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How to calculate the environmental impact of renewable energy 

 

Isabelle Blanc, professeur à MINES ParisTech 

The development of renewable energy since the early 2000s should continue and 

intensify in the coming years, changing significantly the electricity mix of the future 

while reducing the associated environmental impacts. It is therefore crucial to study the 

environmental impact of the different production sectors. 

 

The energy transition and, more specifically, the electricity mix of the future has sparked 

many debates about its environmental impacts, both on locally and globally. Direct emissions 

of greenhouse gases caused by the production of electricity and heat from fossil fuels alone 

account for 25% of global emissions in 2010. To fight against climate change while ensuring 

a sustainable energy supply, the European Union has set itself the goal of “3 x 20” for 2020: 

reduce greenhouse gas emissions by 20% compared to the 1990 level, reach 20% of energy 

savings and a 20% share in renewable energy (RE) in the European energy mix. Recently, the 

EU set even more ambitious targets for 2030 with 40% reduction in greenhouse gas 

emissions, 27% in energy savings and a 27% share of renewable energy. 

While some renewable energy systems have little or no impact during their operational phase, 

they nevertheless have an effect on the environment: upstream in the production chain, during 

the manufacturing phase, and downstream, at the end the system’s service life. 

To study the environmental impact of different production chains, we can use tools such as 

life-cycle assessment and other related indicators, such as energy payback time. 

Life-cycle assessment and energy payback time 

The life-cycle assessment (LCA) examines the environmental impacts of a product or service 

throughout its life cycle. It is based on the compilation of measured environmental impacts at 

each stage, from the manufacturing of the components that form the system to the end of 

service life of the system itself. For example, in the case of the production of electricity by 

photovoltaic panels installed in France, the assessment will take into account the 

manufacturing of its polycrystalline cells in Asia, the mounting of its panels in Germany and 

its installation in France. LCA is takes into account an inventory of pollutants and the 

consumption of resources. This holistic approach, “from cradle to grave,” has undergone 

extensive standardization by the ISO (14040 and 14044 standards) and the European 

Commission. It is considered as a powerful supporting tool for decision-making and 

environmental optimization. 

Thanks to this type of analysis, direct and indirect impacts of energy production can be 

qualified and quantified according to various indicators. The impact categories assessed 

globally include global warming potential, human toxicity, acidification, primary energy 

consumption, but also the depletion of resources or anticipated shortages of mineral and fossil 

resources. 

This latter point should not be overlooked. For example, wind turbines depend on neodymium 

and dysprosium, two rare earth metals which act as permanent magnets in the alternator. 

These illustrate this sensitive issue of mineral resources: given the increase in the current 

http://www.developpement-durable.gouv.fr/IMG/pdf/Rep_-_Chiffres_cles_du_climat_France_et_Monde.pdf


demand, there will be a dysprosium shortage around 2020. Another example with very 

promising photovoltaic technologies such as CIGS (copper, indium, gallium, selenium) faces 

the same challenges: the “production reserves” ratio of indium is estimated to last only 20 

years. 

The life-cycle analysis is based on various indicators. Among them, the “energy payback 

time” is a particularly appropriate indicator to quantity the environmental performance of 

renewable energy. These sectors are characterized by a major energy investment in the 

manufacturing phase but low energy consumption during the use phase. Energy payback time 

indicates the time required by a sector to produce a primary energy quantity equivalent to that 

which was necessary for its manufacturing. It is expressed in years and calculated based on 

the ratio of the energy consumed by the manufacturing of the system and the energy produced 

by the system over a year. The latter quantity is based on the primary energy necessary to 

produce the electric energy in the country where the renewable system is installed. This type 

of calculation is therefore specific to the electricity mix in the concerned country. 

As an illustration, the following table provides the energy payback time for two solar 

photovoltaic panels with a peak power of 3kW (monocrystalline and polycrystalline 

technology) produced in Europe and China and installed in Europe. The geographical 

information is critical, because the return time depends on the energy content in kWh of the 

installation area. For Europe, the average electricity mix has a value of 11.4 MJ/kWh of 

primary energy per kWh of electricity produced. The return time would be higher for identical 

facilities located in countries where the energy mixes have a lower energy content. 

Life-cycle inventories of these systems are necessary to calculate the manufacturing of 

photovoltaic energy, covering all the sub-systems and the induced transportation. In this 

example, the life-cycle inventory values of these systems, manufactured in Europe or China, 

come from the Ecoinvent v2.2 database, based on the situation in 2011. 

 

The energy payback time is less than two years for both technologies when the panels are 

manufactured in Europe and over a few months when they are manufactured in China for the 

monocrystalline technology. This “return time” approach also allows to assess the 

“environmental performance,” for example, by applying the same reasoning to the carbon 

footprint of the life cycle in the renewable sectors: this is referred to as “climate return time.” 

http://www.paristechreview.com/wp-content/uploads/2015/10/illus-blanc-eng-PTR.png


A comparative view of electrical production channels based on life-cycle analysis 

The characterization of energy systems by life-cycle analysis and related return time 

indicators enables the comparison between channels and the identification of improvement 

solutions. It also feeds the technical and social debate around the expansion of renewables in 

the energy mix. 

In this perspective, the IPCC conducted a study in 2011 that compiles scientific articles on the 

carbon performance indicator. This indicator (in g of CO2-eq/kWh) compares the emission of 

greenhouse gases throughout the life cycle of the industry to the production of electricity. The 

aim of the study was to compare fossil energies (coal, gas and natural gas), nuclear energy 

and renewables. This compilation revealed the extent of the distribution of the results for each 

of the sectors, reflecting the great variability of local conditions and technological 

characteristics of systems in the available studies. It would therefore be unrealistic to try to 

identify each sector with a unique and absolute value of carbon performance. This overly 

simplistic interpretation would offer a partial view of the problem. 

The variation range of the carbon performance indicator highlights the best performance of 

renewables. This is a crucial point. But carbon is only one indicator among others. What 

about other environmental impacts, such as the depletion of natural resources or human 

health? The study is limited to the carbon performance indicator and would deserve to be 

extended to other indicators. 

To contribute to the debate on energy transition, these environmental assessments must be 

conducted properly i.e. by taking into account technological and local specificities. This will 

allow a comparison of power generation in energy mixes, as in the following example: 

Guadeloupe. 

Life-cycle analysis on a regional scale 

The “Observation, Impacts, Energy” center of Mines ParisTech conducted a first life-cycle 

analysis on a regional scale, the EVALGTHDOM research project, to assess the 

environmental impact of prospective electric mixes for Guadeloupe. If the French authorities 

set an objective of 23% renewables in of the country’s electricity mix by 2020, for the 

Departments and Regions of Overseas, the goal is to reach 50% by the same date, and 

ultimately, a self-sufficient 100% by 2030. 

The choice of Guadeloupe is no coincidence. This volcanic island is a laboratory for 

geothermal energy: the central of Bouillante, the first geothermal electricity plant in France, 

boasts a capacity of 15 MW (photo BRGM). 

http://www.oie.mines-paristech.fr/Accueil/
http://www.mines-paristech.fr/WebTV/&?title=Energetique-et-procedes/Accompagner-la-Guadeloupe-vers-l-autosuffisance-energetique&id=175296&cat=1321


 

The study compares the reference scenario of the electricity mix in 2013 with three scenarios 

for 2030, by incorporating the official objectives concerning the control of consumption and 

promotion of renewables. It is based on 13 indicators of impacts (climate change, human 

toxicity, reduction of fossil resources, acidification, eutrophication…) that assess each sector 

of power generation, including six renewables: geothermal, biomass (bagasse, fibrous 

sugarcane), wind, photovoltaic, hydropower, waste recycling and biogas. The definition of the 

four scenarios of development of Guadeloupe’s electricity mix is based on the work 

accomplished by the Guadeloupe Region within the framework of PRERURE (Plan 

énergétique régional pluriannuel de prospection et d’exploitation des énergies renouvelables 

et d’utilisation rationnelle de l’énergie de la Guadeloupe: Regional multi-year energy plan 

for the exploration and exploitation of renewable energy and rational use of energy in 

Guadeloupe): 

. The baseline scenario used as a reference represents the state of Guadeloupe’s electricity 

mix in 2013, with 83% of fossil fuels, imported for the most part. It serves as a comparison 

with future scenarios and assesses the impacts related to energy planning decisions. 

Renewables account for 17% of the electricity mix. 

. The trend scenario follows the trends observed in recent years in terms of energy demand 

without any special effort in terms of developing renewable energy or strengthening energy 

demand management (also known as “demand side management” or DSM). 

. The PRERURE scenario reflects an increased effort to control consumption and promote the 

development of renewable sectors (up to 75% of the electricity mix). It is designed to promote 

the diversification of the energy mix. According to this scenario, geothermal energy is 

growing to reach a power of 85 MW in 2030. 

. The moderate scenario, specifically established as part of the project, reflects a moderate 

effort to control consumption on the one hand and the development of renewables, on the 

other. The geothermal energy sector reaches a capacity of 45 MW. 

The different phases of the life cycle of the electrical system in Guadeloupe include the 

construction, production and transportation of energy. Impacts related to the final use of 

electricity are not included, nor the storage of electricity or processes of recycling and end-of-

life. Inventories of energy conversion technologies have been compiled within the limits of 

specific details available for each technology. 

http://www.paristechreview.com/wp-content/uploads/2015/10/bouillante.jpg


The results of this study can be illustrated through four representative environmental impacts: 

. The global warming potential, which identifies greenhouse gases per kWh of produced 

electricity, reaches virtually a reduction factor of 4 times in greenhouse gases between the 

current scenario and the PRERURE scenario, thanks to the very significant reduction of fossil 

fuels and the abandonment of coal 

. Acidification (the ability of substances to create and release H
+
 ions expressed in a SO2 

sulfur dioxide equivalent) can have direct and indirect impacts on ecosystems (acid rain and 

soil leaching). This impact follows the same reduction scheme for the examined scenarios 

than the global warming potential. 

. Ecotoxicity, expressed in CTUe (Comparative Toxic Units) is an estimate of the fraction of 

potentially affected species, integrated in time and space, per unit of chemical mass unit 

emitted. A decrease of the impact of the bagasse sector between the baseline scenario and the 

trend scenario, while its share in the power generation mix remains very similar (respectively 

2.6% and 2.3%). This difference is due to the hypothesis of a decrease in the use of pesticides 

(complete stop in the use of diuron in three prospective scenarios, following its recent ban in 

Guadeloupe). Impacts are greater in moderate and PRERURE scenarios and are the direct 

consequence of the development of the cane and fibrous sugarcane industry for both 

scenarios. 

. Marine eutrophication (in kg of nitrogen) is used to evaluate the potential for the 

eutrophication of the marine environment. Eutrophication is a process of accumulation of 

nutrients and can lead to problems (loss of diversity, degradation) in the affected environment. 

The study shows a strong decrease of this impact in all three scenarios. It is mainly due to the 

important efforts in mitigating the emissions of nitrogen oxides (NOx) and ammonium (NH4
+
) 

in thermal power plants equipped with a denitrification system that reduces the NOx emissions 

in fumes by 85%. 

Beyond its results, this study on life-cycle analysis of the energy mix at a regional scale 

participates in the debate on the implementation of the energy transition: it offers a first 

assessment of the impacts generated by each sector within this mix by pinpointing the sectors 

that have the greatest impact according to different selected indicators. LCA also reveals the 

contradictory trends of these choices on the different impacts and contributes to influence 

decision-makers in the Guadeloupe region. 

Based on these LCA studies, a sustainable energy development plan can be designed at 

regional scale: the optimization of local resources (whether renewable or not) to meet the 

energy demand; the control of import flows of fossil fuels, biomass or electricity; and of 

course, the mitigation of “environmental leakage,” such as carbon leakage. 

 


