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Stabilization of photon-number states via single-photon arrections:
a first convergence analysis under an ideal set-up

H. B. Silveira P. S. Pereira da Silva P. Rouchon

Abstract— This paper presents a first mathematical conver- Although the feedback law proposed and implemented
gence analysis of a Fock states feedback stabilization schevia  in [8] considered imperfect detections ap and delays
single-photon corrections. This measurement-based feedbk in the control. here we focus on an idéal-set up, that is

has been developed and experimentally tested in 2012 byd tecti d trol del h b di ded
the cavity quantum electrodynamics group of Serge Haroche YEECUON €ITOIS and control delays have been disregarded.
and Jean-Michel Raimond. Here, we consider the infinite- Theoreni shows that, by adding an arbitrarily small term to
dimensional Markov model corresponding to the ideal set- the Lyapunov function used in [8], one ensures almost sure
up where detection errors and feedback delays have been global stabilization of any goal Fock state for the closed-
disregarded. In this ideal context, we show that any goal Fdc loop ideal set-up. This is achieved by relying on an infinite-

state can be stabilized by a Lyapunov-based feedback for any . - - .
initial quantum state belonging to the dense subset of finite dimensional Markov model of the ideal set-up that takes into

rank density operators with support in a finite photon-number ~ account the back-action of the measurement outcgmen
sub-space. Closed-loop simulations illustrate the perfonance the quantum statgy .
of the feedback law. Loosely speaking, in [8], the control valug, at each
| INTRODUCTION sgrnpling stepk was chosen so as to minimize the con-
ditional expectation of the Lyapunov functioW(px) =
In [8], a photon-number states (Fock state) feedback Stabh(d(N)pk), where NV is the photon-number operator,
lization scheme via single-photon corrections was desedrib d(n) = (n—m)? andp = [m)(m| is the goal Fock state.
and experimentally tested. Such control problem is refevapiowever, in closed-loop, the difference between sut¢h
for quantum information applications [6], [4]. The quantumyng jts conditional expectation is not strictly positiveck
statep corresponds to the density operator of a microwave™ goes not become a strict Lyapunov function in closed-
field stored inside a super-conducting cavity and descrésed |oop and additional arguments have to be considered to
a quantum harmonic oscillator. At each sample stepN, prove convergence. These additional arguments are related
a probe atom is launched inside the cavity. The measuremegt) asalle invariance. They are well established in a smooth
outcomey, detected by a sensor is the energy-state of thigontext where the contral is a smooth function of the state
probe atom after its interaction with the microwave field,, This cannot be the case here sincés a discrete-valued
Each probe atom is considered as a two-level system: eith@ntrol. In order to overcome such technical difficulties, w
it is detected in the lowest energy stdtg, or the highest propose, similarly to [1], to add the arbitrarily small term
energy statee). Consequently, the measurement outCOmes S~ ((n|p, n))? to V(px), wheree > 0. This slightly
corresponds to a discrete-valued outpytwith only two  modified control-Lyapunov function becomes then a strict-
distinct possibilities:g or e. Similarly, the control inputs | yapunov function in closed-loop that simplifies notablg th
u, are also discrete-valued with 3 distinct possibilitiesbonvergence analysis. Moreover, the developed conveegenc
—1,0,+1. The open-loop value,; = 0 corresponds t0 gnpalysis is done in the infinite-dimensional setting in the
a dispersive atom/field interaction: it achieves in fact %ollowing sense: we show that, for any initial density ofiera
Quantum Non-Demolition measurement of Fock states [2},0 with a finite photon-number supporpy(n) = 0 for n
The two other values,, = +1 correspond to resonant large enough), the closed-loop trajectory— pj, remains
atom/field interactions where the probe atom and the fielglsg with a finite photon-number support with a uniform
exchange energy quanta: these values achieve singlerphofund on the maximum photon-number. This almost finite-
corrections. dimensional behavior simplifies the convergence analysis
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Only the main ideas of the convergence proof are outlinedperators. It is clear thaWf ,(u), M.(u) are bounded oper-
The technical details are given in Sectloh V. Afterwards, irators onH with M (u) M g(u)+ M (u)M.(u) = I (iden-
Section1[-B, the main result of the paper is presented: thgty operator),M.(—1) = M!(+1) = asin(£VN)/VN,
general solution is obtained from Theorem 1 fgibelonging  and M ,(—1), M ,(0), M.(0), M.(+1) are self-adjoint. It
to a dense subset (see Theofem 2). The simulation resuliseasy to see that if the initial conditiom, is a density
are exhibited in Section IV. The proof of some intermediateperator then, for all realizations of the ideal Markov pro-
results and computations required in Sections Il &dd ess[(11)-£4)p; is a density operator fok € N.
are presented in Appendice$[B-G. Finally, the concluding Notice thatp = |7)(71| is a steady state of the Markov
remarks are given in Secti¢nIvI. process[{1)5(4) with,, = 0, where? € N is arbitrary. The
Il IDEAL MARKOV MODEL contrql .p.roblem here trgated is given as follows:

Definition 1: For the ideal Markov proces§l(1)3(4), the
control problem is to find a feedback lawy, = f(px) such
that, given an initial conditiopg and7n € N, the closed-loop
number). HenceH = {3,y ¢”|_">’ (o, ¥1,...) € trajectoryp;, converges almost surely towards the goal Fock
12(C)}. Let D be the set of all density operators &h that statep = |n) (] ask — oc.

1S, t;[e Si:} of tr?(t:e—clas_sr,hseIf-adjcilnt, tnon—negauveatges ‘ The almost sure convergence above is with respect to the
on 7t with unit trace. 1he sample step, corresponaing 1, apilities amplitudes, (p) = Tr (|n)(nlp) = (n|pln) of
a sampling period arountioOus, is indexed byk € N = p, thatis,limy .~ P(ps) = Pa(7) for eachn € N. In other

{0, 1,t2, . { tuk e {-1,0,1} |fhthe control, pg, f Dtthe WOrds, limy o Pr(pr) = 1 andlimy .. P, (pr) = 0 when
quantum state ang}, € {g,e} the measurement ou come. , # m. The solution proposed in this paper for the control

The 'de".’“ Markpv mode[ of th? cqntrolled microwave SUperbroblem above is developed in the next section.
conducting cavity used in [8] is given by:

Denote by the separable complex Hilbert spake(C)
with orthonormal basig|n), n € N} of Fock states (photon-

_ Mg(up)p M (uy) I1l. STABILIZATION OF FOCK STATES

g
Pr+1 = Tr( M g (ur)pre M (ur))
M (ug) o M { (ur) Given any operator: H — H, let A, = (m|A|n) for

Pr1 = Tr (M (ur ) pr M (ur)) wheny; = e, m,n € N. Hence,A,,, is the n-th diagonal element ofl,

(1) while A,,, with m # n correspond to its “off-diagonal”
where the measurements outcomgs= ¢g andy, = e¢ elements. One says that the operatbiis diagonal when
occur with probabilitied p, , = Tr (Mg(Uk)pka,(uk)) Apmn = 0 for all m,n € N with m # n. One shall begin

7 ; 7 ' by solving the control problem given in Definitidd 1 in the
and per = Tr (Me(“k)pkMe(“k)) = 1 =Py, 1€SPEC-  haricular case where the initial conditipp is diagonal (see
tively, ux, = 0 corresponds to a dispersive interaction Offheoreni]l in SectioR TIA). Afterwards, in Sectién 11I-B,
the launched atom with the cavity field (Quantum None solution to the general non-commutative case is predent
Demolition measurement of photons) (see Theorer2): its solution relies essentially on theadiag

M ,(0) = cos (%) , M(0)=sin (M)’ @) nal case.

whenu, = +1 the atom enters the cavity in the st4t¢ A Diagonal case

wheny, = g,
Pk+1 =

with a resonant interaction with the cavity field For eachn* € N, defin€

. 00

sin| 5 vVIN _ : H _ *
M, (+1) = (2N )a77 Me(—i—l):cos(%“ ﬁ”’l ’ D,« ={p eD| pis diagonal ang|n) = 0,Yn > n"}.

(3)  Consider the seD. = |J,..y Do C D. Note thatD,,- C
whenu; = —1 it enters in|g) with a resonant interaction  p .., and that each elemepbf D, is “finite dimensional”
sin(%o\/ﬁ> in the following sensep € D is in D, if and.only if
—_ 7/ p=>_opnn|n)(n|, andp € D,- may be considered as

VN an operator fron# to the finite-dimensional spack,,- =
and ¢o, or, 0 € R are adjustable control parameters. FopPaH0),...,[n")}, or as a density matrix of,.. One
eachu € {-1,0,1}, M,(u) and M.(u) are (linear) defines the functlonamm: D, = N, npe,: Dy — N and
operators or{ defined in the obvious wlyaccording to "engtn: D+« — N respectively by:
the definitions in AppendikJA. They are indeed well-defined e n,,:,(p) is the smallests € N such thatp|n) # 0;
operators or{, despite the fact that anda’ are unbounded o 7n,,4.(p) is the greatest € N such thatp|n) # 0;

o T h =N — Nimsi .
1As usual in quantum physics, it is here assumed that the merasat . engt (p) . e (p) e (p) .
outcomey,, = y cannot occur whefTr (My(uk)pkML(uk)) =0, for !t is clear that, giverp € D., one haso_ E Dy if and only
y=g,e. if nmaz(p) < n*. The next result exhibits the properties of
2For instance M 4 (+1)|n) = (sin(%“\/ﬁ)/x/ﬁ) VnFin+1) = the statep, of (I)—(4) with respect to these functions.

sin(%"\/n-i- 1)|n + 1). In order for the definition ofM.(—1) to be
consistent, it is assumedn(0)/0 = 1. 3Note that if p = |n)(n| for somen € N, thenp € D,

My(—1) = cos (%"\/N) , M.(-1)=a



Proposition 1: For every realization of the ideal Markov and letD, = |

process[{{1)}£{4) with initial conditiop, € D., one has that
pr € D, for all k£ € N with;
o If up =0o0ru, =—1, thenn,az(Pr+1) < Nmaz(Pk)
andniengin (Pr+1) < Nength (Pk);
o If up = +1, thennyar(pr+1) < Mmaz(pr) + 1 and
Niength (Pk+1) S Niength (Pk)
Proof: See AppendixB. ]
Take a goal photon-numbere N. As in [1], consider the
following Lyapunov functionV,: D, — R defined as

Ve(p) = Tr(d(N)p) — €Y p}n, forpe D., (5)
neN

wheree > 0 is a real number and(n) = (n—n)? as defined
in [8]. The feedback law:: D, — {—1,0,1} is given by

u=f(p) & Argmin K [Vi(pri1) | pr = p,ur = v]. (6)
ve{—1,0,1}

Note that for eactp € D, andn* > npa.(p), d(IN)p in
(B is a well-defined self-adjoint, non-negative, tracassl
operator or, by consideringl(IN') as an operator ofi,,-
and p as an operator fron# to H,-. Indeed,d(N)p =
S pan(n —1)2|n)(n|. Thus, [B) is well-defined. More-
over, sinceH,,- is invariantundep € D, for n* > n,q.(p),
it is clear thatTr (d(IN)p) = Try, . (d(IN')p), where on the
right-hand side one considepsas an operator on the finite-
dimensional spacé{,,- and the trace is taken ovéf,-.

We have the following convergence result whgne D.,:

Theorem 1:Letnw € N ande > 0. In @)-(4), assume that
¢o/m and (0 /m)? are irrational numbers, and take; =

w/2 — Tgy. Consider the closed-loop Markov procekk (1)— .

(@) with u, = f(pr), where the feedback lay is as in [[6).
Then, given any initial conditiopy € D,, one has thapy
converges almost surely towargls= [7) (7| ask — oo.

Its proof is decomposed into two steps:
First Step. Choosen € N ande > 0. Let ng = nyengen (00),
ro = nmin(po). Then, there exists an integety > ny +
ro +7m + 1 (depending omy, o, @ ande) such that, for all
closed-loop realizationg;,, one has, € D,,, for k € N.
Second StepChoose irrational numberg, /7 and (6, /7)?
in 2)-@), and takebr = /2 —Tigg. In Dy, Ve is @ strict
super-martingale: for all density operatgrén D,,,,, one has

E [Ve(pis1) | pr = pour = F(0)l=Velp) = —Qu. (0. [ (9)),
whereQy, (p, f(p)) = 0, andQu, (. f(p)) = 0if and only if

neen Do+ D Dy Itis clear thatp € D is in
D, if and only if p = ZZ;,n:() pmn|m){n|. Consequently,
D. is a dense subset d whenD is endowed with the
subspace topology induced from the Hilbert-Schmidt norm.
Indeed, let7; be the complex Banach space of all Hilbert-
Schmidt operators orf{ with the Hilbert-Schmidt norm
IBllz = (X .nen | Bmal®)'/2, for B € 7, [7], [3]. Since

D c J» andp € D, has the formp = Z:ln*,n:O Pmn|m)(n/,

the density property ob, in D is clear.

One has thap € D,,- may be considered as an operator
from H to the finite-dimensional spad,,-, or as a density
matrix on?,,-. Hence,d(IN)p is a well-defined trace-class
operator on#, by consideringd(IN) as an operator on
H,- andp € *]D)n* as an operator from{ to H,-. Indeed,
d(N)p =30 n—o Pmn(m—m)?lm)(n|, and it is trace-class
because its range is finite-dimensional [7], [3]. Consetjyen
the Lyapunov functionV; in (), the feedback in[{6) and
nmaz Can be extended tb.,..

Define the mapA: D, — D, C D, as Ap
Z:’lzgm(”) pnn|n)(n|. Note thatA extracts the diagonal of
p € D,. It is easy to see that,,..(Ap) = Nmaz(p) and
(Ap)nn = Pnn, p € Di. Moreover,Ap = p whenp € D,.
Other properties of the mafA are given in the next result:

Proposition 2: Letp € D, u € {—1,0,1},y = g, e. Take
o =Tr (M, (u)pM]}(u)). Then:

o Tr(Ap) = Tr(AAp), for every diagonal bounded

operatorA: H — H,;

e Vi(p) = V(Ap), for e > 0;
o a”'M,(u)pM/(u) belongs to D, with
Ao My (u)pM(u)) = o= M (u)(Ap) M (u);
(M, (u)(Ap) M (w)], = [M,(u)pM] ()], . for
allm € N. In particulara = Tr (My(u)(Ap)ML(u)).
Proof: See Appendix G. [ |

Now, lete > 0 andp = |m) (7|, wherem € N. Assume that
po € D,. Let pi, k € N, be the corresponding closed-loop
trajectory for a fixed realization of(1)3(4) with feedback
ur = f(pr), wheref is as in [6). It is immediate from the
proposition above that:

e pr €D, fork e N;

e Apr € D,, k € N, is the corresponding closed-loop
trajectory of [[1)-f(#) for the initial conditiom\pg, the
same realization (and with the same transition proba-
bilities p. r and p,y ), as well as the same feedback
u = f(pr) = f(Apr);

p = 7. The almost sure convergence follows then from usual ® Tt (|n){n|px) = Tr (|n){(n|Apy), for anyn € N.
results on strict super-martingales for Markov processés w ~ From these arguments, Theorein 1 and the factAfat-

compact state spaces.

p, one immediately obtains the followingeneric solution

The complete proof of the two steps above is presented @ the control problem, that is, when the initial condition

Section[Y. The general case where the initial conditign

belongs to the dense subdgt of D:

is not necessarily diagonal is treated in the next subsectio Theorem 2:Let7 € N ande > 0. In (2)—{4), assume that

B. General case
Consider, for eachh* € N,

Dy ={p €D | pln) =0,¥n >n"} C Dyp- 41,

¢o/m and (0 /m)? are irrational numbers, and take; =
w/2 — Tgy. Consider the closed-loop Markov procesk (1)—
@) with u, = f(pr), where the feedback lay is as in [6).
Then, given any initial conditiom, € D,, one has thapy
converges almost surely towargls= [7) (7| ask — oo.



IV. SIMULATION RESULTS . ‘ CoalFocksrare =10 —
— ) < nbar

This section presents the closed-loop simulation resul § ™| n=nbar
concerning the application of Theorefd 2 above to thz °°
ideal Markov process[{1)H(4). The quantum experiment:* %[ 1
results exhibited in [8] used the following control paragret ~ ° 1 2w 0 s e 10 s % 10 10 120
values in [2)H#):¢p /7 = 0.252 and by /7 =~ 2/v/7 + 1. 1
However, according to the assumptions in Theofémy2
and (0o /7)? should be irrational numbers. Hence, here on
choosespy/3.14 = 0.252 and 6,/3.14 = 2//n+ 1. One
takespy = 3,7 In)(n|/16 € D, as the initial condition, M. . . . . . . . . . . |
n = 10 for the goal Fock statg = |n)(n|, ande = 10% as
the gain for the feedback, = f(px) in (B)—(8). Figure 1 ¢
exhibits the simulation results for one closed-loop redion Il "I I I" I | |
with such choices and a final sample step of 120. It show
the dynamics of the populations ef. (top), the controls I |I|"II"III"
ug (middle) and the simulated outcomgs (bottom). The T a0 w0 w O et %
pOpUIatiorlsf?fpk correspond to the following ObservableS:Fig- 1. Simulation of one closed-loop realization with gain= 103:
A = ZZ:O [nY(n| (n < W), A2 = |n)("| (n = M), convergence opy, towardsp (top), controlsy;, (middle), and outcomeg;,
As = Zn>ﬁ |TL> <TL| (n > ﬁ) Therefore, one sees from (bottom). Notice thatm|pg|m) ~ 1 andug = 0 for all k > 45.
the dynamics of the populations that converges tp as
k — oo, which is in accordance with Theordr 2. Note tha Goal Fock state = 10
(m|pkm) = 1 anduy, = 0 for all k > 45.

Recall that Theorem]2 assumes that> 0. In order
to further analyze the performance of the Lyapunov-baseg
feedback law here proposed, we now make a comparisi
with the one used experimentally in [8], which correspond
to takee = 0 in (), i.e. to disregard the terme ) .\ P2,
Figure[2 presents the simulation results for one closeg-loc
realization of such case. The control parameteygndn =
10 are the same as above. Note ti/@p, |7) ~ 1 anduy, =0
for all £ > 78. In order to make a comparison in terms of —~ 10 2 s 4 s 6 70 8 % 10 110 120
the speed of convergence, define the settling timeéo be
the smallest: € N such that(mz|px|7) > 0.9 for all k£ > k.
One hask, = 45 for the case: = 10® above, ands; = 78
for e = 0. Therefore, in the two realizations here simulated
the choice of = 103 reduced the settling time, by nearly 9

Control u,
o
|

Outcome Yy

T T
== < nbar
n=nbar
n > nbar

100 110 120

1

Control u,
o

Outcome Y

30

. . . . . 40 50 60 70 80 90 100 110 120
42% with respect toe = 0. This behavior is typical on an sample step k

average basis, thereby justifying the terna ZnEN Pgm in Fig. 2.  Simulation of one closed-loop realization with gain= 0:

10 20

convergence of towardsp (top), controlsuy (middle), and outcomes

(5). Table[l shows the average valég and the standard s (bottom). Nofice thaifa|py|7) ~ 1 anduy, — 0 for all k > 78.

deviationo of k, for e € {0,0.1,1,10,10% 103, 10%,10°},

where a total of 5000 realizations were simulated for each TABLE |
e. Notice that where is relatively large or relatively small AVERAGE SETTLING TIMEEs AND STANDARD DEVIATION & AS A
in comparison toe = 10°, the average settling timé; FUNCTION OF THE GAINSe, CONSIDERING5000REALIZATIONS

deteriorated. Furthermore, although for= 105 one has that

k, increased by nearl§2% in comparison ta: = 103, the € <

standard deviationr decreased by nearl§2%. Computer l; 123‘_3‘; iszzlg%‘_%? ?51%_22?; ('ifléééfé,
simulations have suggested that a choices af 0 which —102 —10° 101 ——10°
may perhaps significantly improve, generally depends on Too = 6041 | Fa =44.18 | Fe = 47.05 | s = 53.77
the initial conditionpy and on the goal Fock stae= |7) (7, 0=11939 | 0 =44.12 | 0=3737 | 0 =16.84
and it has to be determined heuristically.

=0 e=0.1 e=1 e=10

V. PROOF OF THEOREN1 (DIAGONAL CASE)

Proof of the First Step:
Lete > 0. DefineV: D, — R andW: D, — R as e Quwlp,u) =W(p) = E[W(prs1) | pr = p,ux = ul,

e Quip,u) =V (p) =E[V(prs1) | pr = pur = ul,
Vip) =Tr(d(N)p), W) ==Y o2, @
()= T ) =2 e Q. (p.w) = Vilp) ~ B [Vipran) | pi = pouy = ul,

respectively. Note thal, = V + eWW. Define:



for p € D, andu € {—1,0,1}. The proof of Theorerill is forn =N, N+1,...,

a straightforward consequence of the next proposition:
Proposition 3: Let € > 0 andng, 9,7 € N. There exists

an integemyg > ng + 19 +7m + 1 (depending or, ng, ro, 7)

such that, for eaclp € D, with nengn(p) < no, if

Nmaz () = Mo, then
QVe (pa _1) > max {QVE (pa 0)7 QVE (pa +1)} .
In fact, given pg € D, let ng = njengin(po) and

70 = Nmin(po). Note thatn,,..(po) = no + ro < mo. By
Propositio Lpy, € D, With njengin(pr) < no, forall k € N.
Sincew = f(p) maximizesQv.(p, f(p)), Proposition(B
implies that whenn,,,...(px) = mo for somek € N, then
the input v, will be always be equal to-1, and hence
Propositior 1L ensures that,,.. (pk+1) < Mnaz(pr) = mo.

Therefore na. (pr) < mo, k € N, showing the First Step.
The following two lemmas are instrumental for showingUsing the fact that> "
Proposition[B. Their proofs are given in AppendX D anch

Appendix(E, respectively.

Lemma 1:Given an arbitrary nonzer6, € R, fix any
a € R such thatd < a < 1/2. For all nonzeraNy, N € N,
there exists an integeV > N big enough such that,

0<1/2—a < sin? (2\/_)<1/2+a

forn=N,N+1,...,N+ Ny — 1.
Lemma 2:Let p € D.. Then:
e |Qw(p,u)] <1, foreachue {-1,0,1};

° QV([), )7 0;

« Quip,+1) = ann (n—7) + 1] sin®(Lvn + 1);
neN

s Qu(p=1) = 3 pun 0 =) = Usin® (V).

neN
The proof of Propositior]3 is shown in the sequel.
Proof: Let e > 0 andng, 9,7 € N. One has to show that

there existang > ng +ro +7 + 1 such that, ifp € D, with

N—FTLQ—FT(). Takem() = N—Fno—i-’l’o.
Let p € D, With nyepngin(p) < no andng,qq(p) = me. Note
that mg > ng + 79 +7 + 1 andn,,in,(p) > N + ro. From
Lemmal2 and the inequality above fof2 — a, one obtains

mo

>

N=Nmin(p)

punl2(n —7) = 1](1/2 - a)

Qv(p,—1) = Pnn[2(n —7) — 1] sin (920 \/ﬁ)

mo

3

N=NMmin (P)
mo

=D

N=NMmin (P)

prn[2(N —7) —1](1/2 — a)

mo
=N -m-1(1/2=a) Y pun-
n:’”wnin(/))
n=nmin(p) PPn = 1 and N >
{1/2 —+2n+ 1|, one shows the second claim, thereby
completlng the proof of Propositidd 3. ]

Proof of the Second Step:

Let € > 0. Recall that, by definitionQv. = Qv + eQw.

Using the same notation of the First Step, the central idea

of the proof is to show that, givep € D,,,, one has that

Qv.(p, f(p)) > 0, and thatQv, (p, f(p)) = 0 if and only if

p = p. The following lemma is instrumental for the proof of

such property. Its proof is presented in Apperdix F.
Lemma 3:Assume thatp, /7 is an irrational number in

@), and takepr = 7/2 — npy, wheren € N. Let p € D,.

Then:

e Qw(p,0) >0, andQw(p,0) = 0 if and only if p =
[n)(n| for somen € N;

« Qw(p,+1) = Qw(p,—1) = 0 wheneverp = |n)(n|
for somen € N.

One has thatny > 7, and(6y/7)? is an irrational number

by assumption. Recall thaitn?(2) = 0 if and only if 2z = ¢,

Niength (p) < no, thenu = —1 always maximize®v, (p,u)  \where/ is an integer. First we show tha@vs @, f(p) =
whenevem,q. (p) = mo. From Lemmd P and the fact that ; gy | emmal2: Qv(p,+1) = —sin’(&va+1) < 0
Qv. = Qv + eQw, to complete the proof it suffices to showQ @ —1) = _sz(e’o V) < 0 when 7 > 0. and
that: g ’

o If p € D, is such thatyengen(p) < no andnpqz(p) >
no + 7, thenQv (p, +1) < 0;

e There existsmg > ng + r9 + m + 1 such that
Qv(p,—1) > 2¢ wheneverp € D, is such that

Niength (p) < no @NANmaz(p) = mo.
Note that
Nmaa (P)
Qv(p,+1) = — Z pun2(n—7)+1]sin® (2vVn +1),

N=NMmin (P)

for any p € D.. Thus, if niengin(p) < no andnp,qez(p) >

Qv(p,—l) = 0 whenm = 0; and Qv (p,0) = 0. As
Qw (P, u) =0, foru € {-1,0,1}, andu = f(p) maximizes

Qv. (p,u), one has thaQv, (, f(p)) = 0.
Now, let p € D,,, C D,. Sinceu = f(p) maximizes

Qv (p,u), it follows that
Qv.(p, £(p)) = Qv (p,0) + eQw (p,0) = eQw (p,0) > 0.

SupposeQv. (p, f(p)) = 0. Hence,Qw (p,0) = 0, and so
p = |n){n| for somen € {0,1,...,mg}. It suffices to show

that Qv (p, f(P))ljnym| > 0 for n € {0,1,...,mo} with
n # . Assume thak > 7. It is clear thatu = f(|n)(n|) =

~1andQv. (p. f(p))ljny(n) = [2(n—1)—1] sin*(% /) > 0.

n+no, thenn,,;» (p) > @, and hence the first claim is shown.Assume now that < @. Then,u = f(|n) (n]) = +1 and

Now, fix 0 < a < 1/2 and leff N > 1 —tom+ 1.

1/2

Qv (0, F(P))ny(n| = —[2(n — ) + 1] sin® ( vVn—+1)>0.

Applying Lemmdl forNy = ng+r+1 and such choice of This completes the proof of the referred property

N, one getsN > N in which0 < 1/2 — a < sin® (% /n),

4As N is an integer, it follows thatV > 7 + 1.

The remaining part of the proof of the Second Step is
a straightforward consequence of the standard stochastic
convergence result below:



Theorem 3:[5, Theorem 1, p. 195] Le® be a probability af|n) = v/n+ 1 |n + 1). Note that these operators cannot
space and leti’ be a measurable space. Consider thdie extended td4. Let f: N — R be a function. Define
Xi: Q@ = W, k € N, is a Markov chain with respect to the operatorf(N): H,+ — Hn+ by f(N)|n) = f(n)|n),
the natural filtration. Let): W — R andV: W — R be for eachn = 0,...,n*. It is clear that f(IN) can be
measurable non-negative functions with(Xy) integrable extented to#{ wheneverf is a bounded function. Given
forall k e N. If [£[V(Xpp1) | Xi] = V(Xk) = —Q(Xk), f: N = R and an integern, one definey): N — R as:
for k € N, thenlimj_,., Q(Xx) = 0 almost surely. g(n) = f(n +m), whenn +m > 0; and g(n) = 0,

Indeed, let7; be the complex Banach space of all tracewhenn +m < 0. One abuses notation letting(IN + m)
class operators ofi{ with the trace norm| - |1, that is, stand for g(IV). Given two functionsf,¢g: N — R, it
|B|l. = Tr (|B]), where|B| £ VBB, for B € J,. Recall is clear thatf(N)g(N) = g(N)f(N) = (fg)(N) and
that | B|| < ||B||, andl | Tr (AB)| < ||A||||B||1, for every (f + g)(N) = f(N) + g(N). Furthermoreaa’ = N +1,

B € J, and each bounded operatdr % — #, where||-|| a'a= N, af(N)= f(N+1)a, a'f(N) = f(N —1)a'.

is the usual operator nornsypnorm of bounded operators) .

[7], [3]. Consider the subspace topology by,, with respect B. Proof of PropositioriLlL
to J;. One has that the closed-loop trajectony, k € N, Fix any p € D, and letn € N. In particular, p|n) =
is a Markov chain with phase spad,,, (with respect to Pnn|n). It then follows from [2)-4(#) that:

the natural filtration and the Borel algebra én,, ). It is n

clear thatD,,, is compact, and thaf). and V. —Oai are Mg(O)pMj](O)|n> = pn c08” (d)o ;m) I,
nonA—negative and continuous dn,,,, for all €> 0 where Me(O)pMZ(O)Im — pn Sin2 (¢on2+¢R) In),
ae = minyep,, Ve(p). The theorem above implies that

converges almost surely towargsas k — oo (with respect

to the trace norm). This completes the proof of Theofém 1.

0, forn =0,
Pr—1n— 1sin® (92—“\/5) [n),n >1,
VI. CONCLUDING REMARKS M (+1)pMI(+1)|n) = ppn cos® (Lv/n+ 1

iition via single- hoton cormections under anieea el HPMy(=1m) = pucost ()b
Eﬁ tlr:;? ils,na\ggusgigge |C|)Oer(f)ect measurement detection and n](\)/.ie(—l)le(—l)|n> = pusasrsin® (Vi +T) [n).
control delays. In terms of convergence speed, the sinonlati Therefore:

Mg(+1)pM$(+1>|n>={

results here presented have justified the inclusion of the Nmaz (p)

term —eY", .y P2, in the Lyapunov-based feedback law My (0)pM}(0)= > puncos’ (%) In)(n|, (8)
(B)—(8). It is straightforward to verify that the convergen n=nmin(p)

analysis developed in this paper remains valid for: (i) any nmaz (p)

other functiond(n) in (@) satisfyingd(m) = 0, d(n) is  Me(0)pML0)= > punsin’ (%) In)(nf,  (9)
increasing forn > m and d(n) is decreasing fom < 7; n="nmin ()

and (i) ¢ > 0 dependent om, that is, to take the term nmaz (p)+1

— > en€nPpy,- However, it is an open problem how to My (+1)pM(+1) = 3 pr-sn-1sin® (/1) [n){n], (10)
choose the functioni(n) and the gains,, > 0 so as to P rmin ()
achieve the best convergence speed.

Finally, the feedback law used in [8], which corresponds
to e = 0, was tailored for an experimental set-up with mea-

Nmaz (p)
M (+1)pMI(+1) = Y pancos” (2vn+1) [n)(n|, (11)
N=Nymin(p)

Nmaax (P)

surement imperfections and control delays. The convergenc s (_ DpMY(=1) = 3 puncos® (L) Ininl, (12)
analysis of such realistic situation will be investigatadhe nermin (p)
future nmaz(p) 1
VIl. ACKNOWLEDGMENTS M. (~1)pM(~ {OZ/JT; ngl sin” (2+/n + 1) [n)(n].
n=maxit,min (P
The authors are indebted I. Dotsenko, M. Brune and J. 13)

]Ic\/l OIﬁ)almkondhfor valuable discussions on the expenment@y assumptionp, € D,. Then, [1), [B){IB) above and
eedback scheme. induction onk show the assertions in Propositigh 1.
APPENDIX

C. Computation ofQv (p, u)
A. Basic properties of the operatol¥, a and af

Fix any p € D, andm € N. Recall thatV(p) =
Fix n* € N and let#,.- = spar{[0),...,|n")}. Con- Ty (4(N)p), whered: N — R be given byd(n) = (n—n)>.

sider the (linear) operator&: H,~ — Hp+, a: Hp» —  Note that [(1) implies that, for eache {—1,0,1},

Hp+—1 C Hpe, a': Hype — Hp-,1 defined respectively as

Nin) =n [n), al0) =0, aln) = v [n—1) forn > 1,  EV(per1) | pr = p,ur = u]

— T i
50ne also recalls that ifA is a bounded operator oK and B € 71, =Tr (d(N)Mg(u)ng(u)) +Tr (d(N)Me(u)pMe (u))
then AB, BA € J1 with Tr (AB) = Tr (BA). (24)



Takew = 0. From [8)-(9) in AppendikB, one has
E [V (pr1) | ok = pyur = 0]
= Tr (d(N) M, (0)p M} (0)) + Tr (d(N) M. (0)pM(0))
= Tr (d(N) [ M, (0)pM}(0) + M. (0)pM ] (0)] )
— Tt (d(N)p) = V(p).

In particular,
Qv (p,0) = 0. (15)

Now, takeu = +1. Then, [14) above and_(ILOj=(11) in
Appendix[B provide that

E[V(pki1) | o = pyur = +1]
_Tr(sm2 (%“ ) (N +1)p )
+ Tr (cos (92“ N + 1)d(N)p) .

6o
2

By summing and subtractiri@ (sin® (%N +1)d(N)p),
E [V (pr41) | ok = pyur = +1]

= Tr (d(IN)p)

+ T (sin? (9 VN 1) [d(V +1) - d(N)] p)

=V(p) + Tr (sin2 (
In particular,

Qv(p,+1)=—-Tr (sm (

6o
2

N+ 1) [A(N +1) — d(N)]p),

= —ann [2(n —7) + 1] sin? (%" +1). (16)
neN
Finally, take u = —1. Using [I2) above and[{l2)-
(@3) in Append|x[B EV(pr1) | pe = pou, = —1] =
Tr(st(OU\/_)d( -1) p) + Tr(cos ( ) (N)p)

By summing and subtractingr (sm ( X \/ﬁ) d(N)p),

E [V(Pk+1) | pe = p,ur = —1]

= Tr (d(N)p) + Tr (sin® %"\/N) N—l)—d(N)]p)
=Vi(p >+ﬂ(sm (%VN) [d(N = 1) = d(N)] p).
In particular,

Qu(p.~1) = = Tr (sin? (% VN) [d(N — 1) = d(N)] p)
=5 pun 2 vn). (17

neN
D. Proof of Lemmdll

Assume thatV, is even (otherwise one may také + 1
instead of Ny in this proof). Define the function: N — R

by
2 s m]?
0 =7 (5+7)] -
By definition, one has’® \/n(¢) = ¢Z + Z for all £ € N.
Let h = /4 — arcsin (\/1/2 - a). Using the definition of

0o

(n —m) — 1] sin? (%

(18)

h and the symmetriBsof the functionsin?(-), it is easy to
show that

1/2—a <sin*(x+7/4) <a+1/2, Y€ [—h,h]. (19)

Let ¢ € N be even and big enough such that the following
two conditions are simultaneously met;

n(€) > No/2+ N, n(0) —

Now, takeN = |n(?)]— 22 +1 > N, where|n] denotes the
greatest integer which is less or equaljtaBy construction,
n(f) is in-between the pointd” + No/2 — 1 and N + Ny/2,
and hence it is in the intervdN, N + Ny —1]. Then, forn =
N,...,N+Ny—1, one has that.—n(¢)| < No/2. Consider
the fUI’IC'[IOhgb( ) = % /z. From the fact that/(z) = 9\%
by the mean value theorem applied to the functioand the
second inequality in(20), one obtains

i/ ‘ h, forn=N,...,N+Ny—1.

Then, the proof follows easily froni_(18),_(19) and the fact
thatsin®(z — ¢7/2) = sin®(x), for every ever? € N.

E. Proof of Lemm&l2

Proof of the first claim: Letu € {—1,0,1}, p € D,. Recall

that W(p) = — 3, cn Pin- SinceTr (p) = 3, oy pun =
1, then -1 — D menPan < W(p) < 0. Now,
by (D), E (W (pks1) | pr = pyur = u] = Pg,kW(PZH) +
Pe W (piy1), Wherepg i, pe . > 0 with pg i + per = 1.
Thus —1 < E[W(prs1) | pr = pyur =u] < 0. Since
Qw(p,u) is the difference of two numbers that are in-
between—1 and0, one concludes thdQw (p, u)| < 1.

The second, third and fourth claims, are immediate from

(@I9), (18) and[(1l7) in AppendixIC, respectively.
F. Proof of Lemma&l3

Proof of the first claim: Let p € D,,,. By 8)-(9) in
AppendiXB, M 4(0)pM ] (0)+ M. (0)pM(0) = p. Taking
pr = p in u, =0 in (@), define

M, (0)pM ] (0)
Tr (My(O)pM;(O))

—90N0 / No/2 < h. (20)

0

PV 2l = , fory=ge.

Hence, ap? + (1 — a)p® = p, wherea = p, 4
Tr (Mg(())pMz(O)). In particular,ap?,, + (1 — a)p,, =
pnn, for n € N. Note that, ifa: = 0, thenM 4(0)pM|(0) =
0, and sop® = p. Similarly, « = 1 implies p¢ = p. Thus,
the identityap?,, + (1 — a)pS,, = pnn, for n € N, still holds
whena =0 or a = 1. From [3), [T) andx = p, x, one has

Qw (p, ) = W(p) — [Pg W (P, 1) + Pe W (pfy1)]
(1—a) (p5n)” — [apl, + (1 — a)ps,]”

neN
=a(l—a) Y [pf, — 8] >0, (21)
neN

6More preciselysin?(n/2 — ) = 1 — cos?(n/2 — z) = 1 — sin?(z).



thereby showing the first part of the first claim.

If p = |m)(m| for somem € N with 0 < a < 1, then
(B)—(9) in AppendixB imply thatpy = p¢ = p, and so
Qw (p,0) = 0. Now, one shows thgt = |m)(m| for some
m € N wheneverQw (p,0) = 0. SupposeRQw (p,0) = 0.
Then, [(21) implies that = 0, or « = 1, or pg, = p%,. for
all n € N with 0 < a < 1. Assume thain = 0. Hence,
My (0)pM(0) = 32, g pun €08* (22592 ) [n) (n] = 0 by
(B) in Appendix[B. Suppose thai # |m)(m| for every
m € N. Thus, there existsi;,ny € N with ny # no,
Pnini > 0, pnom, > 0. Recall thatsin(zq) = +sin(z2)
if and only if 2y + o = 7 or xo — x1 = {m, where/ is an
integer. Thereforesin(22LE9R ) = + gin(202ten) which

contradicts the assumptions thit/7 is an irrational number

and¢r = 7/2 — . One has shown that = |m)(m| for
somem € N whenevera = 0. If oo =1, or pg,, = p¢, for

G. Proof of Propositiof 12
Fix p € D,. Since Tr (d(N)p) = Tr(d(N)Ap) and
Pnn = (Ap)nn for n € N, the first two assertions are

immediate from the definitions. As for the third and fourth

assertions, lefly)) = > (m[¢)|m) € H. Note that
plmy = S rmec®) L InY, for m € N. Using [2)-®):
My(0)pM(0)])
Nmaaz(P)
D= pncos (25598 ) cos (108 ) (g ),
m,n=0
M (0)pM(0)[)
Nmaaz(P)
= 3 ppnsin (men) sin (Gan6n) (mjy)jn),
m,n=0

:
all n € N with 0 < o < 1, then from similar arguments and M (+1)pM(+1)[¢))

computations one also concludes that |m)(m| for some
m € N.

Proof of the second claim:Let m € N and takep =
|m)(m| € D,. Itis clear thatW (p) = — Y, .y P2, = —1.
From [10)(IB) in AppendikB, one has that:

(My(+1)pM ] (+1)) = 6(n,m+ 1)sin® (2/m+1),
(Mo (+1)pM(+1)), = d(n,m)cos? (v/m+1),
(My(~=1)pM (1)), = 6(n,m)cos® (%/m),

(M. (-1)pM(-1)) = d(n+1,m)sin® (%/m),

(22)
whered(n, m) is the usual Kronecker delté{n, m) = 0 if
n # m, andd(n,m) = 1 if n = m. In particular:

(Mq(+1)pM;(+1)) =sin? (y/m 1 1),
Tr (M (+1)pM{(+1)) = cos? (% vm +1),
Tr (M, (~1)pM(~1)) = cos? (% v/m)
Tr (Mo (-1)pM{(~1)) = sin? (% v/m)
>
( 4 (1u)p M (u) =1, foru=+1,y=g.e
S\ (M a0

(assumlng no division by 0). Now, usingl (1) and the above

computations, one gets
E W (pr11) | px = pyur = +1]
= pq,kW(pZ+1) + De, kW(szrl)

— Z [ ( j:l)pMT(jzl))
- 2
M, (£1)pM] (1)
" ,%, Tr(M (£1)pM]) (+1))
=-1=W(p).
Therefore Qw (|m)(m|,+1) = 0.

Nmazx (P)+1

= > pm—tasin (§V/m) sin (v +1) (mly)|n + 1),

m=1,n=0

M (+1)pM[(+1)[1)

S con (4D cos (3T ),
M Dn-1l)

=S pcos (8 ) cos (8) (i)
MJ_?{;My—mw

- Z Pmt1,nsin (2v/m + 1) sin (/n) (mly)|n — 1).

m=0,n=1

Since Ap € D, C D., npmaz(Ap) = Nmaz(p) and
(Ap)nn = pnn, the proof is straightforward froni}(8]=(113)
in Appendix[B.
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