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Parameter estimation from measurements along quantum tragctories

P. Six’ Ph. Campagne-lbaréq L. Bretheat B. Huard
P. Rouchori
Abstract to derive the general equations of a particle quantum fil-

The dynamics of many open quantum systems
are described by stochastic master equations. In the
discrete-time case, we recall the structure of the derived
guantum filter governing the evolution of the density op-
erator conditioned to the measurement outcomes. We
then describe the structure of the corresponding par-
ticle quantum filters for estimating constant parameter
and we prove their stability. In the continuous-time (dif-
fusive) case, we propose a new formulation of these
particle quantum filters. The interest of this new for-
mulation is first to prove stability, and also to provide
an ¢gficient algorithm preserving, for any discretization
step-size, positivity of the quantum states and parameter
classical probabilities. This algorithm is tested on ex-
perimental data to estimate the detectiglogency for a
superconducting qubit whose fluorescence field is mea-
sured using a heterodyne detector.

1. Introduction

Parameter estimation in hidden Markov models is
a well established subject (see, eld., [7]). Twenty years
ago Mabuchi[[15] has proposed maximum likelihood
methods to estimate Hamiltonian parameters. Later on,
Gambetta and Wiseman |11] have given a first formu-
lation of particle filtering techniques for classical pa-
rameter estimation in open quantum systems. This for-
mulation has been analyzed [n [8] via an embedding in
the standard quantum filtering formalism. Recently Ne-
gretti and Mglmer[[16] have exploited this embedding
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ter for systems governed by stochastic master equations
driven by Wiener processes fiisive case). In these
contributions, realistic simulations illustrate the irgst

of such filters for the estimation of continuous param-
eters. In[[14], similar filters are used for purely dis-
crete parameters in order to discriminate between dif-
ferent topologies of quantum networks. The Bayesian
parameter estimation used in the measurement-based
feedback experiment reported in [4] is in fact a spe-
cial case of particle quantum filtering when the quantum
states remain diagonal in the energy-level basis, reduce
to populations and classical probabilities.

The contribution of this paper is twofold: with the-
orem[2, we show that particle quantum filters are al-
ways stable processes; with lema 2, we propose and
justify a new positivity preserving formulation in the
diffusive case. This formulation is shown to provide an
efficient algorithm for precisely estimating the detection
efficiency from experimental heterodyne measurements
of the fluorescence field that is emitted by a supercon-
ducting qubit[5]. The statistics of the measurement out-
comes generated by this system cannot be described by
classical probabilities since the density operators at var
ious times do not commute. As far as we know, this
is the first time that a particle quantum filter is applied
to an experiment( 6] whose measurement statistics are
ruled by non-commutative quantum probabilities.

Section 2 is devoted to the discrete-time formula-
tion. The specific structure of Markov models describ-
ing open-quantum systems is presented. Then particle
quantum filters are detailed and shown to be always sta-
ble (theoreniR). Finally, the link with MaxLike ap-
proach and the case of multiple measurement records
are addressed. In sectioh 3, a positivity preserving for-
mulation of particle quantum filters is proposed for dif-
fusive systems. The mathematical justifications of this
formulation is given in lemmBl2. In secti@h 4, the nu-
merical algorithm underlying lemnia 2 is applied on ex-
perimental data from which the detectiofii@ency is
estimated and compared to an existing calibration pro-
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tocol.
2. Discrete-time formulation

2.1. Markov models

In the sequelH is the finite-dimensional Hilbert

space of the system and expectation values are denoted

by the symbolE(.). In this section, time is indexed by
the integek = 0,1,... The measurement outcomekas
denoted byyy. It corresponds to a classical output sig-
nal. We limit ourselves to the case where eggltan
take a finite set of valueg € {1,...,m}, mbeing a pos-
itive integer (for continuous values gf see sectiohl3).
We denote byy the density operator at time-stkgan
Hermitian operator o such that T¢ox) = 1, pk > 0).

It corresponds to the conditional quantum state at time
knowing the initial conditiorpg and the past outcomes
V1,...,Yk- According to the law of quantum mechan-
ics, pk is related tqok-1 via the following Markov pro-
cess (see, e.gl, [22]) corresponding to a Davies instru-
ment [9] in a discrete context:

Ok = KYk (ok-1)
Tr (Ky (ok-1))

where the super-operatpr— Ky(o) depends ory, is
linear and completely positive. It admits the follow-
ing Kraus representatiokiy(p) = ¥, M)p(M;)" where
the operators orH, (M), satisfy 3, (M) MY = l4
with I4, the identity operator. Moreover the probability
P(Yk = ¥lpo,Y1,...,Yk-1) to detectyx knowing the past
outcomes and the initial statg, depends only opk-1
(Markov property) and is given by

P(Yk =y| Pk—l) = Tr(Ky(pk_l)).

1)

Notice that ]E(pk lpk—l) = K(ok-1) where K(p) =
Sy Ky(p) = 3,y Mip(M;)T is a Kraus map (a quantum
channel) since it is not only completely positive but also
trace preserving: TiK(p)) = Tr(p). In the sequelKy is
called a partial Kraus map since itis not trace preserving
in general: T(Ky(o)) < Tr (o). See, e.g.[[10,2] for a de-
tailed construction of sucKy based on positive opera-
tor value measures (POVM) and left stochastic matrices
modeling measurement uncertainties and decoherence.
Now, we consider that the partial Kraus maps
physical parameters, grouped in the scalar or vectorial
time-invariantp, (K;k), whose exact valup may not
be known with a sfiicient precision, and whose esti-
mation is the subject of this paper. Here, we consider
the case where the only reliable resource of information

is some independent series of measurement outcomes,

.....

tion T. Starting from the exact quantum stgig and
the exact parameter val(e the exact quantum state

,,,,,

process: B
5 m K)F,Jk; O-1)
Tr(K)F,Jk,k(.Ek—l))
with the following probability of outcomey knowing
Pr-1 andp:

(2)

2 (= | Fics.P) = Tr (KD Bic)).
2.2. Particle quantum filters

The parameter estimation method describedin [11,
8,[16] for continuous-time quantum trajectories admits
the following discrete-time formulation. When the ex-
act parameter valug and the initial state, are un-
known, one can still resort to the approximate filter cor-
responding to its a priori estimate valpewith partial
Kraus mapsK)f’k’k, an initial guess fopg and following

p p
Kyk,k(pkf 1)

—k= - - Here, the mea-
Tr(K;k’k(pE_l))

statespf satisfyingpf =

.....

state Markov chain defined ihl(2) and involving the ac-
tual valuep of the parameter.

Assume that the initial information of the true pa-
rameter valuep is that it can take only two dierent
valuesa or b. This initial uncertainty on the value of
P can be taken into account by using an extended den-
sity operator, denoted = diag¢?, £°), block diagonal,
where the first block? corresponds t@ = a, and the
second block® to p=b. The evolution of each block is
then handled with the corresponding partial Kraus maps
(K;k) and q<§’k) forming extended partial Kraus maps
BEyk = diag(K;k, K;k) between block diagonal density
operators on the Hilbert spadéx H:

Eyk: & diagKa, (£). K5, (€%). (3)
The associated extended quantum filter reads:
By, k(ék-1)

EGEE))

For p € {a,b}, the probability thatp = p at step
k knowing the initial quantum statg, and initial pa-
rameter probability £3,75) readsn! = Tr(gkp). In-
deed, 7 + 2P = 1 since T(&) = Tr(¢) + Tr(¢") = 1,
andép = diag@rgﬁo,ngﬁo). If the initial information on



the parameter value is only its belonging{&ob}, then
ng= ng =1/2.
Instead of using = diag¢?, &) itself, we decom-
pose its terms into products of probabiliti#sand den-
sity operatorgP = £P/nP. Then Eq.[(#) reads
Ksk,k(pl?—l)

Tr(KSk,k(pE-l))

_ Tr(K)’,)k’k(pfil)) L
Zpclab) Tr(KSk,k(pl?—l)) Tt

I

®)

T

for p € {a,b}. In the sequel, we will identify the filter
state with (o2, p°, 72, 7°).

We have the following stability result based 6nl[19,
21] and relying on the fidelitf (0,0") € [0, 1] between
two density operatogsandp’ defined here as the square
of the usual fidelity function used in quantum informa-

tion [17]:
Fo.s') = T2{ | oo/ )

Theorem 1. Take an arbitrary initial quantum state
Po and a parameter valug@. Consider the quantum
Markov procesg2) producing the measurement record
Yk, k> 0. Assume that the constant paramepecan
only take two dferent values, a and b. Consider the
particle (quantum) filte®) initialized withp§ =p8 =0
(co any density operator) andr3,z5) € [0,1]% with
nd+n5 =1 Then Rp,pP) and nPF(p,pP) are sub-
martingales of the Markov proce€g) and (§) of state
(ﬁ,pa,pb,ﬂa,ﬂb)Z

Whenpg = pg, We haveoP =p, F(p,pP) = 1. Thus
7P is a sub-martingale

E(ﬂE |;5k71,§k71) >np )

This means that, in practice, the component associ-
ated to the true value of the parameter tends to increase.

Proof. The fact thatF (p,pP) is a sub-martingale is a
direct consequence df [21, theorem IV.1§; 4P) is the
state of the following quantum Markov chain

P (= P (P
Kyk’k(pk—l) P Kyk,k(pk—l)

k? o A T T kP P )
Tr(Kyk’k(pk,l)) Tr(Kyk’k(pkil))

with initial state pg,00) and measurement outcoryie

whose probability (i = y | y_1) = Tr(KEk(ﬁk_l)) de-
pends only omp;_. _

For instance, assume th@t= a. Denote by¢
the state of the quantum filtdr] (4) initialized wigj =

diag(g,0). Thené = (p,0) and thus4, &) is solution of
the extended Markov chain

EykE-) _
Tr(ZykGcn)  Tr(Epcn)

with  measurement outcomeyx of probability

P(e=Yy|&1) = Tr(Ey.1) depending only

oné,_,. Thus according td [21, theorem IV.1f(£,&)

is a sub-martingale. Due to the block structure of

& = diagp,0) and ¢ = diager®®,7%"), we have

F(£.8) = n°F (p.p%). o
Extension of theoref 1 to an arbitrary numberf

parameter values is given below, the proof being very
similar and not detailed here.

By k(ék-1)

k=

Theorem 2. Take an arbitrary initial quantum staf&,
and parameter valu@. Consider the quantum Markov
procesq2) producing the measurement recoid k> 0.
Assume that the paramefpibelongs to a set of r gfer-
ent valueqp)=1..r. Take, for I=1,...,r, the particle
quantum filter

,,,,,

_ Kl

TR e)
Tr(KSL,k(pﬂl)) T
1Tr(K$|i,k(pl?il)) ”1’21

kK ™ gr

nP| —

initialized Withpgl = po (oo any density operator) and
(P, 7l € [0,1] with 3 7)) = 1.

Then Hp,pP) and7PF(p,pP) are sub-martingales
of the Markov process driven bf?) and of state
(0.0P,.... 0P 7P P

Extension to a continuum of values fprof such
particle quantum filters and of the above stability result
can be done without majorfiiculties.

2.3. Connexion with MaxLike methods

Assume that the initial density operator is well
known: pg = po. It is possible to choose as an es-
timation of p, amonga or b, the valuep that max-
imises the probability;rl’(J after a certain amount of
time k. This method is actually maximum-likelihood
based technique. The multiplicative increment at

time k for nf is Tr(Kf}k,k(pﬁ_l)), which is equal to

Py ’po,yl, e Yk-1,P = a). From this observation, we
deduce that

g k
C_k X BP(YI 'po»ylw"’y'*l’ p = a')’

a _
ﬂk—



whereCy is a normalization factor to ensue@+ P = 1. 3. Continuous-time formulation

Remarking that the probability of the measurement out-

comes Y)i<k is the probability of the measurementout- 3.1, Diffusive stochastic master equations

comes Y)i<k-1 times the probability ofi conditionally

to all prior measurements, one gets For a mathematical and precise description of such

diffusive models, see [[3]. We just recall here the
a g — stochastic master equation governing the time evolution

"= Cr xP(yl, oYk ' PO P= a), of the density operatdn- py

and similarly _ i
dot = (— i[H,pt] + Z@v(Pt))dt
b v=1
ﬂb:ﬁxp(h yk'poﬁ=b) C
K Ck T ’ + Z vy (vat +pely = Tr(Lopr +ptLi)Pt)thV (6)
y=1
Choosing as an estimate the valer b whose asso-
ciated component of tends towards 1 thus amounts to
choosing the parameter value that maximises the pro

whereH is the Hamiltonian, an Hermitian operator on
b- H (h=1 here) and where, for eaete {1,...,m},

ability of the measurement outcomes,(..,yr). e D, is the Lindblad super-operator
2.4. Multiple quantum trajectories Dy(p) = LypL] - 3(LiL,p +pLiL,);

Such particle quantum filtering techniques ex- e L, is an operator o, which is not necessarily
tend without dfficulties toN records (indexed by Hermitian and which is associated to the measure-
{1,...N}) of measurement outcomeyf(“()kzl ..... T, With menfdecoherence channe|

possibly diterent lengthg, and initial conditions_)g”).

This extension consists in a concatenation of hhe * 1 €[0,1] is the detection féciency ¢, = O for

decoherence channel angd> 0 for measurement

and channel) ;
o W is a Wiener process (independent of the other
(Vk=1...T = Wiener processe®/”") describing the quantum
1) ) @ @ y(N) N) flqctuanons of the continuous output sighab y;.
(RERERED 4 UED CETERES 4 SCREEENES SRSEERED 4 Y Itis related tqo; by
This record can be associated to a single quantum tra- dy} = Vi Tr(Lupe+prl)) dt+dWe.  (7)

jectory of lengthT of form (2). First initialize aﬁgl).

Then for eactk equal toT1 +... + Tn-1, prs1 iSTESEL IO 3 2 Partial Kraus map formulation
ﬁg‘). This can be done by applying a reset Kraus map

y(n—l) and before using the outcony%"). For any den- mimics the discrete-time formulatiobl(2). This formu-
siTtVoperator(r, it is simple to construct via its spec- lation is inspired of subsection 4.3.3 &f [12], subsec-
tral decomposition, a Kraus mag? such that, for all tion entitled "Physical interpretation of the master equa-
density operatop, K7(p) = o. With this trick () is tion”. In (B), dor stands forp.qt —pr. It can thus be
associated to anffective single quantum trajectory of written as

the form [2) where the partial Kraus ma|§§k depend m

effectively on the time stefg because of adding these Ptrdt = pt+ (— i[H,pot] + Z@v(,ot))dt

reset Kraus maps. v=1

For the particle quantum filter that is described in m s s .
theoreni2 and associated to the recoril (8achp™ is * Z \Z (vat +pily = Tr(Lupt +ptLV)pt)th
resetinasimilarway ateachtimestepT1+...+Tp-1 =t
contrarily to the parameter probabilih;&p') that is not i.e.,pi+dt IS @n algebraic expression involvipg dt and

reset. dWy'. With this form, it is not obvious that;.q remains



a density operator if; is a density operator. The fol-

One recognized18) sincey,d- \/rTI'r(Lpt+ptLT)dt =

lowing lemma provides another formulation based on dw;. Form> 1, the computations are similar and not

Ito calculus showing directly that,q remains a den-
sity operator. In[[20], similar formulations are proposed

detailed here. O

without the mathematical justifications given below and 3.3. Particle quantum filtering

are tested in realistic simulations of measurement-based

feedback scheme.

Lemma 1. Consider the stochastic fierential equa-
tion (@) with an initial conditionpg, which is a non-
negative Hermitian operator of trace one. Then it also

reads:
Kay,dt(ot)
Tr ( Kdyt,dt(pt)) ’

where dy stands for(dytl,...,dyt“), and whereKy At is
a partial Kraus map depending oky € R™ and At > 0
given by

Pt+dt =

m
Kayat(p) = Mayat p sz,m + Z(l— )AL Lol
v=1

and Myy 4t is the following operator o

m m
May.at = |¢,—[i|—| +Z LILV/z]AHZ VA’ L,

y=1 v=1

Proof. Assume tham= 1. Then,
dor = (~ilH.pd + Lotk = 3L Lo+l L) ot
+ (Lpt +pL —Tf(l—Pt +PtLT)Pt)dVVt- (8)
Using Ito rules, yf = dt. Hence, we have

Kay,at(or) = pr + vin(Lot +pcLT) dy;
+(=i[H.p + Lol = 3(LTLpr + oL L)) .

Thus Tr(Kay.at(or)) = 1+ a7Tr (Lot +piL ") dy; and

1
— —=1- L L
Tr (Kay,a(er)) VT (L)
+7Tr? (Lpt +ptLT) dt.
We get
Kay,.dt(ot) o
Tr(Kay.at(or))

=n (Lpt +pl" - TT(LPt +PILT)PI) dy;

+(=i[H.od + Lol = 3(L Lo + e LTL)) dlt

- nTr(Lpt +ptLT) (Lpt +pilT - Tr(Lpt +ptLT)pt) dt.

Assume the system dynamics depends on a con-
stant parametep appearing either in the SME](6)
andor in the output map${7). As in sectibh 2, assume

that p can take a finite numberof valuesp;, ..., pr.
Denote byptp the quantum state associatedito
m
dof = LP(p) dt+ )" MP(pf) Wy ©)

v=1

where the super-operators
LP(p) = ~i[HP,p]
U 1
+ ) )T = S (L)) Lo +p(LD)LY)
y=1 2
and

MP(o) = \lnf (LEp+(LE) ~Tr(L20 +p(LD)')o)

depend orp since the operatolls’ and the @iciencies
nP could depend op. Themoutputs that are associated

to the parametep then read:
dyf = CJ(of)dt + W’ (10)

forv=1,...,m, and where:

Clo) = mTr(LDp+p(L)T).

With these notations, the particle quantum filter in-
troduced in [[11] and further developed and analyzed
in [8l, [16] reads as follows. For eadte {1,...,r}, ptpl

is governed by the quantum filter:

dof' = LP (P dt

+ 3" MP(P) (dyy —C (o)), (12)
v=1

and the parameter probabilit)?' is governed by:

m

= 20| 3PS ow-Gia)|. a2
v=1

whereC; = ZGFlntijfj Ph. |

Here again, the lemma below provides another for-
mulation of this particle quantum filter that mimics the
discrete-time setting of theordrh 2.



Lemma 2. For each le {1,...,r}, the particle quantum
filter (IT) and (I2) can be formulated as follows:

Pl Pl
pp| — Kdyt,dt(pt )
t+dt Tr(Kglyt,d[(plpl ))
Py Py Py
o Tr(Kd'ytvdt(pt ! )) P
T, =
t+dt

Pj Pj Pj
r ] J ]
(K el ) i

where dystands fo(dyz,. .., dy™ and Wherd<§y Alsa
partial Kraus map depending on py € R™ andAt > 0
given by:

$ o
KZy,At(p) = MEy,Atp (MEy,At) +Z(1_775)At LEP(L\E’)T,
v=1

p
and MAy, At

m m
M3y a = 'w—[iH P+ Z(LE’)TLE’/Z]AHZ sy L.
v=1 y=1

The proof is very similar to the proof of lemraa 1.
It relies on simple but slightly tedious computations ex-
ploiting It 0 calculus. Due to space limitation, this proof
is not detailed here. This lemma, combined with the
mathematical machineries exploited id [1], opens the
way to an extension to theftiisive case of theoremh 2.

is the following operator o

4. An experimental validation

The estimation of the detectiorffigiency is con-

0 500
Number of Trajectories

1000 1500 2000

Figure 1: First estimation, with pattern valugs= 0.10,
the parameter valug = 0.26 close ta;, andns = 0.40.
Only the first 2000 trajectories are needed to sefeet
0.26 and discard Q0 and 040.

the measurement sample at titpe: kAt, ke {1,...,50},
corresponds to the two quadratures of the fluorescence
field AYe = Yias — Yicenat andAy? =y2,, —y(zk_l) A+ From
lemmd2, we derive a simple recursive algorithm where
(dy;) and d are replaced byAyx) andAt. Moreover, as
explained in subsectidn 2.4, thex30°® quantum trajec-
tories are concatenated into a single one.

The estimation is done by taking some pattern val-
uesni, 12, --.-,r, assuming that the real valgés sufi-
ciently close to one of them. We begin with a first esti-
mation that keeps a big interval between each possible

ducted on a superconducting qubit whose fluorescence valuen; of 5, in order to validate our estimation scheme.

field is measured using a heterodyne detector([18, 13].

For the detailed physics of this experiment, se€e [5, 6].
The Hilbert spacé is C2. The system dynamics is de-
scribed by a stochastic master equation of the féim (6),
with m= 3: n1 =2 = n is the total éiciency of the het-
erodyne measurement of the fluorescence siggat;0
corresponds to an unmonitored dephasing channel:

4 X=iY
1 ; 1
L]_= ET, L2=|L]_, L3= mz

where X, Y and Z are the usual Pauli matrices [17].
The time constant31 = 4.15 us andT, = 35 us are

determined independently using Rabi or Ramsey pro-

tocols, which is not the case gf Using a calibration

We then sharpen this estimation by reducing the inter-
vals between each valug, until arriving to a level of
accuracy after which no distinct discrimination can be
performed. The results are given at figurégll, 2[@nd 3.
They give the following refinement of the initial cali-
bration:77 = 0.2425+ 0.005. On each of the figures, the
X-axis represents the number of trajectories after which
we look at the parameter probabilitize% and the Y-axis
displays these probabilities.

5. Conclusion

We have shown that particle quantum filtering is
always a stable process. We have proposed an origi-

of the average resonance fluorescence signal, the mea-nal positivity preserving formulation for systems gov-

sured vacuum noise fluctuations provide a first estima-
tion of n =0.26+ 0.02.

To get a more precise estimationpfve have mea-
suredN = 3x 10° quantum trajectories of 1@, starting
from the same known initial staj& = '”;X. The sam-
pling time At is equal to ®0 us. For each trajectory,

erned by difusive stochastic master equation. A first
validation on experimental data confirms the interest of
the resulting parameter algorithm. This positivity pre-
serving algorithm appears to be robust enough to cope
with sampling time of more than 2% of the characteris-
tic time attached to the measurement. The convergence



Bl n=0.22

[ In=0.24

Bl n=0.26

Bl n-0.28
0 2 4 6 8 10
Number of Trajectories % 10°

Figure 2: Second estimation, realized with more nar-
row intervals between each pattern values. We notice
thaty is actually closer to @4 than 026, the calibrated
value, and that the number of trajectories required for
the discrimination has drastically increased to10°.

0 0.5 1
Number of Trajectories

15 2 2.5 3

Figure 3: Last estimation, with very narrow intervals.
We use all the trajectories available, i.e.x 30° tra-
jectories. Filter does not converge to a distinct choice
between @40 and 45.

characterization of such estimation scheme remains to
be done despite the fact they are always stable.
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