Emilio Jesús 
  
Gallego Arias 
  
Pierre Jouvelot 
  
Adventures in the (not so) Complex Space *

We report on the progress of a constructive mechanization for a small subset of signal processing theory, built upon the SSREFLECT and MATHCOMP libraries.

The development was started to provide mechanized semantics for audio programming languages. Currently, we have formalized several standard properties of the Discrete Fourier Transform, such as its unitary matrix form and its power and convolution theorems. Future goals include transfer functions and constant overlap-add processing.

At the workshop, we aim to discuss the needs and limits of our current approach, surveying some mathematical concepts not covered by existing libraries, and similar efforts in other frameworks and theorem provers.

Introduction and Motivation

A key component in audio programming and analysis is the Discrete Fourier Transform (DFT). Its efficient implementation -the Fast Fourier Transform -has made practical a myriad of soundprocessing algorithms, from convolution-based filtering to envelope extraction.

The need for a mechanized treatment of the DFT and its properties arose in our quest to develop a mechanized semantics for Faust [START_REF] Grame | The Faust Project[END_REF], a functional stream-based audio programming language.

Faust's time-domain semantics largely correspond to wellunderstood notions in the synchronous programming paradigm [START_REF] Berry | The foundations of Esterel[END_REF][START_REF] Auger | Compilation Certifiée de SCADE/LUSTRE[END_REF]. However, frequency-domain aspects -central in audio -seem less explored in the literature. Thus, a natural preliminary step was to attempt the mechanization of basic DFT and DSP (Digital Signal Processing) theory.

We have chosen as a reference text the excellent book series by J.O. Smith [START_REF] Smith | Mathematics of the Discrete Fourier Transform (DFT): with Audio Applications[END_REF][START_REF] Smith | Introduction to Digital Filters: with Audio Applications[END_REF][START_REF] Smith | Spectral Audio Signal Processing[END_REF]. Among other nice qualities -like detailed paper proofs -the series is specific to audio applications, reflecting very well the particular, domain-specific considerations of audio DSP. Additionally, the author has ample experience with Faust and stream-based functional audio programming [START_REF] Smith | Audio Signal Processing in Faust[END_REF].

The first book in the series, "The Mathematics of the Discrete Fourier Transform (DFT): with Audio Applications", presents the basic theory about the DFT: linearity, basis, convolution, and power conservation.

Such theorems are far from mathematically challenging, notwithstanding that they pose a few difficulties in the mechanized constructive setting. In particular, the basic theory of the DFT relies on finite and infinite series, linear algebra, trigonometry, and complex analysis.

The first proof in the book is Euler's formula: e ix = cos x + i sin x. Indeed, in DSP trigonometry and complex analysis are pervasive, and most definitions crucially depend on complex exponen- * Research funded by the ANR FEEVER project. tiation. Thus, the logical path to mechanization seems to require a library supporting complex analysis, such as [START_REF] Cruz-Filipe | C-CoRN, the Constructive Coq Repository at Nijmegen[END_REF][START_REF] Boldo | Coquelicot: A User-Friendly Library of Real Analysis for Coq[END_REF][START_REF] Lelay | More than real analysis in Coq[END_REF].

However, we soon realized that good support for advanced linear algebra was maybe even more crucial. For that domain, our preferred choice is the linear algebra library of MATHCOMP [START_REF] Gonthier | A Small Scale Reflection Extension for the Coq system[END_REF].

Unfortunately, integration of MATHCOMP and constructive complex analysis doesn't seem immediate, due to different definitions of key algebraic structures. A combination of MATHCOMP with classical analysis works, and seemed the most viable choice, even if at the cost of abandoning hopes for a constructive, axiom-free development.

But once we were more familiar with standard DSP practice, it became apparent to us that "true" complex numbers were not a hard requirement for the key parts of the discrete transform theory. Indeed, the SSREFLECT constructive algebraic numbers could pack enough power for our needs. 1 This amounts to work in pre-Hilbert spaces, which seems enough for our case.

Indeed, libraries for algebraic numbers, big operators, and matrix libraries [START_REF] Bertot | Canonical Big Operators[END_REF][START_REF] Gonthier | Point-Free, Set-Free Concrete Linear Algebra[END_REF] have made our job straightforward, to the point that it has felt like an exercise. It is also remarkable how close our proofs are to the pen and paper versions.

Most of our time was spent in proving some technical lemmas about primitive roots of the unity, and by finding a convenient definition of inner product of (algebraic) vectors. Another remarkable fact of the library is that we didn't use induction in the whole development, "all the required induction was already contained in the provided lemmas".

In the rest of the abstract, we give a quick overview of the development, to briefly conclude with some thoughts on related and planned work. An version of the code is available at https://www.cri. ensmp.fr/people/gallego/coq-2015/dft.v; we warn the reader that it is quite in-flux, we expect it to significantly change in the next weeks. We also hope that the expert reader will excuse our lack of knowledge about the vast MATHCOMP libraries; given its sheer size it could be well the case that we are redefining already present notions nor using it in an optimal way.

The Basic Ingredients

Inner Products, Normed Vector Spaces We work over the algebraic numbers C. For any x ∈ C, x = x + i x, where i 2 = -1. The conjugation of a number is given by x + iy = x -iy.

Assume x, y ∈ C n , elements of the vector space obtained by n copies of C. We will identify C n with time-sampled signals of n samples. Then the inner product of x and y is x, y = n-1 m=0 x(m)y(m), and a norm is then defined as x =

x, x .

We write x ⊥ y for x, y = 0, and we say that x and y are orthogonal.

We assume our vector spaces to be cyclic, that is, for x ∈ C n we perform indexing modulo n. We also have a shift operator, SHIFT k x(n) = x(n -k mod n).

Roots of the Unity

A n-root of the unity is any z such that it is a solution of the polynomial z n = 1. Informally, a primitive root of the unity is a generator of all the other roots. Given ω a primitive root, some properties of interest are n-1 m=0 ω m = 0, |ω| = 1, etc. . . Given s k ∈ C n such that s k (n) = ω kn , we have

s k ⊥ s l ⇐⇒ k = l.
The Discrete Fourier Transform We define the DFT as:

DFT k x = n-1 m=0 x(m)ω mk .
The definition in matrix form is also concise and convenient:

Definition W := \matrix_(i < n, j < n) ' ω ˆ+ (i * j).
Linearity follows directly, while the shifting lemma:

DFT k (SHIFTm x) = ω m k DFT k x can be proved in 3 lines.
Convolution The relation of DFT with convolution is a key property; using the efficient form of the DFT (FFT), we can perform convolution -and thus FIR filtering -in O(n log n) vs O(n 2 ).

Definition 1 (Circular Convolution).

(x y)(k) = n -1 m=0 x(m)y(k -m) Theorem 1 (Circular Convolution). DFT k (x y) = DFT k x • DFT k y
Commutativity of convolution needs 3 lines of proof; the convolution theorem, 5.

Unitary Property Define the Hermitian transpose of a matrix A * ≡ A T . A matrix is unitary if A * A = AA * = I. This states that the columns of A are orthogonal. For the DFT matrix W, we have W * W = WW * = nI, and thus its normalized form W = 1 √ n W is unitary. The Power Theorem In particular, this implies the power theorem:

x , y = 1 N DFT x , DFT y
of which an easy corollary is Parseval's:

x 2 = 1 N DFT x 2 .

What's next?

We are still working on completing and cleaning up the development: improving naming, trying to find the best interfaces for some of our tasks -namely exponentiation modulo, inner products, Vandermonde or unitary matrices -and exploring other related finite transforms like [START_REF] Brown | Calculation of a constant Q spectral transform[END_REF]. Studying the relation of our approach to rational trigonometry could be interesting too.

Algebraic Signal Processing

The next candidate for mechanization is the Z-transform, a generalization of the Fourier transform that replaces the roots of unity by an arbitrary complex number z.

The Z-transform reduces analysis of linear systems to their "transfer functions" and "region of convergence", that is to say, values of z for which the transform converges.

The Z-transform has been recently mechanized in a classical setting [START_REF] Siddique | On the Formalization of Z-Transform in HOL[END_REF], allowing the verification of linear systems, although no convolution is included.

Unfortunately for us, the Z-transform is essentially defined as an infinite time summation, which doesn't translate well to the approach we have followed here. Notwithstanding, there exists work in algebraic signal processing [START_REF]Algebraic Theory of Signal Processing[END_REF][START_REF] Püschel | Algebraic Signal Processing Theory[END_REF] that allows the definition of a finitary version of the Z-transform based on polynomial algebras. The concrete details are outside of the scope of this abstract, but the basic idea is to view linear filters as an algebra A, with filtering defining an A-module over the vector space V of signals. In this setting, the values z ∈ ROC act as generators for the polynomial algebras, with elements in the sequence space 1 for the infinite time case, etc... Going to the Infinite It would be very interesting to extend our formalization to the infinite-dimensional case. However, we would lose the great convenience that the big operators and linear algebra libraries offer.

Extending big operators to handle infinite sums is far from trivial, we believe that mainly due to convergence issues. Indeed, in [START_REF] Siddique | On the Formalization of Z-Transform in HOL[END_REF] linearity theorems for the Z-transform only hold if z ∈ ROC . A possibility would be to pack convergence proofs in the operator itself, or to extend the base type to include elements capturing divergence, as done in other approaches.

Efficient, Certified Computation It could be worth to try to use existing tools for effective linear algebra [START_REF] Dénès | A refinement-based approach to computational algebra in COQ[END_REF] to achieve verified computation of the DFT. It would mainly require computation over the algebraic numbers; the rest would be captured by the existing matrix multiplication. Going beyond that and refining the algorithm to the FFT [START_REF] Capretta | Certifying the Fast Fourier Transform with Coq[END_REF] is possible, but likely to be quite challenging.

Indeed, in a presentation preceding this work, the first author was asked whether the algebraic numbers would suffice. We wrongly responded no; however there are still corners of the theory that may be difficult to capture without working in a complete metric space.