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Parameter estimation from measurements along quantum trajectories∗

P. Six† Ph. Campagne-Ibarcq‡ L. Bretheau‡ B. Huard‡

P. Rouchon†

Abstract

The dynamics of many open quantum systems
are described by stochastic master equations. In the
discrete-time case, we recall the structure of the derived
quantum filter governing the evolution of the density op-
erator conditioned to the measurement outcomes. We
then describe the structure of the corresponding par-
ticle quantum filters for estimating constant parameter
and we prove their stability. In the continuous-time (dif-
fusive) case, we propose a new formulation of these
particle quantum filters. The interest of this new for-
mulation is first to prove stability, and also to provide
an efficient algorithm preserving, for any discretization
step-size, positivity of the quantum states and parameter
classical probabilities. This algorithm is tested on ex-
perimental data to estimate the detection efficiency for a
superconducting qubit whose fluorescence field is mea-
sured using a heterodyne detector.

1. Introduction

Parameter estimation in hidden Markov models is
a well established subject (see, e.g., [7]). Twenty years
ago Mabuchi [15] has proposed maximum likelihood
methods to estimate Hamiltonian parameters. Later on,
Gambetta and Wiseman [11] have given a first formu-
lation of particle filtering techniques for classical pa-
rameter estimation in open quantum systems. This for-
mulation has been analyzed in [8] via an embedding in
the standard quantum filtering formalism. Recently Ne-
gretti and Mølmer [16] have exploited this embedding
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Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue
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to derive the general equations of a particle quantum fil-
ter for systems governed by stochastic master equations
driven by Wiener processes (diffusive case). In these
contributions, realistic simulations illustrate the interest
of such filters for the estimation of continuous param-
eters. In [14], similar filters are used for purely dis-
crete parameters in order to discriminate between dif-
ferent topologies of quantum networks. The Bayesian
parameter estimation used in the measurement-based
feedback experiment reported in [4] is in fact a spe-
cial case of particle quantum filtering when the quantum
states remain diagonal in the energy-level basis, reduce
to populations and classical probabilities.

The contribution of this paper is twofold: with the-
orem 2, we show that particle quantum filters are al-
ways stable processes; with lemma 2, we propose and
justify a new positivity preserving formulation in the
diffusive case. This formulation is shown to provide an
efficient algorithm for precisely estimating the detection
efficiency from experimental heterodyne measurements
of the fluorescence field that is emitted by a supercon-
ducting qubit [5]. The statistics of the measurement out-
comes generated by this system cannot be described by
classical probabilities since the density operators at var-
ious times do not commute. As far as we know, this
is the first time that a particle quantum filter is applied
to an experiment [6] whose measurement statistics are
ruled by non-commutative quantum probabilities.

Section 2 is devoted to the discrete-time formula-
tion. The specific structure of Markov models describ-
ing open-quantum systems is presented. Then particle
quantum filters are detailed and shown to be always sta-
ble (theorem 2). Finally, the link with MaxLike ap-
proach and the case of multiple measurement records
are addressed. In section 3, a positivity preserving for-
mulation of particle quantum filters is proposed for dif-
fusive systems. The mathematical justifications of this
formulation is given in lemma 2. In section 4, the nu-
merical algorithm underlying lemma 2 is applied on ex-
perimental data from which the detection efficiency is
estimated and compared to an existing calibration pro-
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tocol.

2. Discrete-time formulation

2.1. Markov models

In the sequel,H is the finite-dimensional Hilbert
space of the system and expectation values are denoted
by the symbolE (.). In this section, time is indexed by
the integerk= 0,1, . . . The measurement outcome atk is
denoted byyk. It corresponds to a classical output sig-
nal. We limit ourselves to the case where eachyk can
take a finite set of valuesyk ∈ {1, . . . ,m}, m being a pos-
itive integer (for continuous values ofy, see section 3).
We denote byρk the density operator at time-stepk (an
Hermitian operator onH such that Tr

(

ρk
)

= 1, ρk ≥ 0).
It corresponds to the conditional quantum state at timek
knowing the initial conditionρ0 and the past outcomes
y1, . . . ,yk. According to the law of quantum mechan-
ics, ρk is related toρk−1 via the following Markov pro-
cess (see, e.g., [22]) corresponding to a Davies instru-
ment [9] in a discrete context:

ρk =
Kyk(ρk−1)

Tr
(

Kyk(ρk−1)
) (1)

where the super-operatorρ 7→ Ky(ρ) depends ony, is
linear and completely positive. It admits the follow-
ing Kraus representationKy(ρ) =

∑

µMy
µρ(M

y
µ)† where

the operators onH , (My
µ), satisfy

∑

µ,y(M
y
µ)
†My
µ = IH

with IH the identity operator. Moreover the probability
P
(

yk = y|ρ0,y1, . . . ,yk−1
)

to detectyk knowing the past
outcomes and the initial stateρ0, depends only onρk−1

(Markov property) and is given by

P

(

yk = y
∣

∣

∣ ρk−1

)

= Tr
(

Ky(ρk−1)
)

.

Notice that E
(

ρk
∣

∣

∣ ρk−1

)

= K(ρk−1) where K(ρ) =
∑

y Ky(ρ) =
∑

µ,y My
µρ(M

y
µ)† is a Kraus map (a quantum

channel) since it is not only completely positive but also
trace preserving: Tr

(

K(ρ)
)

= Tr
(

ρ
)

. In the sequel,Ky is
called a partial Kraus map since it is not trace preserving
in general: Tr

(

Ky(ρ)
)

≤Tr
(

ρ
)

. See, e.g., [10, 2] for a de-
tailed construction of suchKy based on positive opera-
tor value measures (POVM) and left stochastic matrices
modeling measurement uncertainties and decoherence.

Now, we consider that the partial Kraus maps
(Ky)y=1,...,m can depend on timek, (Ky,k), and on some
physical parameters, grouped in the scalar or vectorial
time-invariantp, (Kp

y,k), whose exact valuep may not
be known with a sufficient precision, and whose esti-
mation is the subject of this paper. Here, we consider
the case where the only reliable resource of information

is some independent series of measurement outcomes,
(yk)k=1,...,T , associated to aquantum trajectoryof dura-
tion T. Starting from the exact quantum stateρ0 and
the exact parameter valuep, the exact quantum state
trajectory (ρk)k=1,...,T is given by the following Markov
process:

ρk =
Kp

yk,k
(ρk−1)

Tr
(

Kp
yk,k

(ρk−1)
) (2)

with the following probability of outcomeyk knowing
ρk−1 andp:

P

(

yk = y
∣

∣

∣ ρk−1, p
)

= Tr
(

Kp
y,k(ρk−1)

)

.

2.2. Particle quantum filters

The parameter estimation method described in [11,
8, 16] for continuous-time quantum trajectories admits
the following discrete-time formulation. When the ex-
act parameter valuep and the initial stateρ0 are un-
known, one can still resort to the approximate filter cor-
responding to its a priori estimate valuep, with partial
Kraus mapsKp

yk,k
, an initial guess forρ0 and following

statesρp
k satisfyingρp

k =
Kp

yk,k
(ρp

k−1)

Tr
(

Kp
yk,k

(ρp
k−1)

) . Here, the mea-

surement outcomes (yk)k=1,...,T correspond to the hidden
state Markov chain defined in (2) and involving the ac-
tual valuep of the parameter.

Assume that the initial information of the true pa-
rameter valuep is that it can take only two different
valuesa or b. This initial uncertainty on the value of
p can be taken into account by using an extended den-
sity operator, denotedξ = diag(ξa, ξb), block diagonal,
where the first blockξa corresponds top = a, and the
second blockξb to p= b. The evolution of each block is
then handled with the corresponding partial Kraus maps
(Ka

y,k) and (Kb
y,k) forming extended partial Kraus maps

Ξy,k = diag
(

Ka
y,k,K

b
y,k

)

between block diagonal density
operators on the Hilbert spaceH×H :

Ξy,k : ξ 7→ diag(Ka
y,k(ξ

a),Kb
y,k(ξ

b)). (3)

The associated extended quantum filter reads:

ξk =
Ξyk,k(ξk−1)

Tr
(

Ξyk,k(ξk−1)
) . (4)

For p ∈ {a,b}, the probability thatp = p at step
k knowing the initial quantum stateρ0 and initial pa-
rameter probability (πa

0,π
b
0) readsπp

k = Tr
(

ξ
p
k

)

. In-

deed,πa
k + π

b
k = 1 since Tr

(

ξ
)

= Tr
(

ξa
)

+ Tr
(

ξb
)

= 1,

andξ0 = diag(πa
0ρ0,π

b
0ρ0). If the initial information on



the parameter value is only its belonging to{a,b}, then
πa

0 = π
b
0 = 1/2.

Instead of usingξ = diag(ξa, ξb) itself, we decom-
pose its terms into products of probabilitiesπp and den-
sity operatorsρp = ξp/πp. Then Eq. (4) reads











































ρ
p
k =

Kp
yk,k

(ρp
k−1)

Tr
(

Kp
yk,k

(ρp
k−1)

)

π
p
k =

Tr
(

Kp
yk,k

(ρp
k−1)

)

π
p
k−1

∑

p′∈{a,b} Tr
(

Kp′
yk,k

(ρp′
k−1)

)

π
p′
k−1

(5)

for p ∈ {a,b}. In the sequel, we will identify the filter
stateξ with (ρa,ρb,πa,πb).

We have the following stability result based on [19,
21] and relying on the fidelityF(ρ,ρ′) ∈ [0,1] between
two density operatorsρ andρ′ defined here as the square
of the usual fidelity function used in quantum informa-
tion [17]:

F(ρ,ρ′) = Tr2
(

√√
ρρ′
√
ρ

)

.

Theorem 1. Take an arbitrary initial quantum state
ρ0 and a parameter valuep. Consider the quantum
Markov process(2) producing the measurement record
yk, k ≥ 0. Assume that the constant parameterp can
only take two different values, a and b. Consider the
particle (quantum) filter(5) initialized withρa0= ρ

b
0 = ρ0

(ρ0 any density operator) and(πa
0,π

b
0) ∈ [0,1]2 with

πa
0 + π

b
0 = 1. Then F(ρ,ρp) and πpF(ρ,ρp) are sub-

martingales of the Markov process(2) and (5) of state
(ρ,ρa,ρb,πa,πb):

Whenρ0 = ρ0, we haveρp ≡ ρ, F(ρ,ρp) = 1. Thus
πp is a sub-martingale

E

(

π
p
k

∣

∣

∣ ρk−1, ξk−1

)

≥ πp
k−1

This means that, in practice, the component ofπ associ-
ated to the true value of the parameter tends to increase.

Proof. The fact thatF(ρ,ρp) is a sub-martingale is a
direct consequence of [21, theorem IV.1]: (ρ,ρp) is the
state of the following quantum Markov chain

ρk =
Kp

yk,k
(ρk−1)

Tr
(

Kp
yk,k

(ρk−1)
) , ρ

p
k =

Kp
yk,k

(ρp
k−1)

Tr
(

Kp
yk,k

(ρp
k−1)

)

with initial state (ρ0,ρ0) and measurement outcomeyk

whose probabilityP
(

yk = y
∣

∣

∣ ρk−1

)

= Tr
(

Kp
y,k(ρk−1)

)

de-

pends only onρk−1.
For instance, assume thatp = a. Denote byξ

the state of the quantum filter (4) initialized withξ0 =

diag(ρ0,0). Thenξ ≡ (ρ,0) and thus (ξ,ξ) is solution of
the extended Markov chain

ξk =
Ξyk,k(ξk−1)

Tr
(

Ξyk,k(ξk−1)
) , ξk =

Ξyk,k(ξk−1)

Tr
(

Ξyk,k(ξk−1)
)

with measurement outcomeyk of probability
P

(

yk = y
∣

∣

∣ ξk−1

)

= Tr
(

Ξy,k(ξk−1)
)

depending only

on ξk−1. Thus according to [21, theorem IV.1],F(ξ,ξ)
is a sub-martingale. Due to the block structure of
ξ = diag(ρ,0) and ξ = diag(πaρa,πbρb), we have
F(ξ,ξ) = πaF(ρ,ρa). �

Extension of theorem 1 to an arbitrary numberr of
parameter values is given below, the proof being very
similar and not detailed here.

Theorem 2. Take an arbitrary initial quantum stateρ0
and parameter valuep. Consider the quantum Markov
process(2) producing the measurement record yk, k≥ 0.
Assume that the parameterp belongs to a set of r differ-
ent values(pl)l=1,...,r . Take, for l= 1, . . . , r, the particle
quantum filter











































ρ
pl
k =

K
pl
yk,k

(ρ
pl
k−1)

Tr
(

K
pl
yk,k

(ρ
pl
k−1)

)

π
pl
k =

Tr
(

K
pl
yk,k

(ρ
pl
k−1)

)

π
pl
k−1

∑r
j=1 Tr

(

K
pj
yk,k

(ρ
pj
k−1)

)

π
pj
k−1

initialized with ρpl
0 = ρ0 (ρ0 any density operator) and

(πp1
0 , . . . ,π

pr
0 ) ∈ [0,1]r with

∑

j π
p j

0 = 1.
Then F(ρ,ρp) andπpF(ρ,ρp) are sub-martingales

of the Markov process driven by(2) and of state
(ρ,ρp1, . . . ,ρpr ,πp1, . . . ,πpr ):

Extension to a continuum of values forp of such
particle quantum filters and of the above stability result
can be done without major difficulties.

2.3. Connexion with MaxLike methods

Assume that the initial density operator is well
known: ρ0 = ρ0. It is possible to choose as an es-
timation of p, amonga or b, the valuep that max-
imises the probabilityπp

k after a certain amount of
time k. This method is actually amaximum-likelihood
based technique. The multiplicative increment at

time k for πa
k is Tr

(

Ka
yk,k

(ρak−1)
)

, which is equal to

P

(

yk

∣

∣

∣

∣

ρ0,y1, . . . ,yk−1, p= a
)

. From this observation, we

deduce that

πa
k =
πa

0

Ck
×

k
∏

l=1

P

(

yl

∣

∣

∣

∣

ρ0,y1, . . . ,yl−1, p= a
)

,



whereCk is a normalization factor to ensureπa
k+π

b
k = 1.

Remarking that the probability of the measurement out-
comes (yl)l≤k is the probability of the measurement out-
comes (yl)l≤k−1 times the probability ofyk conditionally
to all prior measurements, one gets

πa
k =
πa

0

Ck
×P

(

y1, . . . ,yk

∣

∣

∣

∣

ρ0, p= a
)

,

and similarly

πb
k =
πb

0

Ck
×P

(

y1, . . . ,yk

∣

∣

∣

∣

ρ0, p= b
)

.

Choosing as an estimate the valuea or b whose asso-
ciated component ofπ tends towards 1 thus amounts to
choosing the parameter value that maximises the prob-
ability of the measurement outcomes (y1, . . . ,yT ).

2.4. Multiple quantum trajectories

Such particle quantum filtering techniques ex-
tend without difficulties toN records (indexed byn ∈
{1, . . .N}) of measurement outcomes, (y(n)

k )k=1,...,Tn with

possibly different lengthsTn and initial conditionsρ(n)
0 .

This extension consists in a concatenation of theN
records into a single record (¯yk)k=1,...,T with T =

∑N
n=1Tn

and

(ȳk)k=1,...,T =
(

y(1)
1 , . . . ,y

(1)
T1
,y(2)

1 , . . . ,y
(2)
T2
, . . . ,y(N)

1 , . . . ,y
(N)
TN

)

This record can be associated to a single quantum tra-
jectory of lengthT of form (2). First initialize atρ(1)

0 .
Then for eachk equal toT1+ . . .+Tn−1, ρk+1 is reset to
ρ

(n)
0 . This can be done by applying a reset Kraus map

Kρ
(n)
0 after the computation ofρk+1 relying on outcome

y(n−1)
Tn−1

and before using the outcomey(n)
1 . For any den-

sity operatorσ, it is simple to construct via its spec-
tral decomposition, a Kraus mapKσ such that, for all
density operatorρ, Kσ(ρ) = σ. With this trick (ȳk) is
associated to an effective single quantum trajectory of
the form (2) where the partial Kraus mapsKp

y,k depend
effectively on the time stepk because of adding these
reset Kraus maps.

For the particle quantum filter that is described in
theorem 2 and associated to the record (¯yk) , eachρ(pl )

k is
reset in a similar way at each time stepk=T1+ . . .+Tn−1

contrarily to the parameter probabilityπ(pl)
k that is not

reset.

3. Continuous-time formulation

3.1. Diffusive stochastic master equations

For a mathematical and precise description of such
diffusive models, see [3]. We just recall here the
stochastic master equation governing the time evolution
of the density operatort 7→ ρt

dρt =
(

− i[H,ρt] +
m

∑

ν=1

Dν(ρt)
)

dt

+

m
∑

ν=1

√
ην

(

Lνρt +ρtL
†
ν −Tr

(

Lνρt +ρtL
†
ν

)

ρt

)

dWνt (6)

whereH is the Hamiltonian, an Hermitian operator on
H (h̄= 1 here) and where, for eachν ∈ {1, . . . ,m},

• Dν is the Lindblad super-operator

Dν(ρ) = LνρL
†
ν − 1

2(L†νLνρ+ρL
†
νLν);

• Lν is an operator onH , which is not necessarily
Hermitian and which is associated to the measure-
ment/decoherence channelν ;

• ην ∈ [0,1] is the detection efficiency (ην = 0 for
decoherence channel andην > 0 for measurement
channel) ;

• Wνt is a Wiener process (independent of the other
Wiener processesWµ,νt ) describing the quantum
fluctuations of the continuous output signalt 7→ yνt .
It is related toρt by

dyνt =
√
ην Tr

(

Lνρt +ρtL
†
ν

)

dt+dWνt . (7)

3.2. Partial Kraus map formulation

We introduce here another formulation of (6) that
mimics the discrete-time formulation (2). This formu-
lation is inspired of subsection 4.3.3 of [12], subsec-
tion entitled ”Physical interpretation of the master equa-
tion”. In (6), dρt stands forρt+dt − ρt. It can thus be
written as

ρt+dt = ρt +

(

− i[H,ρt] +
m

∑

ν=1

Dν(ρt)
)

dt

+

m
∑

ν=1

√
ην

(

Lνρt +ρtL
†
ν −Tr

(

Lνρt +ρtL
†
ν

)

ρt

)

dWνt

i.e.,ρt+dt is an algebraic expression involvingρt, dt and
dWνt . With this form, it is not obvious thatρt+dt remains



a density operator ifρt is a density operator. The fol-
lowing lemma provides another formulation based on
It ō calculus showing directly thatρt+dt remains a den-
sity operator. In [20], similar formulations are proposed
without the mathematical justifications given below and
are tested in realistic simulations of measurement-based
feedback scheme.

Lemma 1. Consider the stochastic differential equa-
tion (6) with an initial conditionρ0, which is a non-
negative Hermitian operator of trace one. Then it also
reads:

ρt+dt =
Kdyt,dt(ρt)

Tr
(

Kdyt ,dt(ρt)
) ,

where dyt stands for(dy1
t , . . . ,dym

t ), and whereK∆y,∆t is
a partial Kraus map depending on∆y ∈ Rm and∆t > 0
given by

K∆y,∆t(ρ) = M∆y,∆t ρ M†
∆y,∆t +

m
∑

ν=1

(1−ην)∆t LνρL
†
ν

and M∆y,∆t is the following operator onH

M∆y,∆t = IH −



















iH +
m

∑

ν=1

L†νLν/2



















∆t+
m

∑

ν=1

√
ην∆yν Lν

Proof. Assume thatm= 1. Then,

dρt =
(

− i[H,ρt] + LρtL
† − 1

2(L†Lρt +ρtL†L)
)

dt

+
√
η

(

Lρt +ρtL
† −Tr

(

Lρt +ρtL
†)ρt

)

dWt. (8)

Using It ō rules, dy2
t = dt. Hence, we have

Kdyt ,dt(ρt) = ρt +
√
η(Lρt +ρtL†) dyt

+
(

−i[H,ρt] + LρtL
† − 1

2(L†Lρt +ρtL†L)
)

dt.

Thus Tr
(

Kdyt ,dt(ρt)
)

= 1+
√
ηTr

(

Lρt +ρtL†
)

dyt and

1

Tr
(

Kdyt ,dt(ρt)
) = 1− √ηTr

(

Lρt +ρtL
†)dyt

+ηTr2
(

Lρt +ρtL
†)dt.

We get

Kdyt ,dt(ρt)

Tr
(

Kdyt ,dt(ρt)
) −ρt

=
√
η

(

Lρt +ρtL
† −Tr

(

Lρt +ρtL
†)ρt

)

dyt

+
(

−i[H,ρt] + LρtL
† − 1

2(L†Lρt +ρtL†L)
)

dt

−ηTr
(

Lρt +ρtL
†)

(

Lρt +ρtL
† −Tr

(

Lρt +ρtL
†)ρt

)

dt.

One recognizes (8) since dyt −
√
ηTr

(

Lρt +ρtL†
)

dt =
dWt. For m> 1, the computations are similar and not
detailed here. �

3.3. Particle quantum filtering

Assume the system dynamics depends on a con-
stant parameterp appearing either in the SME (6)
and/or in the output maps (7). As in section 2, assume
that p can take a finite numberr of valuesp1, . . . , pr .
Denote byρp

t the quantum state associated top:

dρp
t =Lp(ρp

t )dt+
m

∑

ν=1

Mp(ρp
t )dWνt (9)

where the super-operators

Lp(ρ) = −i[Hp,ρ]

+

m
∑

ν=1

Lp
νρ(L

p
ν )
†− 1

2
((Lp
ν )
†Lp
νρ+ρ(L

p
ν )
†Lp
ν )

and

Mp(ρ) =
√

η
p
ν

(

Lp
νρ+ρ(L

p
ν )
†−Tr

(

Lp
νρ+ρ(L

p
ν )
†)ρ

)

depend onp since the operatorsLp
ν and the efficiencies

η
p
ν could depend onp. Themoutputs that are associated

to the parameterp then read:

dyνt =Cp
ν (ρ

p
t )dt+dWνt (10)

for ν = 1, . . . ,m, and where:

Cp
ν (ρ) =

√

η
p
νTr

(

Lp
νρ+ρ(L

p
ν )
†) .

With these notations, the particle quantum filter in-
troduced in [11] and further developed and analyzed
in [8, 16] reads as follows. For eachl ∈ {1, . . . , r}, ρpl

t
is governed by the quantum filter:

dρpl
t =Lpl (ρpl

t )dt

+

m
∑

ν=1

Mpl (ρpl
t )

(

dyνt −Cpl
ν (ρpl

t )dt
)

, (11)

and the parameter probabilityπpl
t is governed by:

dπpl
t = π

pl
t



















m
∑

ν=1

(

Cpl
ν (ρpl

t )−C
ν

t

) (

dyνt −C
ν

t dt
)



















, (12)

whereC
ν

t =
∑r

j=1π
p j
t C

p j
ν (ρ

p j
t ).

Here again, the lemma below provides another for-
mulation of this particle quantum filter that mimics the
discrete-time setting of theorem 2.



Lemma 2. For each l∈ {1, . . . , r}, the particle quantum
filter (11) and(12)can be formulated as follows:











































ρ
pl
t+dt =

K
pl
dyt ,dt(ρ

pl
t )

Tr
(

K
pl
dyt ,dt(ρ

pl
t )

)

π
pl
t+dt =

Tr
(

K
pl
dyt ,dt(ρ

pl
t )

)

π
pl
t

∑r
j=1 Tr

(

K
pj
dyt ,dt(ρ

pj
t )

)

π
pj
t

where dyt stands for(dy1
t , . . . ,dym

t ) and whereKp
∆y,∆t is a

partial Kraus map depending on p,∆y ∈ Rm and∆t > 0
given by:

Kp
∆y,∆t(ρ)=Mp

∆y,∆t ρ

(

Mp
∆y,∆t

)†
+

m
∑

ν=1

(1−ηp
ν )∆t Lp

νρ(L
p
ν )
†,

and Mp
∆y,∆t is the following operator onH :

Mp
∆y,∆t = IH −



















iH p+

m
∑

ν=1

(Lp
ν )
†Lp
ν /2



















∆t+
m

∑

ν=1

√

η
p
ν∆yν Lp

ν .

The proof is very similar to the proof of lemma 1.
It relies on simple but slightly tedious computations ex-
ploiting It ō calculus. Due to space limitation, this proof
is not detailed here. This lemma, combined with the
mathematical machineries exploited in [1], opens the
way to an extension to the diffusive case of theorem 2.

4. An experimental validation

The estimation of the detection efficiency is con-
ducted on a superconducting qubit whose fluorescence
field is measured using a heterodyne detector [18, 13].
For the detailed physics of this experiment, see [5, 6].
The Hilbert spaceH isC2. The system dynamics is de-
scribed by a stochastic master equation of the form (6),
with m= 3: η1 = η2 = η is the total efficiency of the het-
erodyne measurement of the fluorescence signal;η3 = 0
corresponds to an unmonitored dephasing channel:

L1 =

√

1
2T1

X− iY
2
, L2 = iL1, L3 =

√

1
2Tφ

Z

where X, Y and Z are the usual Pauli matrices [17].
The time constantsT1 = 4.15 µs andTφ = 35 µs are
determined independently using Rabi or Ramsey pro-
tocols, which is not the case ofη. Using a calibration
of the average resonance fluorescence signal, the mea-
sured vacuum noise fluctuations provide a first estima-
tion of η = 0.26±0.02.

To get a more precise estimation ofη, we have mea-
suredN = 3×106 quantum trajectories of 10µs, starting
from the same known initial stateρ0 =

IH+X
2 . The sam-

pling time∆t is equal to 0.20 µs. For each trajectory,
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Figure 1: First estimation, with pattern valuesη1= 0.10,
the parameter valueη2 = 0.26 close toη, andη3 = 0.40.
Only the first 2000 trajectories are needed to selectη ≈
0.26 and discard 0.10 and 0.40.

the measurement sample at timetk = k∆t, k∈ {1, . . . ,50},
corresponds to the two quadratures of the fluorescence
field∆y1

k = y1
k∆t−y1

(k−1)∆t and∆y2
k = y2

k∆t−y2
(k−1)∆t. From

lemma 2, we derive a simple recursive algorithm where
(dyt) and dt are replaced by (∆yk) and∆t. Moreover, as
explained in subsection 2.4, the 3×106 quantum trajec-
tories are concatenated into a single one.

The estimation is done by taking some pattern val-
uesη1, η2, ...,ηr , assuming that the real valueη is suffi-
ciently close to one of them. We begin with a first esti-
mation that keeps a big interval between each possible
valueηi of η, in order to validate our estimation scheme.
We then sharpen this estimation by reducing the inter-
vals between each valueηi , until arriving to a level of
accuracy after which no distinct discrimination can be
performed. The results are given at figures 1, 2 and 3.
They give the following refinement of the initial cali-
bration:η = 0.2425±0.005. On each of the figures, the
X-axis represents the number of trajectories after which
we look at the parameter probabilitiesπηik and the Y-axis
displays these probabilities.

5. Conclusion

We have shown that particle quantum filtering is
always a stable process. We have proposed an origi-
nal positivity preserving formulation for systems gov-
erned by diffusive stochastic master equation. A first
validation on experimental data confirms the interest of
the resulting parameter algorithm. This positivity pre-
serving algorithm appears to be robust enough to cope
with sampling time of more than 2% of the characteris-
tic time attached to the measurement. The convergence
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Figure 2: Second estimation, realized with more nar-
row intervals between each pattern values. We notice
thatη is actually closer to 0.24 than 0.26, the calibrated
value, and that the number of trajectories required for
the discrimination has drastically increased to 1×105.
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Figure 3: Last estimation, with very narrow intervals.
We use all the trajectories available, i.e. 3× 106 tra-
jectories. Filter does not converge to a distinct choice
between 0.240 and 0.245.

characterization of such estimation scheme remains to
be done despite the fact they are always stable.
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