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Abstract: In the thin sheet cold rolling manufacturing process, a major issue is roll elastic 

deformation and its impact on roll load, torque and contact stresses. As in many systems 

implying mechanical contact under high loading, a central part is under “sticking friction” 

(no slip) while both extremities do slip to accommodate the material acceleration of the 

rolled metal sheet. This is a crucial point for modeling of such rolling processes and the 

numerical treatment of contact and friction (“regularized” or not), of the transition between 

these zones, does have an impact on the results. Two ways to deal with it are compared 

(regularization of the stick/slip transition, direct imposition of a no-slip condition) and 

recommendations are given. 

Keywords: strip rolling; modeling; Finite Element Method; Slab method; slip;  

friction; regularization 
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1. Introduction on Strip Rolling Models, Roll Deformation and the Role of the Friction Stress 

Rolling is one of the most important metal manufacturing processes. Starting from continuously cast 

slabs, steel is first hot rolled then cold rolled. This latter stage is the one of interest in this paper. As the 

material is hard and thin, large contact pressures result in significant roll deformation, which has a major 

impact on the process control and on strip geometry [1]. The most impacted characteristics are thickness 

profile and flatness defects (see Figure 1) in the case of thin cold rolled flat products, named strips 

between 0.1 and 1 mm thick, and foils below 100 µm. In the present paper, where the focus is on friction 

models and their consequences, it is sufficient to work with 2D models in a longitudinal cross section, 

where strains and stresses are assumed constant along the width direction. In this plane, the elastic roll 

deformation problem is called roll flattening. 

 

Figure 1. Schematic representation of the rolling process, showing the roll stack (work roll 

(WR), back-up roll (BUR)) and thin strip with typical flatness defects. 

1.1. Elastic Roll Deformation Modeling 

It is important to realize that a concentrated line loading on a cylinder results in a singular  

solution [2]. As a rolling mill roll is highly loaded on a very small part of its periphery, the problem is 

not singular but very stiff; however, simple as it may look, it remains an open one. 

First estimations of roll deformation were based on the assumption of a quasi-Hertzian contact stress 

field (elliptical profile), from which Hitchcock’s formula [3] was derived. It allowed calculating an 

equivalent, increased roll radius, which was then used in most of the early rolling models, such as the 

Bland and Ford model [4]. Roll deformation was coupled to strip deformation in an iterative way: plastic 

or elastic-plastic strip deformation analysis gives a stress profile, which is applied on the roll to give the 

deformed roll radius, which is used in next iteration of strip model, etc. 

The limitation of Hitchcock’s formula for highly loaded contacts such as found with hard, thin strip 

was soon recognized: for large roll deformation, the iterative process described above fails to converge. 

Roll radius is increased by the roll load; this makes the contact length longer, which makes the load 

grow, which increases the roll radius in an endless process. It has been estimated that whenever the 

calculated deformed roll radius reaches the double of the initial one, the results are suspect and for still 
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higher ratios, divergence may occur [5]. Therefore, much more precise methods were developed to show 

that indeed non-circular arc roll deformation models were necessary: 

 First the Influence Function Method initiated by Jortner et al. [6] and its numerous variants, still 

in use today. 

 Then the Finite Element Method (FEM) introduced by Atreya and Lenard [7] and  

Montmitonnet et al. [5], which is now practically abandoned in 2D models due to its much higher 

cost. It subsists in 3D rolling models [8] as an alternative to the IFM, which becomes quite 

complex in this case. 

1.2. Plastic Strip Deformation Modeling and Coupling with Roll Deformation  

As for the strip, its elastic-plastic deformation 2D analysis is most of the time based on the Slab 

Method (SM). It assumes (i) no dependence of stress and strain on the thickness coordinate either and 

(ii) the (Oxyz) frame is the principal frame everywhere, i.e., no shear strains and stresses need to be 

considered. The latter assumption is sometimes relieved using Orowan’s model to include an 

approximation of shear effects [9]. In 3D, the FEM is used most of the time as the SM is difficult to 

extend rigorously in this case. 

The roll/strip model coupling technique is essential. The iterative process described above often fails 

to converge if no precautions are taken. This is why alternatives have been proposed, based on conjugate 

gradient [10] or one-domain FEM computation with internal discontinuity—the roll-strip interface [11]. 

However the fixed point iterative technique remains the only one in use. The solution to convergence 

problems in severe cases relies on relaxation: only a small fraction of the roll surface displacement 

calculated at current iteration is used to increment roll shape for next iteration. Recent models propose 

adaptive management of the relaxation coefficient, as a function of the convergence performance during 

the last few iterations [12,13]. 

Difficult convergence is related to the normal stress peak found near the “neutral point” where sliding 

direction reverses. Indeed, due to incompressibility conjugated with the necessary material acceleration 

as the thickness reduction proceeds, the relative velocity is negative on the entry side and positive on the 

exit side. This peak can be so sharp as to promote a “trough” in the elastically deformed roll profile, i.e., 

the gap (=the strip thickness) locally re-increases in the central part. This phenomenon, of the order of a 

micrometer or less, is now thought to be real [14]. It makes the convergence particularly difficult as the 

strip may fall back temporarily in the elastic unloading regime. This is why Matsumoto [12], following 

Fleck and Johnson [15], sets a limit to the shape, assuming that the roll gap is at most parallel in the 

central part: dt/dx = 0; dt/dx > 0 is forbidden before contact exit (t is the strip thickness, x the abscissa). 

1.3. The role of Friction: Regularization 

Such a sharp peak of normal stress is strongly dependent on the friction stress in the neighborhood. 

In fact, it is easy to show through the equilibrium equations that when rolling thin strips, the major part 

of the stress is due to friction: 

∂σ௬௬
ݔ∂

~
∂σ௫௫
ݔ∂

ൌ െ
∂σ௫௬
ݕ∂

 (1)
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σ is the Cauchy stress tensor, x being the rolling direction and y the normal direction. Figure 2 illustrates 

the impact of friction on the normal and tangential stress profiles, on the roll-deformed shape and on the 

sliding velocity profile. A very thin steel strip is taken as an example, 0.3 mm reduced to 0.21 mm using 

600 mm diameter rolls. When friction increases from µ = 0.02 to µ = 0.035, the roll load, which is the 

integral of the normal stress profile, is multiplied by ca. 3.5 and a central flat, no-slip region appears. 

 

 

Figure 2. Impact of Coulomb friction coefficient µ on mechanical variables in thin strip cold 

rolling. From left to right and top to bottom, profiles of the normal stress, the friction stress, 

the deformed roll and the sliding velocity (compare with similar figures in [15]). 

The way the friction stress model is implemented is therefore critical to the precision of the rolling 

model. A correct friction model must include a threshold, a stick-slip transition in the form: 

|ݍ| ൌ ୡݍ if ୱݒ ് 0 ሺslipሻ 

|ݍ| ൑ ୡݍ if ୱݒ ൌ 0 ሺstickሻ 
(2a,b)

(p,q) are, respectively, the normal and friction stress, vs is the sliding velocity, qc a threshold stress 

for sliding, to be specified by a friction law. Though the friction factor model is certainly preferable 

under high pressures as found in thin strip rolling, most authors use Coulomb friction i.e., qc = µ·p:  

|ݍ| ൌ μ ൉ ݌ if ୱݒ ് 0 ሺslipሻ 

|ݍ| ൑ μ ൉ ݌ if ୱݒ ൌ 0 ሺstickሻ 
(3a,b)
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The stick condition |q| < µp results in a decrease of the friction stress, therefore a decrease of the 

normal stress according to Equation (1). This condition can be met in very highly loaded cases in the 

central part where pressure is so high as to block sliding. The corresponding reduction of hydrostatic 

pressure blunts the normal stress peak and reduces the local roll deformation. As a consequence, 

convergence is made easier—by a real, physical effect. However, some models impose sliding to avoid 

dealing with the complexity of the stick-slip transition. Such models may have a convergence problem. 

Some solve it by introducing a regularization of friction, to decrease it artificially in the critical area 

around the neutral point. It consists in smoothing the stick-slip “step” function by multiplying qc by a 

continuous and differentiable function e.g., [11]: 

|ݍ| ൌ μ݌. ௩౩

ට௩౩
మା௄మ

 
(4)

K is the regularization factor. Its choice (with respect to the expected values of the sliding velocity) 

is essential to regularize the mathematical treatment without transforming too much the physical problem. 

This trick is most useful in the FEM where the derivative of friction with respect to sliding velocity or 

displacement is needed to build the stiffness matrix. This derivative is infinite at stick/slip transition vs = 

0 if the step function is kept. But regularization of friction is also used in the SM context. 

Note that Sutcliffe and Montmitonnet [16] use a second type of friction regularization for the extreme 

case of Al thin foil rolling, using a slope-dependent (dy/dx) term. 

1.4. Purpose and Organization of the Paper 

The main intention of this paper is to draw attention to the capabilities and risks of the friction 

regularization technique, by quantifying the impact this “numerical trick” may have on the stresses, on 

roll deformation and on rolling load. Comparison with a non-regularized formulation with an adequate 

treatment of the stick-slip transition will lead to recommendation on the choice of K. It must be 

emphasized that these effects are maximized here by selecting thin, hard strip rolling as the test  

case—but this is where regularization is useful indeed. Two mathematical formulations of the strip 

rolling process will be addressed, the Slab Method (SM) and a Finite Element Model (FEM). The goal 

is not to describe them in details or to compare them either; this has been done a number of times in the 

past. The test cases are such that we do not expect much difference between them anyway. The purpose 

is to show that the behavior of the friction regularization technique is independent of the type of model, 

provided it is implemented correctly. 

First, the models are described in Section 2, starting with the Slab Method (SM) then the Finite 

Element Model (FEM). In Section 3, the impact of regularization on contact stresses, relative velocity 

and roll deformation are presented and shown important in thin strip rolling whatever the mathematical 

formulation of the problem. Section 4 discusses the choice of the regularization factor, and the extension 

of its formulation to investigate friction laws with different static vs. dynamic friction coefficients. 
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2. Models Description 

2.1. Slab Method-Based Model 

2.1.1. Stress Field in the Strip 

The formulation presented next is taken mainly from the work by Le and Sutcliffe [17].  

The constitutive model is elastic-plastic work-hardening. According to the standard Slab Method, it is 

assumed that strain and stresses do not vary in the thickness direction, i.e., are independent of y.  

The equilibrium of forces applied to the slab (Figure 3) in the rolling direction writes: 

ݐ
dσ
dݔ

൅ ሺσ ൅ ሻ݌
ݐ݀
ݔ݀

൅ ݍ2 ൌ 0  (5)

where x is the coordinate in the rolling direction, t is the strip thickness, σ is the tensile stress in the 

rolling direction, p is the interface pressure and q is the shear stress. 

 

Figure 3. Symbols used in the equations of slab method. 

Deformation starts with an elastic compression at onset of contact. Stresses grow and, when the yield 

condition is met, plastic deformation occurs, under slip condition as the strip speed increases. As in Le 

and Sutcliffe [17], a central flat, sticking zone may occur under higher loads; conditions for this are 

described below. In this case, a second plastic reduction zone with slip will follow. In all cases, a final 

elastic unloading zone bounds the contact, starting at the point of minimum thickness xd  

(Figure 4). 
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Figure 4. Deformed arc and sticking region ((CPZ) Contained Plastic Zone). 

The equations governing the different zones are given hereafter.  

(a) In the plastic slip region, the equilibrium Equation (5) is solved together with the elastic-plastic 
constitutive model. A Tresca yield criterion is assumed: p + σ = Ys (Ys is the plane strain yield 
stress of the strip), giving, once reported into Equation (5): 

d݌
dݔ

ൌ ୱܻ

ݐ
dݐ
dݔ

൅
ݍ2
ݐ
൅
d ୱܻ

dݔ
 (6)

Assuming a constant Coulomb friction coefficient μ, friction stress q, wherever sliding is present, is 

given by: 

ݍ ൌ േμ(7) ݌

where the positive sign is used for the backward slip at entry and the negative sign for the forward slip 

on the exit side. In case regularization is applied, this equation can be rewritten as: 

ݍ ൌ μ݌.
ୱݒ

ටݒୱଶ ൅ ୰ୣ୥ଶܭ . ୰ܸ୭୪୪
ଶ

 
(8)

Note that here, Vroll, the work roll velocity, has been introduced to make the regularization coefficient 

(now Kreg) non-dimensional. The slip velocity vs can be expressed using the volume conservation 

principle. Neglecting elastic compressibility: 

ୱݒ ൌ ൬
୬ݐ
୶ݐ
െ 1൰ ୰ܸ୭୪୪ (9)

tn and tx are the thickness of the strip at the neutral point and at point x, respectively. 

(b) In the elastic zones at entry and exit of the roll bite, where slip necessarily takes place, the  

elastic constitutive equations and the equilibrium equation are reprocessed according to Le and 

Sutcliffe [17]: 

d݌
dݔ

≅ െ
∗௦ܧ

ݐ
dݐ
dݔ

൅
߭ୱ

1 െ ߭ୱ

ݍ2
ݐ

 (10)
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(c) In the contained plastic zone (CPZ), the pressure gradient and shear stress for roll and strip are 

calculated by imposing the no-slip condition, giving, instead of Equations (5) and (8): 

d݌
dݔ

ൌ െ
∗௦ܧଵܥ

ݐ
dݐ
dݔ

൅ ଵܥ
1 െ ௦ߥ2
1 െ ௦ߥ

d ௦ܻ

dݔ
 (11)

ݍ ൌ
ݐ
2
൤ܥଵ

ሺ1 െ ୱሻߥ2
ሺ1 െ ୱሻߥ

െ 1൨
d ୱܻ

dݔ
െ ௦ܻ

dݐ
dݔ

െ
∗௦ܧଵܥ

2
dݐ
dݔ

 (12)

ଵܥ ൌ 	 	ቈ
2 െ 4߭௦
1 െ ߭௦

െ
ሺ1 െ 2߭ୖሻ
ሺ1 െ ߭ୖሻ

∗ୱܧ

ୖܧ
∗቉
ିଵ

 (13)

In the case of the problems addressed in this paper, both rolls and strip are made of steel, i.e.,  

νs = νR and Es* = ER*, so that C1 = (1 − ν)/(1 − 2ν) ≈ 1.8 and Equations (11,12) are simplified as: 

d݌
dݔ

ൌ െ
∗ୱܧଵܥ

ݐ
dݐ
dݔ

൅
d ୱܻ

dݔ
 (14)

ݍ ൌ െ൬ ௦ܻ ൅
∗ୱܧଵܥ

2
൰
dݐ
dݔ

 (15a)

Finally, Ys is negligible (≈0.3%) compared with the other term in Equation (15), hence: 

ݍ ൌ െ൬
∗ୱܧଵܥ

2
൰
dݐ
dݔ

 (15b)

This no-slip zone starts where q(x) given by Equation (15b) first crosses the curve q(x) for slipping 

condition Equations (6–9) and ends at the second intersection point. This procedure has been developed 

to prevent the local thickness of the strip from re-increasing inside the roll bite due to too high  

roll deformation. 

All the equations are integrated by a Runge-Kutta method of order 4 (RK4), using typically  

3000 slabs (space integration steps) for each zone. 

2.1.2. Work Roll Deformation Equations 

The work roll deformation equations applied in this work were developed by Meindl [18] and further 

applied for temper rolling model by Krimpelstätter [14]. 

A sufficient approximation for the cases dealt with here consists in taking into account radial 

displacement under the effect of a radial loading (Figure 5), although all four terms can be addressed, 

orthoradial as well as radial in terms of stress as well as displacement. Krimpelstätter [14] claims that 

orthoradial terms are necessary for very small reduction (temper-rolling). 
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Figure 5. Principle and symbols for the influence functions method [14]. 

For a uniform distribution of compressive stress of small angular extension α, the radial work roll 

surface displacement is given analytically for a generalized plane strain state by: 
for	 ିగ

ଶ
൏ 	Θ ൏ െߙ	(i.e., outside the load area) 

௥ሺΘሻݑ ൌ
ܴ݌
πܧ

ሺ1 െ υଶሻ ൤
ߨ
2
ቀ

ν
1 െ ν

െ 1ቁ cosሺΘ ൅ αሻ ൅ sinሺΘ ൅ αሻ ݈݊ ൬݊ܽݐଶ
Θ ൅ α
2

൰൨

െ
ܴ݌
ߨܧ

ሺ1 െ υଶሻ ൤
ߨ
2
ቀ

ߥ
1 െ ν

െ 1ቁ cosሺΘ െ αሻ

൅ sinሺΘ െ αሻ ݈݊ ൬݊ܽݐଶ
Θ െ α
2

൰൨ െ
ଶܴߥߙ݌4
πܧ

 

(16a)

for െ ߙ ൏ 	Θ ൏ α: 

௥ሺΘሻݑ ൌ
ܴ݌
ܧ2

ሺ1 െ ߭ଶሻ ቀ
ߥ

1 െ ߥ
െ 1ቁ ሾ2 െ ሺΘݏ݋ܿ െ αሻ െ ሺΘݏ݋ܿ ൅ αሻሿ 

൅
ܴ݌
πܧ

ሺ1 െ ߭ଶሻ ൤sinሺΘ ൅ αሻ ݈݊ ൬݊ܽݐଶ
Θ ൅ α
2

൰ െ sinሺΘ െ αሻ ݈݊ ൬݊ܽݐଶ
Θ െ α
2

൰൨

െ
ଶܴߥߙ݌4
πܧ

 

(16b)

for	ߙ ൏ 	Θ ൏
ߨ
2
: 

௥ሺΘሻݑ ൌ
ܴ݌
ߨܧ

ሺ1 െ ߭ଶሻ ൤െ
ߨ
2
ቀ

ߥ
1 െ ߥ

െ 1ቁ cosሺΘ ൅ αሻ ൅ sinሺΘ ൅ αሻ ݈݊ ൬݊ܽݐଶ
Θ ൅ α
2

൰൨

െ
ܴ݌
πܧ

ሺ1 െ ߭ଶሻ ൤െ
ߨ
2
ቀ

ߥ
1 െ ߥ

െ 1ቁ cosሺΘ െ αሻ

൅ sinሺΘ െ ሻߙ ݈݊ ൬݊ܽݐଶ
Θ െ ߙ
2

൰൨ െ
ଶܴߥߙ݌4
πܧ

 

(16c)

The deformation of the roll for any general distribution of pressure can then be calculated through the 

superposition principle. 

Note that these influence functions are developed for a diametrically symmetric loading (Figure 5). 

This is not exactly the case of strip rolling, since the work-roll/back-up roll contact is shorter and 

therefore under higher contact stress than the strip/work roll contact. However, the contact length (a few 
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mm) is much smaller than the roll diameter (typically 400 to 600 mm in cold rolling). Hence, thanks to 

Saint-Venant’s principle, only the resultant load at work roll/back-up roll contact needs to be exact, not 

its distribution. The precision of the solution is not impaired. 

Displacement is calculated on a roll fraction roughly twice as long as the arc of contact, divided into 

200 intervals so that α = 2.7 × 10−4 radian. 

2.1.3. Numerical Implementation 

Figure 6 shows the flow chart of the global numerical scheme. Some points are detailed hereafter, a 

more complete explanation can be found in Le and Sutcliffe [17]. The model is iterative with two main 

loops: the global loop and the Neutral Point loop. 

 

Figure 6. Global flow chart of the Slab Method model. 

a—In the global cycle, the thickness distribution and the pressure are calculated. The process is 

considered converged when: 
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max	|ݐሺ݅ ൅ 2ሻ െ ሺ݅ݐ ൅ 1ሻ| ൏ (17) ݈݋ݐ

where tolerance tol = 0.01 t1 (entry strip thickness) typically. A relaxation factor Rt is used for both 

thickness and pressure profiles: 

updated pressure = Rt  current pressure + (1 − Rt)  previous pressure (18)

In the applications shown here, Rt ranges from 0.1 to 0.5 (0.1 for the most severe cases). An analogous 

expression is applied for the thickness profile. 

b—In the neutral point cycle, the neutral point is calculated so as to satisfy:  

σ(xe) = σ2 (19)

σ2 is the (given) front tension stress, xe is the contact exit abscissa (Figure 4). Starting the stress 

integration from σ = σ1 (the back tension stress) at x = xa, σxe) changes with the position xN of the neutral 

point where the sign of q is changed in Equation (7). Using a secant method, the neutral point is found 

in general in three or four steps. For more stringent situations, though, the tolerance for the value of the 

resulting exit tension stress must be chosen larger in the initial iterations. 

2.2. FEM-Based Model 

The model used is based on two items: 

- A 3D implicit FEM software called Lam3, fully described by Hacquin [19,20]. It is used here  

in its steady state option based on streamlines. The integration of the elastic-plastic constitutive 

model uses the radial return technique; the compatibility with steady state modeling and  

the streamline method is ensured through the ELDTH formulation (Eulerian-Lagrangian  

with Heterogeneous Time step). The software uses 8-node hexahedra with reduced pressure 

integration. Steady state allows adapted refinement in critical locations (bite entry and exit). 

Thermo-mechanical coupling is not activated here. 

- A 3D semi-analytical elastic roll deformation model called Tec3, fully described in  

Hacquin et al. [21]. It combines roll bending based on Timoshenko’s beam model, roll flattening 

based on Boussinesq equations for a semi-infinite solid arbitrarily loaded on its surface, Hertz 

contact theory for the work roll/back-up roll contact. End effects for the complex geometry and 

boundary conditions of the roll barrel edge have been corrected by analytical expressions derived 

from extensive FEM comparisons. All equations are discretized by a 3D influence function 

method. Due to the unknown work roll/back-up roll contact areas, the resulting equations are 

non-linear and are solved using a Newton-Raphson scheme. 

Coupling between the two models is performed by a fixed-point technique with relaxation. 

Here, the combined model is used in 2D plane strain, obtained by (1) embedding one layer of elements 

between two symmetry planes parallel to the rolling direction; and (2) imposing an infinite stiffness in 

the roll deformation model for bending terms only. In this way, a solution equivalent to the 2D model of 

Section 3.1 is obtained. 
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3. Influence of the Regularization Parameter on Rolling Process Mechanics 

The parameters used in this work are shown in Table 1, those of the friction models in Table 2. 

Table 1. Description of the rolling pass investigated in this paper. 

Variable Value 

Inlet/exit thickness, t1/t2 0.355 mm/0.252 mm 
Work roll diameter 555 mm 
Work roll velocity 20.482 m·s−1  

Back/front tension stress, σ1/σ2 170 MPa/100 MPa 
Young’s modulus (roll and strip) 210 GPa 

Poisson’s ratio (roll and strip) 0.3 
Flow curve ܻ ൌ ሺ470.5 ൅ 175.4εሻ ൈ ሺ1 െ 0.45eି଼.ଽகሻ െ 25 (MPa) 

Accumulated strain (prior to the pass investigated) 2.05 

Table 2. Non-dimensional parameters of the friction models. 

μ 0.02; 0.04 
Kreg (Slab Method) 10−2; 3.16 × 10−3; 10−3 

Kreg (FEM) 10−1; 10−2; 3.16 10−3; 10−3 

Note that Kreg = 10−1 is not used in Section 3.2 (SM) as Section 3.1 (FEM) will show this value to be 

too large. 

3.1. Impact of Friction Regularization: FEM 

Figure 7 pictures the evolution of the friction stress profile with Kreg in the range of 10−3–10−1 for a 

moderate friction coefficient of µ = 0.020. Clearly, too high Kreg, of the order of, or higher than, the 

typical vs/Vroll, completely changes the friction stress pattern, and therefore all the mechanics of the 

rolling process. The roll load F is 10.2 MN·m−1 for Kreg = 10−3, 9.59 MN·m−1 for Kreg = 10−2 and  

7.47 MN·m−1 for Kreg = 10−1. 

 

Figure 7. Impact of regularization parameter Kreg on normal (left) and friction stress (right). 

Coulomb friction coefficient µ = 0.020.  
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This emphasizes the danger of this technique if introduced without careful control with numerical 

reasons in mind. On the contrary, lower values respect the physics of Coulomb’s friction. They have a 

limited, local action in the vicinity of the neutral point, relieving excessive stress there and facilitating 

the convergence of the roll deformation coupling. Too low values may, however, leave one with too stiff 

a problem, jeopardizing convergence. 

In Figure 8, the inflexion in the vs(x) curve corresponds to roll deformation at the location of maximum 

normal stress; it is absent when Kreg = 10−1 due to a much lower normal stress. 

 

Figure 8. Impact of regularization parameter Kreg on roll profile (top) and on sliding velocity 

vs (bottom), µ = 0.020. 

3.2. Impact of Friction Regularization: Slab Method 

Figures 9 and 10 display the impact of regularization in the two extreme cases investigated: lowest  

(µ = 0.02) and highest (µ = 0.04) friction. Based on the previous results, the highest value Kreg = 10−1 is 

discarded (Table 2). In all cases, “strong” regularization (Kreg = 10−2) significantly changes the local 

friction stress in the vicinity of the neutral point, i.e., where sliding speed is small. The sliding velocity 

vs varies from −5120 m·s−1 (vs/Vroll ~ −0.25) at entry to 0 at the neutral point. For low friction (left side 

of the figure) where roll deformation is moderate, the impact on normal stress is visible but moderate, 

and the difference of deformed roll profiles (Figure 10) is very small. Note that the entry point is to be 
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found at y = 0.1175 mm. The rolling force, which is practically the integral of the vertical stress profile, 

varies between 10.1 MN·m−1 for the non-regularized case and 9.68 MN·m−1 for Kreg = 10−2 (−4%) for 

the low friction case (µ = 0.020). For µ = 0.04, it increases by 6%, from 29.90 MN·m−1 without 

regularization to 31.6 MN·m−1 for Kreg = 10−2. 

The high friction case (µ = 0.04) calls for three comments. First, the magnitude of the normal stress, 

more than twice as high compared with µ = 0.02, illustrates the very high sensitivity of such thin strip 

configurations. The friction stress is therefore up to four times larger (µ × 2 and p × 2), and the shape of 

the stress profiles is distorted by the roll-deformed profile. Second, the impact of regularization is the 

same as in the previous case. In the central, contained plasticity zone where the roll profile is flat, the 

friction stress drops considerably due to the no-slip condition Equation (2b). This effect is also well 

captured by the regularized friction model. Third, comparing results for non-regularized and “little 

regularized” (Kreg = 10−3) models, it is found that the normal and tangential stresses with regularized 

friction are larger (Figure 9). This is surprising since Equation (4) suggests that friction stresses decrease 

by the regularization. However, it is important to note that in the Contained Plastic Region (CPZ), a 

change in the treatment of stress integration is introduced, replacing Equation (6) by Equations (14) and 

(8) by Equation (15b)—see Section 3: as shown by the roll profiles, this has an effect on all aspects of 

the contact mechanics. 

4. Discussions 

4.1. Importance of Friction Regularization and Choice of Kreg 

The introduction of friction regularization, in the SM context, just aims at improving convergence in 

critical cases. Critical cases are those where a significant “neutral zone” under (quasi-) sticking condition 

develops, leading to the coexistence of sticking and slipping zones. This happens both for very low 

reduction, the so-called “temper rolling” of steels, and for heavily loaded case, i.e., high reduction of 

thin strips of hard metal. 

 

Figure 9. Cont. 
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Figure 9. Impact of friction regularization on mechanical variables in thin strip cold rolling, 

Slab Method. (Left) µ = 0.020; (right) µ = 0.040. From (top) to (bottom), profiles of the 

normal stress, of the friction stress. 

 

 

Figure 10. Impact of friction regularization on mechanical variables in thin strip cold rolling, 

Slab Method. (Left) µ = 0.020; (right) µ = 0.040. From (top) to (bottom), profiles of the 

deformed roll and of the sliding velocity. 
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Both are characterized by large roll elastic deformation with a central flat zone around the neutral 

point, rather similar to the shape of the solid surfaces in Elasto-Hydrodynamic Lubrication (EHL)—see 

Fleck and Johnson [15]. This similarity characterizes problems with heavy loadings where the solution 

is dominated by the elastic sub-problem rather than the flow of the fluid or metal in between: by virtue 

of their very thinness, a thin oil film or a thin metal strip are stiffer than the roller itself.  

For other types of rolling operations, regularization is not necessary in the SM. On the contrary, the 

FEM needs regularization because the derivative of the sliding condition τ(vs) has to be computed for 

the stiffness matrix and is singular at vs = 0. Regularization by smoothing velocity dependence is 

introduced most of the time, although “elastic” regularization has also been proposed [22]: it consists in 

adding a small capacity for reversible tangential movement before gross sliding. 

Coming back to velocity regularization, as shown above, too small K may lead to convergence 

problems in the FEM due to quasi-singular stiffness matrix, or to difficult-to-handle solutions in the SM 

(increase of the thickness inside the bite). But too large K may completely alter the physical content of 

the friction law, introducing an artificial velocity dependency, and change substantially the mechanical 

description of the rolling operation. Table 3 summarizes the impact of Kreg on the roll load and the neutral 

zone length. For the rolling operation investigated, the difference between SM and FEM is not more than 

1%. It is clear again that Kreg = 10−1 is inadequate; this is why the study has been restricted to Kreg ≤ 10−2 

for SM. Even for Kreg = 10−2, some influence shows, 5% for these particular rolling conditions. 

Table 3. Variations of global variables (roll load, length of neutral zone) on Kreg. 

Kreg 
Force (MN/m), FEM, 

µ = 0.02 
Force (MN/m), 
SM, µ = 0.02 

Force (MN/m),  
SM, µ = 0.04 

Lstick (mm) SM, 
µ = 0.04 

10−1 7.47 MN/m - - - 
10−2 9.59 MN/m 9.68 MN/m 31.6 MN/m 5.5 mm 

3.16 10−3 10.1 MN/m 10.1 MN/m 33.1 MN/m 6.2 mm 
10−3 10.2 MN/m 10.1 MN/m 33.4 MN/m 6.4 mm 

Non-regularized - 10.1 MN/m 29.9 MN/m 5.5 mm 

A more comprehensive study would be needed, but as a rule of thumb, taking Kreg = 10−2 times the 

reduction seems a good compromise for rolling. This means Kreg = 10−3 for 10% reduction and  

Kreg = 10−4 for 1% reduction in temper rolling where expected sliding velocities are very low. 

It must be emphasized that non-dimensionalizing K into Kreg is important: it is quite difficult to 

understand what one is doing and to control its effect otherwise. This is the same as for friction for which, 

whatever the friction model, non-dimensional coefficients should always be used, such as Coulomb’s 

friction coefficient or the friction factor.  

4.2. Generality of the Approach 

Although different forms may be proposed for velocity regularization of friction (see Li and 

Kobayashi [23] for an alternative), this technique can be used universally, wherever it may be useful and 

under conditions such that it does not alter the solution of the problem (see above). This is different from 

the models (SM and FEM), which have been used here to address the regularization issue. The SM is 

valid for most cases of cold strip rolling, wherever the impact of the neglected shear strains and stresses 
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is not too strong. This means very low bite angle in rolling. The validity can be extended using the 

Orowan enhancement technique [9,12]. However, 2D SM of course cannot deal with intrinsically 3D 

problems such as strip profile and flatness or strip lateral widening or shrinking (“spread”). The FEM on 

the contrary is universally valid; its limitation to 2D here is purely a restriction to the scope of the paper. 

The roll deformation model by the Influence Function Method (IFM), in 2D or 3D, has a great precision 

at low cost; it belongs to a very general solution technique in elasticity theory. The one used here is 

limited to 4-high or 6-high mills, when all roll centerlines are in a same vertical plane; however, similar 

techniques are available for e.g., cluster mills such as Sendzimir mills [24]. 

4.3. Coupling Regularization with the Static/Dynamic Friction Concept 

Finally, this paper compares two ways of dealing with the spatial coexistence of sticking and sliding 

zones, a variant of the static/dynamic transition, in the space rather than time domain due to the steady 

state character of the mechanism investigated, the strip-roll contact in strip rolling processes.  

The regularization technique could offer a way to introduce a difference between static friction (µstat) 

and dynamic friction (µdyn). The presently chosen regularization function in Equation (4b) varies 

monotonically between 0 for vs = 0 and 1 when vs tends to infinity, but it is easy to provide a function 

that starts from 0, reaches asymptotically 1 but has a peak larger than 1 in the vicinity of vs = 0, e.g., 

ݍ ൌ μௗ௬௡݌.
௦ଶݒ ൅ ܽ. ୰ܸ୭୪୪. ௦ݒ
௦ଶݒ ൅ ܾଶ. ୰ܸ୭୪୪

ଶ  (16)

Its slope at vs = 0 is a/b2, the peak is at ݒୱ ൌ
௕మ

௔
. ቆ1 ൅ ට1 ൅ ௔మ

௕మ
ቇ and: 

μୱ୲ୟ୲
μୢ୷୬

ൌ 1 ൅
1
2
.

ඥ1 ൅ ܽଶ ܾଶ⁄

1 ൅ ܾଶ ܽଶ⁄ ቀ1 ൅ ඥ1 ൅ ܽଶ ܾଶ⁄ ቁ
 (17)

The two parameters allow selecting separately µstat/µdyn and the initial slope or the position of the 

peak. Any more convenient function may of course be proposed. The impact of such a variant could be 

the subject of future work. 

5. Conclusions 

Two ways of dealing with the slip/no-slip transition within the roll bite in thin strip rolling have been 

presented. In the no-slip, contained plasticity zone, the |q| < µp condition can be enforced by comparing 

the on-going friction stress with the one deduced from the no-slip condition added to the dt/dx = 0 

condition. As a result, q drops in the static friction zones. The same effects can be reproduced in a simpler 

way by introducing regularization. Although minor differences are found due to the algorithmic 

complexity of the first method, the shapes of the friction stress profile and the normal stress profile 

coincide to less than 1% provided the choice of the regularization parameters is made with care. It must 

be large enough not to raise convergence difficulties, small enough to stick to the initial problem, since 

too large values are equivalent to a decrease of friction coefficient. 
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