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Convergence and adiabatic elimination for a
driven dissipative quantum harmonic oscillator∗

R. Azouit † A. Sarlette‡ P. Rouchon†

March 24, 2015

Abstract

We prove that a harmonic oscillator driven by Lindblad dynamics where
the typical drive and loss channels are two-photon processes instead of single-
photon ones, converges to a protected subspace spanned by two coherent
states of opposite amplitude. We then characterize the slow dynamics in-
duced by a perturbative single-photon loss on this protected subspace, by
performing adiabatic elimination in the Lindbladian dynamics.

1 Introduction

The harmonic oscillator is a standard quantum system. It features coherent states,
equivalent of classical harmonic oscillator amplitudes, whose coherent superposi-
tions also called “cat states” feature genuinely quantum properties with no classical
equivalent. In a recent paper [8], our collaborators take advantage of this fact to
propose an implementation of logical quantum bits as “cat states”, with potential
to realize universal quantum computation using standard technological elements
as quantum gates. Their key contribution, besides the insight that the cat states
are inherently insensitive to part of the typical perturbations, is the design of an
“engineered reservoir” that stabilizes a subspace of such states in open loop.

The contribution of the present paper is to precisely establish, from the Lind-
blad master equation (2), the stabilization properties of this scheme both,

• in ideal situations with ε = 0, by proving in theorem 1 global convergence
of the infinite-dimensional nominal model towards the target “protected sub-
space”,
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• in presence of a small but dominant decoherence source with ε > 0, by
establishing the approximate slow dynamics as a reduced Lindblad master
equation (15).

The first goal builds on a typical Lyapunov-LaSalle strategy, with additional care
needed due to the infinite dimension. For the second goal, we resort to a sepa-
ration of the quantum dynamics into fast and slow components. We then apply
an adiabatic elimination of the fast system to deduce a good approximation of the
dynamics on a slow manifold, with the state remaining ε-close to the protected sub-
space. Studying such perturbations is standard for quantum Hamiltonian systems,
where regular perturbation theory can be routinely applied [11], but the Lindbla-
dian case with singular perturbations has attracted much less attention. In [9] and
similarly [10] singular perturbations up to second order are applied to a system
with N ground states and eliminating relaxing excited states. In [1, 13] specific
atom optics dynamics and an ancilla-mediated feedback are investigated with the
standard approach of [2]. In [6] the so-called Schrieffer-Wolff formalism is gen-
eralized to Lindbladian dynamics; its basic form requires inversion of the nominal
dynamics operator, which is not too practical and which we circumvent here for
the derivation of the reduced slow master equation (15).

The paper is organized as follows. Section II describes the mathematical model
of the dynamics to be studied. Section III provides the global convergence proof for
an idealized model, and Section IV analyzes precisely how this allows to counter
the dominant external perturbation, which is single-photon loss. We pedagogically
present the corresponding slow/fast perturbative argument (Section IV.B) as the
translation to quantum notation of the standard dynamical systems approach, re-
called in Section IV.A. Finally, simulations illustrate the validity of our analysis in
Section V.

2 Driven dissipative pairwise photon process

The underlying space of the quantum harmonic oscillator is a Hilbert space H of
infinite dimension spanned by the Fock states {|n〉}n∈N. The annihilation operator a
is defined by a|n〉 =

√
n|n − 1〉 for any n ≥ 1 and a|0〉 = 0. Its Hermitian conjugate

a†, verifies a†|n〉 =
√

n + 1|n + 1〉, for any n ≥ 0; . We denote N = a†a the photon
number operator, satisfying N|n〉 = n|n〉, for any n ≥ 0. For any α ∈ C, a coherent
state |α〉 ∈ H is characterized by a|α〉 = α|α〉 and

|α〉 = e−
|α|2

2

∞∑
n=0

αn

√
n!
|n〉.

The coherent states |α〉 are viewed as the quantum model for a “classical state” of
complex amplitude α. Indeed, whereas the classical undamped harmonic oscillator
d
dt x = −ωp, d

dt p = ωx with x, p ∈ R has solutions x(t) = αeiωt, the quantum
harmonic oscillator d

dt |ψ〉 = −iω(N + I/2)|ψ〉 features solutions |ψ(t)〉 = |α(t)〉 =



|αeiωt〉 up to an irrelevant phase. As is customary, in the rest of the paper we
describe the system in a frame rotating at the oscillator frequency ω, for which the
oscillator has stationary solutions |α〉.

We call Schrödinger cat state or simply cat state the coherent superposition of
two coherent states with opposite amplitudes,

|c±α〉 =
|α〉 ± | − α〉

γ±
(1)

where γ± =
√

2(1 ± e−2|α|2) is a normalization factor. If |α| � 1 then we have
γ+ ≈ γ− ≈

√
2.

Throughout this paper, we denote by K1(H) the set of trace-class operators
on H , i.e. compact Hermitian operators on H whose eigenvalues (σk)k∈N satisfy∑

k≥0 |σk| < +∞. This K1(H) equipped with the trace-norm Tr
(
| · |

)
is a Banach

space (see e.g. [12]). The set of density operators (quantum states) corresponds to
elements of K1(H) that are non-negative and of trace 1. They are usually denoted
by ρ. We denote also by K f(H), the subspace of K1(H) of operators whose range
is included in a vector space spanned by a finite number of Fock states:

K f(H) =

∑
finite

fn,n′ |n〉〈n′| : fn,n′ ∈ C, fn,n′ = f ∗n′,n

 .
We consider the quantum harmonic oscillator interacting with its environment

as described in [8]. An external coherent driving field of amplitude u (assumed
here real and strictly positive without loss of generality) is applied such that the
oscillator can only exchange photons in pairs. Furthermore, the quantum system is
built such that similarly the main dissipative process is a pairwise photon loss with
rate κ > 0. Nevertheless, due to physical constraints, even if a single photon loss
process is much less frequent than the previous one, it can’t be totally omitted. For
this reason, this term appears with a small coefficient 0 < ε � κ in the following
Lindblad master equation which governs the system dynamics:

d
dt
ρ = u[(a†)2 − a2, ρ] + κLa2(ρ) + εLa(ρ)

where [·, ·] stands for the commutator and where, for any linear operator A on H ,
the super-operator LA is given by

LA(ρ) = AρA† − (A†Aρ + ρA†A)/2 .

Noting α = 2u/κ and L = a2 − α2 one can reformulate the previous equation as :

d
dt
ρ = κLL(ρ) + εLa(ρ) (2)

It is shown in [8] that, for ε = 0, the two-dimensional Hilbert space

Hα = span
{
|α〉, | − α〉

}



is a decoherence-free space: for ε = 0, any density operator ρ̄with support included
inHα is a steady state, i.e., LL(ρ̄) = 0.

We will not investigate here the well-posedness of (2) and the associated strongly
continuous semigroup of linear contraction on K1(H). Such issues can be inves-
tigated via theorem 3.1 of [3] ensuring the existence of minimal solutions since
for any α, κ, ε > 0, the operator −κL†L − εa†a is the infinitesimal generator of a
strongly continuous one parameter contraction semigroup on H . This means that,
in the sequel, we will always assume that the Cauchy problem (2) with an initial
condition ρ0 ∈ K

1(H), positive semidefinite and of trace one, admits a solution in
K1(H) defined for any t > 0. Moreover, this minimal solution will remain positive
semidefinite. We will investigate here the time asymptotic regime for ε = 0 and
then for 0 < ε � κ.

3 Convergence of (2) for ε = 0

Lemma 1. For any quantum state ρ inK f(H) we have Tr
(
LLL(ρ)L†

)
≤ −2Tr

(
LρL†

)
.

Proof. From Tr
(
LLL(ρ)L†

)
= Tr

(
LρL†[L†, L]

)
and [L†, L] = [(a†)2, a2] = −4N−

2I, we have
Tr

(
LLL(ρ)L†

)
= −2Tr

(
LρL†(2N + I)

)
.

We conclude since N and LρL† are positive semidefinite. �

Modulo arguments proper to the infinite-dimensional setting, this basically
means that V(ρ) = Tr

(
LρL†

)
is an exponential Lyapunov function for the system

(2) with ε = 0.

Lemma 2. For any ν ≥ 1 there exists µ ≥ 0 such that, for any quantum state ρ in
K f(H) we have

Tr
(
LL(ρ)Nν) ≤ −ν (Tr

(
ρNν)) ν+1

ν + µ

Proof. Denote by L∗L the adjoint of LL: L∗L(A) = L†AL − (L†LA + AL†L)/2 for
any Hermitian operator A on H . Computations relying on the identity a f (N) =

f (N + I)a for any function f , yield

L
∗
L( f (N)) = −N(N − 1)( f (N) − f (N − 2I))

+α2

2 a2( f (N) − f (N − 2I)) + α2

2 ( f (N) − f (N − 2I))(a†)2 .

Since Tr
(
LL(ρ) f (N)

)
= Tr

(
ρL∗L( f (N))

)
, we have

Tr
(
LL(ρ) f (N)

)
= −Tr

(
ρN(N − 1)( f (N) − f (N − 2I))

)
+α2

2 Tr
(
ρa2( f (N) − f (N − 2I))

)
+α2

2 Tr
(
ρ( f (N) − f (N − 2I))(a†)2

)
.



Take f (x) = xν and define g(x) = f (x) − f (x − 2) for x ≥ 2; g(x) = f (x) for
2 > x ≥ 0; g(x) = f (0) for x < 0. From a2g(N) = a

√
g(N − I)a

√
g(N) and

Cauchy Schwartz inequality

|Tr
(
ρa2g(N)

)
| =

∣∣∣∣∣Tr
((√

ρa
√

g(N − I)
)(

a
√

g(N)
√
ρ
))∣∣∣∣∣

≤

√
Tr

(
ρg(N − 2I)(N + I)

)
Tr

(
ρg(N)N

)
.

Since g(x − 2)(x + 1) ≤ g(x)(x + 3) for x ≥ 0, we have∣∣∣Tr
(
ρa2g(N)

) ∣∣∣ ≤ Tr
(
ρg(N)(N + 3I)

)
.

Thus
1
2 Tr

(
ρ(a2g(N) + g(N)(a†)2)

)
≤ Tr

(
ρg(N)(N + 3I)

)
and

Tr
(
LL(ρ)Nν) ≤ Tr

(
ρg(N)

(
−N2 + (α2 + 1)N + 3α2

))
.

Since (xν − (x − 2)ν)
(
−x2 + (α2 + 1)x + 3α2

)
is equivalent to −2νxν+1 for large x,

there exists µ > 0 such that for all x ≥ 0,

((x + 2)ν − xν)
(
−x2 + (α2 + 1)x + 3α2

)
≤ −νxν+1 + µ.

Finally we get
Tr

(
LL(ρ)Nν) ≤ −νTr

(
ρNν+1

)
+ µ

Since x
ν
ν+1 is concave,

(
Tr

(
ρNν+1

)) ν
ν+1
≥ Tr

(
ρNν) . �

Theorem 1. Consider a trajectory [0,+∞[3 t 7→ ρ(t) ∈ K1(H) of the master
equation (2) with ε = 0, κ > 0 and α > 0. The following statements hold true:

1. Take ν ≥ 1. Then there exists γ > 0 such that, for any initial quantum state
ρ(0) = ρ0 satisfying Tr

(
ρ0Nν) < +∞, we have for all t > 0, Tr

(
ρ(t)Nν) ≤

max
(
γ,Tr

(
ρ0Nν) ).

2. Assume that ρ0 ∈ K
f(H). Then, there exists a quantum state ρ̄ with support

inHα such that, for any ν ≥ 0, limt 7→+∞ Tr
(∣∣∣∣N ν

2 (ρ(t) − ρ̄)N
ν
2

∣∣∣∣) = 0.

The limit ρ̄ depends on ρ0. It can be derived from ρ0 with the four Hermi-
tian, bounded and independent operators that are in the kernel of the adjoint super-
operator L∗L and given in [8].



Proof. The first statement is a direct consequence of Lemma 2 and of the fact that
quantum states element of K f(H) are a dense subset of the quantum states σ of
K1(H) with Tr

(
σNν) finite. Tr

(
ρ(t)Nν) remains bounded since

d
dt

Tr
(
ρNν) = κTr

(
LL(ρ)Nν) ≤ −vκTr

(
ρNν) ν+1

ν + κµ.

Thus for Tr
(
ρNν) ≥ λ =

(
µ
ν

) ν
ν+1 , d

dt Tr
(
ρNν) ≤ 0.

The second statement exploits the first one. We can assume ν ≥ 2. Take ν′ > ν.

Denote byK1
ν′(H) the supspace of trace-class operatorsσ such that Tr

(∣∣∣∣∣N ν′

2 σN
ν′

2

∣∣∣∣∣)
is finite. The space K1

ν′(H) with the norm ‖σ‖ν′ = Tr
(
|σ|

)
+ Tr

(∣∣∣∣∣N ν′

2 σN
ν′

2

∣∣∣∣∣) is a

Banach space. From the first statement, we know that ρ0 being an element of
K1
ν′(H), ρ(t) remains always in K1

ν′(H). Since ν′ > ν, the injection of K1
ν′(H)

into K1
ν (H) is compact: {ρ(t) | t ≥ 0} is precompact in K1

ν (H). Denote by ρ̄ ∈

K1
ν (H) an adherent point of ρ(t) for t tending towards infinity. Since ν ≥ 2, ρ̄

and ρ belong to the domain of LL. Lemma 1 implies Tr
(
Lρ̄L†

)
= 0, i.e., the

support of ρ̄ is contained in the kernel of L, which coincides with Hα. Moreover,
the semigroup associated to the Lindblad master equation is a contraction for the
trace distance: for two trajectories ρ1(t) and ρ2(t), t 7→ Tr

(
|ρ1(t) − ρ2(t)|

)
is a non-

increasing function. Thus t 7→ Tr
(
|ρ(t) − ρ̄|

)
is non-increasing since ρ̄ is a steady

state. Consequently the adherent point ρ̄ is unique: ρ(t) converges towards ρ̄ in
K1
ν (H). �

4 Reduced slow dynamics of (2)

We have proved in the previous section that the system converges toward the deco-
herence free subspaceHα when we neglect the photon loss channel (ε = 0). When
0 < ε � 1, the center manifold theorem allows us to separate the system into fast
and slow dynamics. The fast dynamics makes the system globally converge to a
subspace close toHα. The slow dynamics approximate the behavior of “protected
states” |c+

α〉, |c
−
α〉. The present section is aimed at characterizing these dynamics to

the first order in ε.
The fast/slow dynamics reduction from nonlinear systems theory, also known

as singular perturbation theory, is useful despite the linearity of Lindbladian dy-
namics, because the very high dimension and often high degeneracy of open quan-
tum systems makes matrix diagonalization impractical to apply.

For the sake of clarity, we first particularize the fast/slow dynamics reduction
theory to linear systems of finite dimension with the standard notations. We pro-
pose then a reduction procedure via an adapted duality viewpoint with the charac-
terization based on (9) and (10) here below. We apply then this characterization
to the quantum system (2) and show that it facilitates the computations up to first
order with respect to e.g. [6].



4.1 Reducing a linear system to its slow dynamics

We here review the theory of geometric singular perturbation, which was mainly
developed by Fenichel in [4] and surveyed by Jones in [5], in a linear context.
Consider the nominal linear system d

dt x = Ax with x = (x1, x2) ∈ Rm × Rn and
converging globally to the m-dimensional subspace S = {x ∈ Rm+n : x2 ∈ R

n = 0}.
To this nominal dynamics we add an arbitrary perturbation matrix B of order ε � 1.
In matrix notation, the dynamics can be written in block form which yields:

d
dt x1 = A1x2 + ε(B1x2 + B0x1) (3)
d
dt x2 = A2x2 + ε(B2x2 + B3x1) .

The assumption that S is globally exponentially stable for ε = 0 corresponds to A2
having all eigenvalues with strictly negative real parts, thus it is invertible. Hence
we can define the regular change of variables

x̃1 = x1 − A1A−1
2 x2

x̃2 = x2
(4)

which yields dynamics in Tikhonov normal form

d
dt x̃1 = ε

(
(B0 − A1A−1

2 B3)x̃1 (5)

+(B0 + B1 − A1A−1
2 (B2 + B3))x̃2

)
= ε f (x̃1, x̃2) .

d
dt x̃2 = A2 x̃2 + ε(B3 x̃1 + (B2 + B3A1A−1

2 )x̃2) (6)

= g(x̃1, x̃2, ε) .

The Tikhonov conditions for reducing the system by singular perturbations is that
the first (slow) subsystem has eigenvalues going down as ε, while the second (fast)
subsystem has eigenvalues bounded away from zero for ε = 0. These conditions
are satisfied above. The Tikhonov theorem then allows the following reduction.

Proposition 1. The trajectories of the full system (5),(6) (with initial conditions
satisfying g = 0) remain ε-close over at least a time of order 1/ε, to the trajecto-
ries of the system restricted to the “slow submanifold” g(x̃1, x̃2, 0) = 0 and where
dynamics are given by replacing x̃2 in f (x̃1, x̃2) by the solution of g(x̃1, x̃2, 0) = 0.

In our linear case, the slow manifold comes down to x̃2 = 0 and the slow
dynamics trivially reduce to the first term in (5). Transforming back to the original
coordinates the slow manifold corresponds just to x2 = 0 and the dynamics are

d
dt x1 = ε(B0 − A1A−1

2 B3)x1 . (7)

The second term reflects the influence of the fast x2 dynamics on the slow variable
x1: by blindly setting x2 = 0 in the original system (3) and neglecting its second



line, we would miss this term and get an incorrect approximation.

Computing the corrective term A1A−1
2 B3 by explicit inversion of A2 can be

a tedious task when the fast subsystem has a large dimension (in our quantum
case, x2 would rigorously be of infinite dimension). However if first integrals of
the system with ε = 0 are known, these can facilitate the computations via the
following dual viewpoint.

Consider a linear functional pT = (pT
1 , pT

2 ) ∈ R∗m+n which is conserved by
ẋ = Ax, i.e. satisfying ṗ = AT p = 0 or equivalently pT

1 A1x2 + pT
2 A2x2 = 0 for all

x2 ∈ R
n. (The notation ·T denotes matrix transpose.) Again using invertibility of

A2, we see that pT actually satisfies

pT
1 A1A−1

2 y + pT
2 y = 0 ∀y ∈ Rn . (8)

Knowing m linearly independent functionals (pT (k))k=1,...,m satisfying (8) is suffi-
cient to fully characterize the corrective term in (7): we have

d
dt x1 = ε(B0 + Q)x1 (9)

with Q defined by the set of linear equations:

pT
1 (k)Q = pT

2 (k)B3 , k = 1, 2, ...,m . (10)

4.2 Quantum system (2) with 0 < ε � κ

We know apply the same procedure to our quantum system. The nominal ẋ = Ax
corresponds to ρ̇ = LL(ρ). We have shown in Section 3 that:

• S corresponds to a four-dimensional real subspace of Hermitian operators
spanned by |c+

α〉〈c
+
α |, |c

−
α〉〈c

−
α |, |c

+
α〉〈c

−
α | + |c

−
α〉〈c

+
α |, and i(|c+

α〉〈c
−
α | − |c

−
α〉〈c

+
α |).

These correspond to the m = 4 coordinates of x1.

• The subspace S is globally asymptotically stable under ρ̇ = LL(ρ). This
corresponds to the invertibility condition on A2 independently of ε.

We therefore introduce the projector

Pc = |c+
α〉〈c

+
α | + |c

−
α〉〈c

−
α | (11)

such that
ρs = PcρPc (12)

corresponds to the “slow” x1 space of the previous section. The projection onto
“x2 space” is given by

ρ f = ρ − PcρPc .

Our goal is to compute the evolution of ρs, which is the equivalent of (7). For
this we take advantage of the dual formulation (9),(10). The following procedure



can in principle be applied to any perturbative dynamics, we here focus on La as a
physically relevant case.

The perturbative dynamics on the slow manifold features a first component,
corresponding to B0, obtained simply by projection onto the slow manifold. The
identities a|c±〉 = α

γ∓

γ± |c
∓〉 quickly yield its explicit expression:

PcLa(ρs)Pc = α2
LX(ρs) (13)

where X =
γ+

γ−
|c+〉〈c−| +

γ−
γ+

|c−〉〈c+| . (14)

To compute the corrective term by duality, using the equivalent of (9),(10), we
need to identify m = 4 conserved functionals of the system, which are the fixed
points of the dual nominal dynamics d

dtξ = L∗L(ξ). Fortunately, those invariants are
known for the particular operator L:

• One easily checks that ξa = I the identity operator is in the kernel of any L∗L.

• The parity operator ξb = (−1)a†a is in the kernel of L∗L because photons are
exchanged by pairs.

• The appendix of [8] gives two more operators ξc and ξd in terms of Bessel
functions; one checks that they are linearly independent for finite α.

We will also use the following key property of the conserved quantities, which is
specific to the structure of quantum Lindblad dynamics.

Lemma 3. Any Hermitian operator ξ in ker(L∗L) commutes with Pc the orthogonal
projector ontoHα.

Proof. From 2L†ξL = L†Lξ + ξL†L and LPc = 0 = PcL† we have L†LξPc =

0 = PcξL†L. Thus the Hermitian operator A = Pcξ + ξPc satisfies LAL† =

(L†LA + AL†L)/2, i.e. belongs to the kernel of LL. The support of A is thus
included inHα and thus [Pc, A] = 0. This implies that Pcξ = PcξPc = ξPc. �

Considering projections on respective subspaces, the equivalent of the B3 term
of the linear perturbation is given by La(ρs)− PcLa(ρs)Pc. The equivalent of equa-
tion (10) characterizes the Hermitian operator Q with support onHα as follows:

Tr
(
Pcξ

νPcQ
)

= Tr
((
ξν − Pcξ

νPc
) (
La(ρs) − PcLa(ρs)Pc

))
= Tr

(
ξν

(
La(ρs) − PcLa(ρs)Pc

))
= 1

2 Tr
(
ξν

(
(Pc − I)a†aρs + ρsa†a(Pc − I)

))
= 1

2 Tr
(
ξν

(
a†aρs(Pc − I) + (Pc − I)ρsa†a

))
= 0

for any ν = a, b, c, d. From the first to the second line, Pcξ
νPc is readily dropped

since Pc is a projector. For the next one we have to write out La and see that



Pcaρsa†Pc = aρsa† for the particular perturbation operator a. The last line follows
by using Lemma 3 and Pcρs = ρs. As a conclusion, we get that the corrective term
is Q = 0 for our particular case. We can summarize these computations as follows.

The trajectories of system (2) with initial conditions having supports in Hα

remain ε-close over at least a time of order 1/ε, to the trajectories of the “slow
variable” ρs which is a linear combination of |c+

α〉〈c
+
α |, |c

−
α〉〈c

−
α |, |c

+
α〉〈c

−
α | + |c

−
α〉〈c

+
α |,

and i(|c+
α〉〈c

−
α | − |c

−
α〉〈c

+
α |). The slow state ρs follows the Lindblad dynamics:

d
dtρs = εα2

LX(ρs) (15)

where X =
γ+

γ−
|c+〉〈c−| +

γ−
γ+

|c−〉〈c+| . (16)

In applications considering |c+
α〉 and |c−α〉 as canonical states |0〉, |1〉 of a logical

qubit [8], the operator X corresponds to a bit-flip in the limit γ+

γ−
→ 1 of large

coherent amplitude α and to a decoherence to the vacuum |0〉 in the limit of Fock
states |c+

α〉 = |n = 0〉, |c−α〉 = |n = 1〉 when α = 0. For all other cases, the qubit
dynamics (15),(16) corresponds on the canonical Bloch sphere to:

d
dt x = −α2 (γ2

+ − γ
2
−)2

2γ2
+γ

2
−

x

d
dt y = −α2 (γ2

+ + γ2
−)2

2γ2
+γ

2
−

y

d
dt z = −α2 γ

4
+ + γ4

−

γ2
+γ

2
−

(
z − γ4

+−γ
4
−

γ4
++γ4

−

)
.

This converges to x = 0 (slowly for γ+

γ−
' 1), y = 0, and z =

γ4
+−γ

4
−

γ4
++γ4

−

(which is ' 0 for
γ+

γ−
' 1).

5 Numerical simulations

To illustrate the interest of this model reduction based on adiabatic elimination of
the rapidly converging variables, we compare via numerical simulations trajecto-
ries of the complete system and of the reduced one. To do so, we use a numerical
scheme which preserves the positiveness for the Lindblad equation and similar to
one used in [7]. We choose the following values of the parameters : a time-step of
10−3, the decoherence strength κ = 1, u = 1/2 and ε = 0.01. With α = 1, the pop-
ulation of photons for n > nmax = 40 in the coherent state |α〉 is almost zero since
less that 1

nmax! . Consequently, we truncate the infinite-dimensional Hilbert space
to a numerical system space spanned by {|1〉, |2〉, . . . |40〉} in the Fock basis. We
denote by ρ the density matrix of the resulting system. It is worth stressing that the
complete system is represented by an nmax × nmax matrix while the reduced system



is represented by a 2 × 2 matrix (on the basis |c+
α〉, |c

−
α〉). Thus the computation is

much faster on the second one.
We first take as initial condition the vacuum state, ρ0 = |0〉〈0|. The state of the

reduced system, ρs is then initialized at |c+
α〉〈c

+
α | because both ρ0 and |c+

α〉〈c
+
α | are

+1 eigenstates of the parity operator ξb = (−1)a†a, which is a conserved quantity
(see Section 4.2 and [8]). To compare the trajectories of (2) initialized at |0〉〈0| and
of (15) initialized at |c+

α〉〈c
+
α |, we show in figure 1 the expectation values Tr

(
ρσz

)
and Tr

(
ρsσz

)
of the operator σz = |c+

α〉〈c
+
α | − |c

−
α〉〈c

−
α |, commonly denoted 〈σz〉.

After a transitional regime of typical duration 1/κ, one can see a strong similarity
between Tr

(
ρσz

)
and Tr

(
ρsσz

)
up to a constant offset. The value of this offset is of

order ε. Furthermore, we plot the fidelity F(ρ, ρs) = tr
(√
√
ρsρ
√
ρs

)
between ρs

and ρ. For better readability, figure 2 shows the logarithm of 1 minus the fidelity,
i.e. of its deviation from the ideal value 1. This deviation quickly converges to an
order 10−4, corresponding to ε2 as expected. It then further decreases, incidentally,
as both systems converge towards the unique equilibrium of the slow dynamics.

To emphasize the influence of γ+ and γ− in (16), we add a simulation with the
same parameters but with the following and same initial condition for the complete
and reduced system:

ρ̃0 =
1
2

(
|c+
α〉 + |c

−
α〉

) (
〈c+
α | + 〈c

−
α |
)

Figure 3 shows that the expectation value of σx = |c+
α〉〈c

−
α | + |c

−
α〉〈c

+
α | slowly de-

creases over time, as expected from bit-flip dynamics. The slope of this decrease is
approximated to ∼ 4% accuracy by the reduced dynamics. Moreover, figure 4 es-
tablishes that 〈σz〉 does not remain zero. This is due to the fact that, with γ+ > γ−,
equation (15) “promotes” the population of |c+

α〉〈c
+
α | over the population of |c−α〉〈c

−
α |,

unlike a pure bit-flip.
The simulations thus confirm the validity of our approximation of the complete

model by the reduced one.

6 CONCLUSIONS

We have rigorously proved convergence of a harmonic oscillator Lindblad dynam-
ics with two-photon exchanges, to a protected subspace. We have also established
the approximate slow dynamics on this protected subspace when a typical pertur-
bation is added, and illustrated its validity in simulations. The methods used for
this particular example are applicable to general Lindbladian dynamics.

The reduction by singular perturbations and adiabatic elimination is of course
applicable in general to evaluate the remaining slow dynamics in quantum systems
with (engineered) protected subspaces. Extension to k-photon processes ak with
k > 2 can be addressed in the same way. The fact that the slow variable still fol-
lows a Lindbladian master equation may not be surprising but remains to be proved
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in the general case. The fact that the dynamics reduces to the orthogonal projec-
tion of the Lindbladian onto the protected subspace (i.e. B0 without any correction
due to B3, in the terms of Section 4.1) for the case examined here would be in
agreement with the physicists’ “quantum Zeno” viewpoint. However, under which
formulation this viewpoint should be applied in the general case also remains to be
rigorously characterized.
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