiler and Open MPI using GCC
compiler. These preliminary results suggest that the two-
level approach in UHCAF provides up to 32% improvement
over a typical one-level approach. Overall, we obtained 95
GFLOP/s on 256 cores, as compared to 29.48 (GFortran



backend) and 80 (OpenUH backend) with CAF 2.0.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4(4) 16(16) 16(2) 64(8) 256(32)

G
F

LO
P

/s

Number of Images (Number of Nodes)

UHCAF 2level
UHCAF 1level

CAF2.0 OpenUH backend

CAF2.0 GFortran backend
Open MPI (No tuning) 

Figure 1: Performance results for HPL (-O3 option)

VI. RELATED WORK

CAF 2.0 [10] included teams as first-class objects since
its inception (see [2] for more related work details). Open-
SHMEM [11] proposes the concepts of teams and spaces in
order to allow allocation of memory only across subteams.
None of these two works provided any memory hierar-
chy information for teams. We combine team-based image
grouping with an awareness of the memory hierarchy.

The notion of grouping and hierarchy is present in other
programming paradigms. For instance, the MPI-2 specifica-
tion allows for RMA within a group of MPI processes rep-
resented by a communicator through the mechanism of win-
dow creation [12]. Techniques to support the scalability of
communicators and groups in MPI are presented in [13]. Our
work parallels this approach, within the PGAS framework.
We believe that the team-based, one-sided communication
model of Coarray Fortran is easier to handle by programmers
than the grouping semantics of MPI (and its need for
windows). Our work shows that better programmability does
not come at a cost, since our implementation of Coarray
Fortran is competitive with MPI.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a PGAS-based design methodology for sup-
porting efficient communication between teams for Coarray
Fortran that takes into account the memory hierarchy of
clusters to efficiently implement collective algorithms. We
showed how the memory hierarchy can be exploited at run
time to optimize team implementations via the distinction
between local and remote memory accesses.

To evaluate our memory-hierarchy approach, we extended
the implementation of Coarray Fortran within the OpenUH
compiler with teams and applied our methodology to barrier,
reduction, and broadcast operations, getting up to, respec-
tively, 26-, 74- and 3-fold performance improvements over
the default approach. We also got better performance results
on HPL compared to the one-level approach and original
CAF 2.0 version we based our’s on.

Future work will look at how our methodology can
support multi-level hierarchies to represent different network
topologies or on-node locality domains such as NUMA
memory nodes, shared caches, processor sockets and cores.

REFERENCES

[1] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra, MPI-The Complete Reference, Volume 1: The MPI Core
(2nd Edition). Cambridge, MA, USA: MIT Press, 1998.

[2] D. Khaldi, S. Ge, D. Eachempati, P. Jouvelot, and B. Chap-
man, “A Team-based Design Methodology for Memory
Hierarchy-Aware Runtime Support in Coarray Fortran,”
MINES ParisTech, Technical Report, Tech. Rep. E/376/CRI,
Jul. 2015.

[3] D. Hensgen, R. Finkel, and U. Manber, “Two Algorithms for
Barrier Synchronization,” Int. J. Parallel Program., Feb. 1988.

[4] “HPCTools Teams Microbenchmarks,” https://github.com/
dkhaldi/teams microbenchmarks.

[5] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary.
HPL - A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers.
http://www.netlib.org/benchmark/hpl/.

[6] B. Chapman, D. Eachempati, and O. Hernandez, “Experi-
ences Developing the OpenUH Compiler and Runtime In-
frastructure,” Int. J. Parallel Program., vol. 41, no. 6, pp.
825–854, Dec. 2013.

[7] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scal-
able Synchronization on Shared-memory Multiprocessors,”
ACM Trans. Comput. Syst., vol. 9, no. 1, Feb. 1991.

[8] D. Quinlan, “ROSE: Compiler Support For Object-Oriented
Frameworks,” Parallel Processing Letters, vol. 10, 2000.

[9] J. Guohua, J. Mellor-Crummey, L. Adhianto, W. Scherer,
and C. Yang, “Implementation and Performance Evaluation
of the HPC Challenge Benchmarks in Coarray Fortran 2.0,”
in Parallel Distributed Processing Symposium (IPDPS), 2011
IEEE International, May 2011, pp. 1089–1100.

[10] J. Mellor-Crummey, L. Adhianto, W. N. Scherer, and G. Jin,
“A New Vision for Coarray Fortran,” in Proceedings of
the Third Conference on Partitioned Global Address Space
Programing Models, ser. PGAS ’09. New York, NY, USA:
ACM, 2009, pp. 5:1–5:9.

[11] A. Welch, S. Pophale, P. Shamis, O. Hernandez, S. Poole, and
B. Chapman, “Extending the OpenSHMEM Memory Model
to Support User-Defined Spaces,” PGAS 2014, oct 2014.

[12] A. Moody, D. Ahn, and B. Supinski, “Exascale Algorithms
for Generalized MPI Comm split,” in Recent Advances in
the Message Passing Interface, ser. Lecture Notes in Com-
puter Science, Y. Cotronis, A. Danalis, D. Nikolopoulos, and
J. Dongarra, Eds. Springer Berlin Heidelberg, 2011.

[13] H. Kamal, S. M. Mirtaheri, and A. Wagner, “Scalability of
Communicators and Groups in MPI,” in Proceedings of the
19th ACM International Symposium on High Performance
Distributed Computing, ser. HPDC ’10. New York, NY,
USA: ACM, 2010, pp. 264–275.


