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Abstract. Routine measurements of the beam irradiance at

normal incidence include the irradiance originating from

within the extent of the solar disc only (DNIS), whose an-

gular extent is 0.266◦± 1.7 %, and from a larger circumso-

lar region, called the circumsolar normal irradiance (CSNI).

This study investigates whether the spectral aerosol optical

properties of the AERONET stations are sufficient for an

accurate modelling of the monochromatic DNIS and CSNI

under cloud-free conditions in a desert environment. The

data from an AERONET station in Abu Dhabi, United Arab

Emirates, and the collocated Sun and Aureole Measure-

ment instrument which offers reference measurements of the

monochromatic profile of solar radiance were exploited. Us-

ing the AERONET data both the radiative transfer models

libRadtran and SMARTS offer an accurate estimate of the

monochromatic DNIS, with a relative root mean square er-

ror (RMSE) of 6 % and a coefficient of determination greater

than 0.96. The observed relative bias obtained with libRad-

tran is +2 %, while that obtained with SMARTS is −1 %.

After testing two configurations in SMARTS and three in li-

bRadtran for modelling the monochromatic CSNI, libRad-

tran exhibits the most accurate results when the AERONET

aerosol phase function is presented as a two-term Henyey–

Greenstein phase function. In this case libRadtran exhibited a

relative RMSE and a bias of respectively 27 and−24 % and a

coefficient of determination of 0.882. Therefore, AERONET

data may very well be used to model the monochromatic

DNIS and the monochromatic CSNI. The results are promis-

ing and pave the way towards reporting the contribution of

the broadband circumsolar irradiance to standard measure-

ments of the beam irradiance.

1 Introduction

The direct, or beam, normal irradiance (DNI) is the radiant

flux per unit area received on a plane normal to the Sun rays

from a small solid angle centred to the solar disc (ISO-9488,

1999; WMO, 2010). The DNI plays a role in various do-

mains, such as natural biomass development, climate, day-

lighting or concentrated solar technologies (CST) in electric-

ity production. In the ISO definition of the DNI the “small

solid angle” is not defined. In modern instruments the aper-

ture (or opening) half-angles range between 2.5 and 5◦, re-

spectively equivalent to solid angle apertures of 6 msr and

24 msr. The World Meteorological Organization (WMO) rec-

ommends that all new designs of DNI measuring instruments

to have an aperture half-angle of 2.5◦ (WMO, 2010).

For an observer at the surface of the Earth, the Sun has an

angular radius of 0.266◦± 1.7 % (Jilinski et al., 1998). CST

systems have aperture half-angles larger than the angular ra-

dius of the solar disc but usually smaller than those of the

measuring instruments (Blanc et al., 2014). This implies that

the irradiance originating from within the extent of the solar

disc only (DNIS) and that from a larger circumsolar region

defined by the solid angle aperture, called the circumsolar

normal irradiance (CSNI), are intercepted within the aperture
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of the measuring instrument or concentrating system. This

paper deals with the modelling of the DNIS and CSNI.

To tackle the ambiguity of the “small solid angle”, Blanc

et al. (2014) recommend reporting the viewing angles of the

measuring instrument along with the sunshape and contribu-

tion of the circumsolar irradiance in addition to the DNI mea-

sured by pyrheliometers or equivalent pyranometric systems.

The contribution of the CSNI may be provided in terms of

CSNI defined for the solid angle aperture, or in terms of the

circumsolar ratio (CSR), which is the ratio of the CSNI to the

sum of the CSNI and DNIS (Buie et al., 2003). The sunshape

is the azimuthally averaged profile of solar radiance normal-

ized with respect the central, i.e. maximum, radiance reading.

The solar radiance profile represents the angular distribution

of the sky radiance from which the CSNI is computed.

Reporting the sunshape and the contribution of circum-

solar radiation are not straightforward when no coinciding

measurements of such are available. Several ground mea-

surement campaigns of the solar radiance profile have taken

place, but the data sets are limited in space and time (Neu-

mann et al., 2002; Noring et al., 1991). More recent and still

ongoing campaigns have measured or are still measuring the

monochromatic profile of solar radiance at a resolution of

∼ 0.015◦ up to an angular distance of∼ 8◦ from the centre of

the solar disc with the Sun and Aureole Measurement (SAM)

instrument. SAM only measures the monochromatic radi-

ance at 670 nm with a full spectral width at half-maximum

of 10 nm. Other spectral filters exist at 440 and 870 nm. This

instrument is manufactured by Visidyne Inc., and the data are

available for public access (http://www.visidyne.com/). Out

of the nine instruments reported on the website, six of them

have data available for download for three instruments lo-

cated in France, Spain and the United Arab Emirates (UAE)

and three in the USA.

Wilbert (2014) and Wilbert et al. (2013) propose a method

to convert the SAM monochromatic measurements of the

profile of solar radiance to broadband profiles using a modi-

fied version of the radiative transfer model (RTM) SMARTS

(Simple Model of the Atmospheric Radiative Transfer of

Sunshine; Gueymard, 1995, 2001). Reinhardt (2013) and

Reinhardt et al. (2014) use cirrus cloud properties derived

from Meteosat satellite imagery to estimate the broadband

circumsolar radiation by the use of look-up tables established

with the Monte Carlo radiative transfer solver available in

libRadtran (Mayer and Kylling, 2005; Mayer et al., 2012).

Other preliminary works (Eissa et al., 2014; Oumbe et al.,

2012) have modelled the broadband CSNI, but the results

have not been compared with reference measurements.

AERONET (Aerosol Robotic Network) products provide

the aerosol optical properties at numerous locations globally

and for varying time periods (Holben et al., 1998). Masdar

City, located in the suburbs of Abu Dhabi, UAE, is the seat

of both AERONET and SAM measurements. It offers the op-

portunity to study the potentials of AERONET data in mod-

elling the DNIS and CSNI.

The objective of this article is to answer the following

question: can AERONET data be used to accurately model

the monochromatic beam and circumsolar irradiances under

cloud-free conditions in desert environment? A desert envi-

ronment is of interest because countries in the Middle East

and North Africa region, where the environment is mostly

dominated by desert surroundings, have set ambitious plans

to install CST systems in the upcoming years (Brand and

Zingerle, 2011; Griffiths, 2013). In desert environments the

circumsolar radiation may be significant under turbid cloud-

free skies, implying that information of the CSNI and DNIS

is essential for an improved assessment of the DNI (Blanc et

al., 2014). For example, Thomalla et al. (1983) report a CSR

of 0.06 for an aperture half-angle of 5◦ when using a desert

aerosol model for a solar zenith angle of 70◦ and an aerosol

optical depth (AOD) at 550 nm of 0.4.

To that extent, several parameterizations of the monochro-

matic phase function, asymmetry parameter and single

scattering albedo available in the RTMs libRadtran and

SMARTS are tested against SAM measurements, where the

aerosol optical properties are extracted from the products of

AERONET.

The article is organized as follows: theoretical background

(Sect. 2), aerosol optical properties from AERONET data

(Sect. 3), SAM data (Sect. 4), cross-comparison between

AERONET and SAM data (Sect. 5), AERONET data in the

parameterizations of the RTMs (Sect. 6), results and discus-

sion (Sect. 7) and conclusions (Sect. 8).

2 Theoretical background

2.1 The beam irradiance

In radiative transfer modelling, the monochromatic DNIS

only comprises photons that were not scattered and is rep-

resented by the Beer–Bouguer–Lambert law (Liou, 2002) as

Bstrict
n,λ = E0,n,λ exp(−τλm), (1)

where Bstrict
n,λ is the monochromatic DNIS from radiative

transfer modelling point of view, E0,n,λ is the monochro-

matic extraterrestrial irradiance received on a plane normal

to the Sun rays, τλ is the monochromatic optical depth of

all attenuating factors present in the atmosphere and m is

the pressure-corrected relative optical air mass (Kasten and

Young, 1989). Therefore, accurate modelling of Bstrict
n,λ re-

quests an accurate retrieval of τλ within the extent of the solar

disc only.

For ground measurements of the monochromatic DNIS it

is not possible to distinguish whether a photon was scattered

or not before reaching the measuring instrument (Blanc et

al., 2014). Therefore, in this work it is assumed that the

effects of scattered photons within the extent of the solar

disc are negligible, and Bstrict
n,λ is validated against the ground

reference monochromatic DNIS, noted BSun
n,λ . To this end,
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the monochromatic DNIS modelled by the radiative transfer

codes is also noted BSun
n,λ . The ground reference monochro-

matic DNIS may be computed from measurements of the

beam radiance within the solar disc as (Blanc et al., 2014;

Buie et al., 2003)

BSun
n,λ =

2π∫
0

δS∫
0

Lλ(ξ,φn)cos(ξ)sin(ξ)dξdφn, (2)

where Lλ(ξ , ϕn) is the monochromatic beam radiance, ξ is

the angular distance from the centre of the Sun, ϕn is the az-

imuth angle on the plane normal to the solar beam direction

and δS is the angular radius of the Sun corrected with respect

to the Sun–Earth distance. For the small ξ of the solar and

circumsolar regions the deviation from 1 of the cos(ξ) term

can be considered negligible, and sin(ξ) ≈ ξ . Also, under

the assumption of radial symmetry of the sky radiance in the

vicinity of the Sun under cloud-free conditions, Eq. (2) sim-

plifies to

BSun
n,λ ≈ 2π

δS∫
0

Lλ(ξ)ξdξ. (3)

2.2 The circumsolar irradiance

The CSNI is computed from the circumsolar diffuse radiance

as (Blanc et al., 2014; Buie et al., 2003)

CSn,λ(δ,α)≈ 2π

α∫
δ

Lλ(ξ)sin(ξ)dξ ≈ 2π

α∫
δ

Lλ(ξ)ξdξ, (4)

where CSn,λ(δ, α) is the monochromatic CSNI in the interval

[δ, α], δ is the inner limit of the circumsolar region, α is the

outer limit of the circumsolar region and Lλ(ξ) is monochro-

matic diffuse radiance.

The monochromatic diffuse radiance is a function of

the monochromatic optical depth, the monochromatic sin-

gle scattering albedo and the monochromatic phase function

(Dubovik and King, 2000).

3 Aerosol optical properties from AERONET data

The environment of interest is that of Masdar City, located

in the suburbs of Abu Dhabi, UAE. The site is described

as near-coastal, desert and urban, with frequent cloud-free

but turbid skies due to natural and anthropogenic dust emis-

sions (Gherboudj and Ghedira, 2014). It has an altitude above

mean sea level of 2 m and is located at 24◦ 26′ 30.58′′ N,

54◦ 36′ 59.75′′ E. Coinciding AERONET and SAM measure-

ments were performed from June 2012 to May 2013, the in-

struments are ∼ 55 m apart and measurements are still ongo-

ing.

The CIMEL CE-318 Sun photometer of the AERONET

station has an aperture half-angle of 0.6◦ (Holben et al.,

1998). The monochromatic vertical column AODs, noted

τa,λ, are provided at the following wavelengths: 1640, 1020,

870, 675, 500, 440, 380 and 340 nm, from the Version 2 Di-

rect Sun Algorithm (DSA) products. The AODs for wave-

lengths greater than 440 nm have a reported uncertainty of

±0.01 (Eck et al., 1999). The total column content in wa-

ter vapour, with an uncertainty of ∼ 10 % (Holben et al.,

2001), and the solar zenith angle θS are also reported. In

this work, only Level 2.0 DSA products were used to en-

sure cloud-free and quality-assured observations. The cloud-

screening algorithm of the AERONET data only filters out

the cloud-contaminated observations in the direction of the

Sun (Smirnov et al., 2000).

Version 2 inversion products are also available from the

AERONET data. They include the monochromatic radiance

measurements as a function of azimuth deviations from the

solar azimuth angle in the almucantar plane, measured at the

following wavelengths: 1020, 870, 675 and 440 nm. In the

near vicinity of the solar disc the almucantar measurements

of radiance are provided over Masdar City at azimuth angular

deviations of ±3, ±3.5, ±4, ±5 and ±6◦. The AERONET

sky radiance measurements have a reported uncertainty < 5 %

primarily due to calibration uncertainty (Holben et al., 1998).

From June 2012 to May 2013 there are 2241 profiles of the

diffuse radiance notably at 675 nm in the almucantar plane,

all in Level 2.0. The wavelength of 675 nm is of specific in-

terest in this study because it almost coincides with the ra-

diance measurements of the SAM instrument, discussed in

Sect. 4.

The AERONET Version 2 inversion products also include

(Dubovik and King, 2000; Dubovik et al., 2002, 2006; Hol-

ben et al., 1998)

– the monochromatic aerosol single scattering albedo,

noted ωa,λ;

– the monochromatic aerosol phase function provided at

83 scattering angles, where the scattering angle is ap-

proximated by ξ (Wilbert et al., 2013), noted Pa,λ(ξ);

– the monochromatic asymmetry parameter, noted gλ.

For this time period, and in Level 2.0, there are 1068 obser-

vations of τa,λ, Pa,λ(ξ) and gλ covering the whole 12 months

of this study period. The months with the smallest num-

ber of observations are November and December 2012 and

May 2013, with respectively 4, 5 and 4 % of the 1068 ob-

servations. For the remaining months the number of observa-

tions ranges between 8 and 14 % of the 1068 observations.

Only 491 from the 1068 observations include ωa,λ, because

τa,440 nm must be greater than 0.4 to achieve useful accu-

racy in ωa,λ. The distribution of the 491 samples amongst

the months varies widely. There are two samples in Novem-

ber 2012. October and December 2012 and January, Febru-

ary, March and May 2013 offer a small number of samples,

www.atmos-meas-tech.net/8/5099/2015/ Atmos. Meas. Tech., 8, 5099–5112, 2015
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smaller than 26. The 5 remaining months offer larger num-

bers of samples.

Table 1 presents the mean, minimum, maximum and

standard deviation of τa,675 nm, ωa,675 nm and Pa,675 nm(ξ)

for both the 1068 samples (excluding ωa,675 nm) and the

491 samples. These statistics are presented for Pa,675 nm(ξ)

for the three ξ smaller than 6◦ reported in the AERONET

Version 2 inversion products, i.e. 0, 1.71 and 3.93◦.

The relative standard deviation of τa,675 nm for the

1068 samples is very large at 69 % of the mean value, in-

dicating its great temporal variability and its significance in

modelling both the monochromatic DNIS and diffuse radi-

ance. The relative standard deviation of Pa,675 nm(ξ) is also

large, ranging between 18 and 24 % for the three smallest ξ

for the 1068 samples, again implying its significance in mod-

elling the diffuse radiance.

On the contrary, the relative standard deviation of

ωa,675 nm is small at 0.019 (2 % of the mean value) for the

491 samples. The uncertainty of the AERONET ωa,675 nm re-

trievals is not provided, it is reported at ωa,440 nm and is 0.03

(Dubovik et al., 2000). When the multiple scattering effects

are ignored, the diffuse radiance is linearly proportional to

the single scattering albedo (Dubovik and King, 2000; Liou,

2002; Wilbert et al., 2013). A practical consequence is that

a mean value of ωa,675 nm can be used with an acceptable

loss of accuracy. In addition, using a mean value of ωa,λ is

a means to tackle the issue of the missing ωa,λ values at in-

stances when Pa,λ(ξ) data are available. The AERONET re-

trievals of ωa,λ are not provided under small aerosol loading

situations and this causes the gaps in ωa,λ (Dubovik et al.,

2000; Yin et al., 2015).

The mean value of ωa,675 nm for the available 491 observa-

tions over this study area and for this study period is 0.954,

this number is fairly close to the monthly mean values of

ωa,675 nm, which range from a minimum of 0.917 in Decem-

ber 2012 to a maximum of 0.974 reached in March 2013. In

the extreme case of the minimum observed value (0.881), an

error of 8 % will be induced on the diffuse radiance by opting

to use a mean value of ωa,675 nm. However, this is a rare sit-

uation. Indeed, 67 % of the ωa,675 nm samples lie within the

mean±1 standard deviation and 96 % lie within the mean±2

standard deviations. For the 491 samples, the mean error in

the diffuse radiance incurred by assuming an average value

of ωa,675 nm is < 2 %.

4 SAM data

The ground measurements of the beam and circumsolar dif-

fuse radiance were collected at Masdar City by the SAM

instrument (DeVore et al., 2012a, b). The instrument is lo-

cated at 24◦ 26′ 32.36′′ N, 54◦ 36′ 59.60′′ E. The instrument

is comprised of two cameras (Wilbert et al., 2013). One di-

rectly measures the radiance within the solar disc. The so-

lar aureole, also known as the circumsolar region, is formed

on a screen with a beam dump for the solar disc region and

this image is captured by the other camera facing the screen.

The monochromatic radiance at Masdar City is measured

only at 670 nm with a full spectral width at half-maximum of

10 nm. The angular resolution of the radiance measurements

is 0.0217◦ and the acquisition frequency is 4 or 5 times per

minute. The relative error of the beam radiance is reported

to be less than 1 % for τa,670 nm < 0.6, while that of the au-

reole radiance is reported to be between 5 and 15 % (Stair

and DeVore, 2012). An angular gap exists between the beam

and circumsolar radiance measurements to avoid superimpo-

sition of the solar disc radiance scattered on the screen with

the image of the circumsolar region on that screen (Wilbert

et al., 2013). For the SAM 400 series, as the one in Masdar

City, measurements from the aureole camera for ξ < 0.52 are

discarded (Wilbert, 2014). The internal scattering correction

of DeVore et al. (2012b) was not applied to the downloaded

SAM data.

There are four main files of SAM data for each day (LeP-

age et al., 2008). One file comprises the horizontal, and an-

other the vertical, beam and circumsolar radiance measure-

ments. One file contains the azimuthally averaged profiles

of solar radiance. The reported angular resolution for all ra-

diance data is 0.0217◦. The last file includes the particulate

optical depth at 670 nm and θS. In this study the matching of

AERONET and SAM data is only performed under cloud-

free conditions; hence the particulate optical depth is basi-

cally τa,670 nm.

The SAM instrument is fairly new. The oldest reference

found was that of DeVore et al. (2007), who reported ex-

amples of the SAM measurements collected in 2006. How-

ever, no article has been found which clearly defines quality-

control procedures for the SAM measurements. There are

also several gaps in the downloaded data. A series of tests

have been applied herein to retain only the high-quality mea-

surements and possibly remove cloud-contaminated ones.

i. The number of profiles of solar radiance and τa,670 nm

observations do not match. Therefore, the radial, hor-

izontal and vertical profiles were matched to the

τa,670 nm observations which have the same time stamp.

With this test 229 561 observations of the profiles and

τa,670 nm remain from originally 244 609 profiles.

ii. Any radial profile with negative values in the solar disc

region is removed; 222 742 observations remain.

iii. The monochromatic radiance of the radial profile should

decrease with an increasing angular displacement in

the solar disc region, i.e. the condition dLλ(ξ)/dξ < 0

must be fulfilled. This procedure is similar to that pro-

posed by Buie et al. (2003) when performing the quality

checks on the profiles of solar radiance measured by the

Lawrence Berkeley National Laboratory. With this test

222 714 observations remain.
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Table 1. Basic statistics of τa,675 nm, Pa,675 nm(ξ) and ωa,675 nm.

Variable Sample no. Mean Minimum Maximum Standard deviation

τa,675 nm 491 0.500 0.181 1.873 0.209 (42 %)

1068 0.324 0.025 1.873 0.222 (69 %)

Pa,675 nm(0◦) 491 179.6 73.7 322.6 31.9 (18 %)

1068 173.9 64.7 412.7 41.4 (24 %)

Pa,675 nm(1.71◦) 491 127.6 48.6 191.3 19.2 (15 %)

1068 120.7 42.3 219.2 23.9 (20 %)

Pa,675 nm(3.93◦) 491 62.7 21.7 80.4 8.9 (14 %)

1068 58.7 21.4 80.5 10.4 (18 %)

ωa,675 nm 491 0.954 0.881 0.987 0.019 (2 %)

1068 N/A N/A N/A N/A

iv. According to Buie et al. (2003) and Neumann et

al. (2002) the variations in the solar disc region of

the sunshape are low for CSRs ranging between 0.05

and 0.4. When comparing the solar disc region of the

CSR 0 and CSR 40 sunshapes proposed by Neumann et

al. (2002) a relative root mean square error (RMSE) of

4 % is observed when taking the CSR 0 sunshape as the

reference. The RMSE was constructed from the relative

intensity of each sunshape at the different ξ . To this end,

each SAM radiance measurement in the solar disc re-

gion was normalized between 0 and 1. In the solar disc

region, a mean normalized solar radiance profile was

generated from all the available measurements resulting

from point (iii), which was then matched to the clos-

est actual normalized profile in terms of Euclidean dis-

tance. Then the relative RMSE was computed for each

normalized solar radiance profile with respect to the ac-

tual mean normalized profile. The 90th percentile of the

RMSE was chosen as the cutoff. It also coincides with

a relative RMSE of 4 %; 200 443 profiles pass this test.

v. As pointed out by Noring et al. (1991), the circumso-

lar radiance and ξ exhibit a linear relation in the log-log

space. Therefore, the correlation coefficient in the log-

log space was computed between the circumsolar radi-

ance of each of the radial profiles and ξ in the interval

[0.52◦, 6◦]. Any radial profile exhibiting a correlation

coefficient less than 0.990 was eliminated; 188 801 ob-

servations remain.

5 Cross-comparison between AERONET and SAM

data

Both SAM and AERONET data include Lλ and τa,λ. A

cross-comparison between them provides a confirmation on

the reliability of the measurements of both instruments.

To compare the AERONET and SAM radiance measure-

ments, the 2241 profiles of AERONET almucantar radiance

measurements in the period June 2012 to May 2013 were

matched to the SAM horizontal monochromatic radiance

measurements which pass the procedures presented in Sect. 4

in terms of the time stamp. In the temporal matching process,

the measurements between the two different instruments had

to be at most 1 min apart and θS reported by the two instru-

ments had to match: the bias between the matched θS was

found to be 0.00◦ and the maximum absolute error in angle

for all observations was 0.22◦.

The corresponding ξ of the AERONET almucantar radi-

ance measurements were computed from θS and the reported

relative azimuth angles. The SAM radiance measurements

were then angularly aggregated to match the 0.6◦ half field of

view of the CIMEL 318 Sun photometer using the weighting

method described in Wilbert (2014). After matching the mea-

surements, 1067 AERONET and SAM profiles remained.

The measurements with the same ξ to the east and west di-

rections of the Sun were averaged to minimize the effects of

small pointing errors (Torres et al., 2013). Ideally for these

1067 profiles there should be 5335 measurements of radi-

ance corresponding to the five values from AERONET for

ξ < 6◦, where the maximum ξ from the AERONET measure-

ments was found to be 5.8◦. Instead there is a lower number

of observations, 5236 to be exact, due to missing data in

the almucantar measurements from AERONET which could

occur at any ξ . The standard deviation of the differences be-

tween these remaining pairs of observations was computed.

Then, all samples exhibiting a difference greater than three

times this standard deviation were filtered out. This filter is

meant to remove extreme cases which could occur if one in-

strument is shaded by clouds while the other is not. This sit-

uation can occur since the two instruments are not exactly

at the same place, ∼ 55 m apart, and the time matching is in

minutes. Out of 5236, 133 pairs were excluded.

Figure 1 exhibits the density scatter plot (or 2-D his-

togram; Eilers and Goeman, 2004) of the SAM and

AERONET radiance measurements. Red dots correspond to

regions with high densities of samples and the dark blue

ones to those with very low densities of samples. The rela-

tive RMSE is 14 %, the relative bias is 0 % and the coeffi-

cient of determination R2 is high at 0.933. The observations

are well scattered around the 1 : 1 line. The comparison re-
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Figure 1. Scatter density plot between the SAM L670 nm and

AERONET L675 nm measurements. CC denotes the correlation co-

efficient, LS the least-squares affine regression and PCA the first

component in principal component analysis.

sults are good, implying reliable measurements from both in-

struments. The AERONET measurements were collected at

675 nm while those of SAM were collected at 670 nm. This

may induce minor errors in this comparison. Also shown in

Fig. 1 are the mean value of the observables on the x axis, the

correlation coefficient, the 1 : 1 line, the least-squares affine

regression, the robust affine regression and the first axis of

inertia, also known as the first component in principal com-

ponent analysis.

The AERONET AOD is not provided at the specific wave-

length of the SAM instrument of 670 nm. Therefore, the

AERONET AOD at this specific wavelength was computed

using a second-order polynomial fit of AOD vs. wavelength

using the AERONET measurements of AOD in the interval

[440, 675 nm] (Eck et al., 1999) as

ln(τa,λ)= a0+ a1ln(λ)+ a2ln(λ)2. (5)

This method to compute the reference AOD at 670 nm was

selected because the fine-mode pollution aerosols, mainly

produced by the petroleum industry in the UAE, affect the

linear fit of ln(τa,λ) vs. ln(λ) (Eck et al., 2008).

Thus, 5024 pairs of coincident observations remain, for

which the maximum difference in the time stamp of both

instruments is 1 min. Similar to the cross-comparison of

the radiance measurements to remove potentially cloud-

contaminated measurements, the standard deviation of the

differences between these remaining pairs of observations

was computed. All coinciding samples with a difference

greater than three times the standard deviation were filtered

out. Out of 5024 pairs of samples, 150 pairs were excluded.

Figure 2 exhibits the density scatter plot of the 4874 pairs

of SAM vs. AERONET AOD at 670 nm. The relative RMSE

is 10 % and the relative bias is +7 % meaning that the SAM

τa,670 nm is greater in average than the AERONET τa,670 nm.
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Figure 2. Scatter density plot between the SAM and AERONET

τa,670 nm. The axes are limited to 0.8 for a better view.

The R2 value is high at 0.990. Even though AOD values

sometimes exceed 0.8, the limits of the axes have been set

to have a maximum value of 0.8 in order to better examine

the regions with higher sample densities.

There are several interpretations for the discrepancies ob-

served between the SAM and AERONET τa,670 nm. The dif-

ference in the field of view of both instruments may partially

explain such discrepancies, where the AERONET Sun pho-

tometer has an aperture half-angle of 0.6◦. This implies a

portion of the circumsolar radiation is intercepted within the

field of view of the instrument, hence a smaller AOD than

that observed by SAM. Although in Sinyuk et al. (2012) the

error due to the field of view is quantified to be significantly

less (< 0.003 for τa,440 nm < 0.8) than the uncertainty in the

AERONET AOD retrievals, with 0.01 for λ> 440 nm.

Another possible cause for such discrepancies is how the

Rayleigh scattering and small atmospheric absorption is ac-

counted for at 670 nm in the SAM AOD retrievals. A fixed

correction of −0.0556 is used, which was derived empiri-

cally by cross calibrations between SAM and AERONET us-

ing measurements collected in Oklahoma, USA (J. DeVore

and A. LePage, personal communication, 2015). This fixed

correction may induce errors in the SAM AOD retrievals, but

it is stated by the team at Visidyne Inc. to be less than the un-

certainty of the SAM AOD, being 0.03. Indeed, the bias of

0.02 between AERONET and SAM AOD retrievals is less

than the reported uncertainty of the SAM AOD.

After running the series of tests on the SAM data, match-

ing the SAM and AERONET data and removing the outliers

of the AOD from both instruments (i.e. the 150 samples of

the originally matched 5024 samples), two main data sets re-

main which are used in the remainder of this article.

i. Data set 1, abbreviated as DS1, already used in Fig. 2

for the AOD comparison. It comprises 4874 observa-
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tions of the SAM beam and circumsolar radiance mea-

surements along with their corresponding AERONET

τa,λ and total column content in water vapour, extracted

from the DSA Level 2.0 product. There is no data for

August 2012 and May 2013. The number of samples

varies from a minimum of 102 in July 2012 to a maxi-

mum of 809 achieved in September 2012. DS1 is used

in the following when modelling the monochromatic

DNIS with the RTMs.

ii. Data set 2, abbreviated as DS2, comprises 498 observa-

tions of the SAM beam and circumsolar radiance mea-

surements along with their corresponding AERONET

τa,λ, total column content in water vapour, Pa,λ(ξ) and

gλ, extracted from the Version 2 inversion products in

Level 2.0. A mean value of 0.954 for ωa,675 nm is used

along with DS2. There is no data for August 2012

and May 2013 in DS2. Whereas for the remaining 10

months the number of samples varies from a minimum

of 14 in July 2012 to a maximum of 103 in March 2013.

DS2 is used when modelling the monochromatic CSNI

with the RTMs.

The Fig. 3 displays the days of the study period which com-

prise coinciding SAM and AERONET observations. It illus-

trates the periods with data available in DS1 and DS2.

6 AERONET data in the parameterizations of the

radiative transfer models

The AERONET parts of the two data sets are used as input to

a RTM which in turn delivers the monochromatic DNIS and

CSNI which are compared against SAM measurements. Two

different RTMs were used: libRadtran and SMARTS.

The Monte Carlo radiative transfer solver MYSTIC avail-

able in libRadtran which was used by Reinhardt (2013) and

Reinhardt et al. (2014) assumes 3-D geometry and that the

Sun is an extended source with a finite diameter. However,

these options are not available in the publicly available MYS-

TIC solver, which can only compute the radiance at one

viewing direction at a time. Therefore, in this work the DIS-

ORT (DIScrete ORdinates Radiative Transfer; Stamnes et al.,

1998, 2000) solver was used in libRadtran version 1.7. It

solves the radiative transfer equation in 1-D geometry assum-

ing a plane-parallel atmosphere and allows accurate calcula-

tions of the radiance and irradiance. One main advantage of

DISORT is that it allows for the computation of the radiance

at multiple viewing directions using one input file.

SMARTS is a physical model able to predict either the

monochromatic or broadband direct, diffuse and global ir-

radiances received on the surface of the Earth (Gueymard,

1995, 2001). It is also capable of simulating the irradiance

that would be measured by a radiometer by defining the

viewing angles of the radiometer.
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Figure 3. The days of data sets DS1 and DS2 which comprise co-

inciding AERONET and SAM data.

Both SMARTS and libRadtran assume the solar disc is a

point source, i.e. a Dirac function. Therefore, the monochro-

matic DNIS is provided as a direct output by both RTMs.

In libRadtran the diffuse radiance is modelled at the view-

ing angles specified by the user. Therefore, in the cases of the

libRadtran outputs and SAM measurements the monochro-

matic CSNI is computed by Eq. (4) in the interval [δ = 0.52◦,

α = 6◦]. In SMARTS the monochromatic CSNI is an out-

put of the model. Therefore, to compute the CSNI from

SMARTS in this same interval the code is run twice, once

to compute the CSNI up to 6◦ and once up to 0.52◦ and then

the finally investigated CSNI is their difference.

The parameterizations of the two RTMs are presented in

the following sections.

6.1 libRadtran

libRadtran offers the flexibility of a user-defined Pa,λ(ξ).

Pa,λ(ξ) can be expressed as a series of Legendre polynomi-

als:

p0(x)= 1,pl(x)=
1

(2l l!)

dl

dxl
(x2
− 1)lforl = 1,2, . . ., (6)

where pl is the l’th Legendre polynomial as a function of

x (Courant and Hilbert, 1953). One way is to use the pmom

tool in libRadtran that computes the Legendre moments of

the measured Pa,λ(ξ) (Mayer et al., 2012). It takes hundreds

of Legendre moments to describe Pa,λ(ξ) with a sufficient

accuracy, especially for small values of ξ .

Practically, the simplest and most common representation

of Pa,λ(ξ) is the Henyey–Greenstein (HG) phase function,

which is based on gλ only (Henyey and Greenstein, 1941;

Liou, 2002):

PHG(ξ,g)= (1− g
2)/(1+ g2

− 2g cos(ξ))1.5, (7)

where PHG is the HG phase function and g is the asymmetry

parameter, to be replaced with gλ for monochromatic phase

functions.

However, the HG phase function does not properly repro-

duce the scattering patterns which are strongly peaked in the

forward direction (Liou, 2002). An accurate representation of
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the sharp peaks of Pa,λ(ξ) is very important for an accurate

estimate of the circumsolar diffuse monochromatic radiance.

Irvine (1965) and Kattawar (1975) proposed a two-term

HG (TTHG) phase function to better depict phase functions

with sharp peaks. To the best of the knowledge of the au-

thors, no articles have been found on the direct application

of the TTHG phase function to model the circumsolar radia-

tion under turbid cloud-free skies. The TTHG phase function

is computed as (Haltrin, 2002; Kattawar, 1975)

PTTHG(ξ,c1,c2,c3)= c1PHG(ξ,c2)

+ (1− c1)PHG(ξ,c3), (8)

where PTTHG is the TTHG phase function and c1, c2 and c3

are three parameters describing PTTHG. In this study each

AERONET Pa,λ(ξ) was used to fit the three parameters

c1, c2 and c3 of Eq. (6) using the nonlinear least-squares

Levenberg–Marquardt method (Marquardt, 1963).

Practically, the RTM libRadtran expects Legendre mo-

ments. Therefore, knowing the c1, c2 and c3 parameters, the

TTHG phase function must be expanded as a series of Leg-

endre polynomials as

PTTHG(ξ,c1,c2,c3)=

∞∑
l=0

(2l+ 1)(c1c
l
2

+ (1− c1)c
l
3)pl(cos(ξ)), (9)

where (c1c
l
2+ (1− c1)c

l
3) is the l’th Legendre moment and

pl is the l’th Legendre polynomial as a function of cos(ξ),

to compute hundreds of Legendre moments before passing

them on to libRadtran.

The following were the specific inputs to libRadtran:

i. θS, computed by the SG2 algorithm of Blanc and

Wald (2012);

ii. λ= 670 nm, to compute the corresponding monochro-

matic radiance/irradiance;

iii. τa,670 nm, computed as per Eq. (5);

iv. the total column content in water vapour;

v. ωa,675 nm, only needed for radiance modelling;

vi. the moments of the Pa,675 nm(ξ), only needed for radi-

ance modelling;

vii. the mid-latitude summer atmospheric profile from An-

derson et al. (1986);

viii. the extraterrestrial spectrum of Gueymard (2004),

which is the same one available in SMARTS;

ix. the day of the year, i.e. 1 to 365 or 366 for a leap year,

to correct for the Sun–Earth distance;

x. the altitude of the site above mean sea level;

xi. the altitude of the sensor above ground level;

xii. the sky element zenith angle θ ;

xiii. the sky element azimuth angle ϕ;

xiv. the radiative transfer equation solver, DISORT;

xv. default value of 16 for the number of streams to be used

in DISORT. An increase in the number of streams (32

were tested) causes significantly longer computational

timings with no effects on the results.

In libRadtran, if the asymmetry parameter g675 nm is defined

instead of the moments of Pa,675 nm(ξ), then a HG phase

function is assumed. When ωa,675 nm and Pa,675 nm(ξ) are

both not available as inputs, another option is to define the

aerosol type and retrieve their corresponding typical values

from the OPAC (Optical Properties of Aerosols and Clouds)

library (Hess et al., 1998; Mayer and Kylling, 2005).

6.2 SMARTS

In the RTM SMARTS (Gueymard, 2005) the specific inputs

were

i. the pressure at the site, defined by the latitude, the alti-

tude of the site above mean sea level and the altitude of

the sensor above ground level;

ii. the atmospheric profile, chosen as mid-latitude summer;

iii. the total column content in water vapour;

iv. the extraterrestrial spectrum, selected as Guey-

mard (2004);

v. the aerosol model. Once it was selected as

“DESERT_MAX” and once it was user-defined

by providing

1. Ångström wavelength exponent for wavelength less

than 500 nm,

2. Ångström wavelength exponent for wavelength greater

than 500 nm,

3. the aerosol single scattering albedo and

4. the asymmetry parameter;

vi. turbidity data. Selected as τa,500 nm, extracted directly

from the AERONET products;

vii. aperture half-angle α of the instrument;

viii. the solar position.
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Figure 4. Scatter density plot of the libRadtran DNIS at 670 nm

(libRadtran BSun
n,670 nm

) vs. the reference values from the SAM in-

strument (SAM BSun
n,670 nm

).

When using the user-defined aerosol model in SMARTS, it

requires the broadband asymmetry parameter and the broad-

band aerosol single scattering albedo, but such broadband

values were not available. Therefore, to model the monochro-

matic CSNI g675 nm was used from data set DS2, and to

model the monochromatic DNIS the mean value of g675 nm

from the AERONET data was used. In both cases the mean

value of ωa,675 nm was used. Also, it is not possible to spec-

ify Pa,λ(ξ) in the SMARTS version 2.9.5, which is automat-

ically selected from tables when selecting the aerosol model.

7 Results and discussion

The results of the modelled DNIS at 670 nm of data set DS1

are presented in Table 2. Both RTMs exhibit a relative RMSE

of 6 %. The relative bias obtained by libRadtran is +2 %,

whereas that of SMARTS is −1 %. The R2 is 0.972 for li-

bRadtran and 0.964 for SMARTS. The scatter density plots

are exhibited in Figs. 4 (libRadtran) and 5 (SMARTS). The

same atmospheric profile (mid-latitude summer) was defined

in both RTMs. The difference in the bias between both mod-

els may be due to the scaling of τa,670 nm. In libRadtran

τa,670 nm was computed using Eq. (5), whereas in SMARTS

τa,670 nm is scaled from τa,500 nm using the Ångström expo-

nents provided as input. Other sources of errors in both the

SMARTS and libRadtran estimates may be due to a miscali-

bration of the AERONET Sun photometer or misalignments

in its tracking mechanism (Dubovik et al., 2000).

Although there is no observable pattern in the monthly

bias, the bias is largest during the summer month of July

2013 (+9 % from libRadtran and +5 % from SMARTS).

This bias is attributed to the turbid atmosphere present dur-

ing this month, which possibly means more soiling on the

entrance window of the SAM instrument and hence an un-
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Figure 5. Scatter density plot of the SMARTS DNIS at 670 nm

(SMARTS BSun
n,670 nm

) vs. the reference values from the SAM in-

strument (SAM BSun
n,670 nm

).

derestimation in the SAM measurements or in other words

an overestimation in the modelled values. Indeed, by observ-

ing the monthly means of the AERONET τa,675 nm of data

set DS1 the largest value is obtained during July 2013, with

a value of 0.600.

There is also a suspicious behaviour in the bias from the

month of November to December 2012, where the relative

bias changes signs from −4 % to +6 % respectively for the

libRadtran modelled values and from −8 % to +2 % respec-

tively for the SMARTS modelled values. This sudden change

in bias is mainly attributed to a broken entrance window for

the SAM instrument for some time during November 2012

(Wilbert, 2014).

For the overall data set, it may be concluded that both mod-

els provide very accurate estimates of the monochromatic

DNIS, where the uncertainty of the SAM instrument in the

solar disc region is 1 % for τa,670 nm < 0.6.

The modelling of the CSNI at 670 nm of data set DS2 in

the interval [δ= 0.52◦, α= 6◦] is very strongly dependent on

the defined aerosol optical properties. The differences in the

results by applying different inputs to the RTMs are summa-

rized in Table 3.

There are several problems concerning a fair compari-

son of the results of libRadtran and SMARTS. One is that

SMARTS does not give the flexibility to input τa,λ at a user-

defined wavelength except at 500, 550 or 1000 nm (although

compensated for by the Ångström exponents), whereas this

flexibility is available in libRadtran. Also, SMARTS, at least

the publicly available version, does not offer the flexibility

of a user-defined Pa,λ(ξ), while that option is available in

libRadtran with the Legendre moments.

It is clear from the results that the HG phase function is a

very bad representation of Pa,λ(ξ) and its use is not recom-

mended when modelling the CSNI, in a desert environment
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Table 2. Results of libRadtran and SMARTS of data set DS1 for the modelling of the monochromatic DNIS at 670 nm.

RTM Aerosol optical properties Mean Bias RMSE R2

W m−2 µm−1 W m−2 µm−1 % W m−2 µm−1 %

libRadtran τa,670 nm 862.5 +16.5 +2 49.4 6 0.972

SMARTS τa,500 nm 862.5 −6.4 −1 52.0 6 0.964

Table 3. Results of libRadtran and SMARTS of data set DS2 for the modelling of the monochromatic CSNI in the interval [δ= 0.52◦, α= 6◦]

at 670 nm.

RTM Aerosol optical properties Mean Bias RMSE R2

W m−2 µm−1 W m−2 µm−1 % W m−2 µm−1 %

libRadtran τa,670 nm; mean ωa,675 nm; 88.1 −68.1 −77 72.6 82 0.726

HG phase function: g675 nm

SMARTS τa,500 nm; mean ωa,675 nm; g675 nm 88.1 −64.6 −73 69.7 79 0.667

libRadtran τa,670 nm; OPAC desert type aerosol 88.1 −33.5 −38 38.7 44 0.711

SMARTS τa,500 nm; “DESERT_MAX” 88.1 −41.9 −48 48.8 55 0.514

aerosol model

libRadtran τa,670 nm; mean ωa,675 nm; 88.1 −21.4 −24 24.2 27 0.882

TTHG phase function

at least. Even though R2 is not too low, 0.726 for libRadtran

and 0.667 for SMARTS, a very large negative relative bias is

observed in both RTMs when the HG phase function is used.

In the case when using the aerosol models of the pre-

defined libraries available in the RTMs, the bias signifi-

cantly improves when compared to using the HG phase func-

tion but still remains negative. However, R2 becomes lower.

When selecting the desert type aerosol of the OPAC library

in libRadtran the relative RMSE is 44 %, the relative bias

is −38 % and R2 is 0.711. Selecting the ‘DESERT_MAX’

aerosol type in SMARTS the relative RMSE is 55 %, the rel-

ative bias is −41 % and R2 is 0.514. The errors are still high

though, and neither the “DESERT_MAX” aerosol model in

SMARTS nor the desert type aerosol of the OPAC library in

libRadtran provides accurate results of the monochromatic

CSNI under cloud-free conditions over the study area.

The underestimation of the circumsolar effect by

SMARTS may partly be explained by an incorrect phase

function that was hard-coded for all desert aerosol types

in v2.9.5 of the code (C. A. Gueymard, personal com-

munication, 2015). The large underestimation of the

DESERT_MAX single scattering albedo, 0.7 as opposed to

the mean value from AERONET of 0.954, also contributes to

the observed bias.

As for libRadtran, the aerosol optical properties extracted

from the OPAC library are in fact not too far off from the

AERONET means: g675 nm ≈ 0.71 and ωa,675 nm ≈ 0.91

as opposed to the mean values from AERONET of 0.699

and 0.954 respectively. The OPAC properties are not

provided at the exact wavelength of interest but were

determined by observing the values provided at 650

and 700 nm at a relative humidity of 70 and 80 % (http:

//andromeda.caf.dlr.de/data-products/spectroscopy-data/

optical-properties-aerosols-and-clouds-opac). These values

of relative humidity were selected based on the relative

humidity at the surface for the mid-latitude summer profile,

which is 75.7 % (cf. Table 3.1 in Gueymard, 1995). This im-

plies that the aerosol phase function computed by libRadtran

using the OPAC desert model is not able to depict the sharp

peaks at the smallest ξ .

When using the TTHG phase function determined from

the AERONET measurements instead of the HG function,

all statistical indicators show a very significant improvement.

The scatter density plot for this case is exhibited in Fig. 6.

The relative RMSE is 27 %, the relative bias is −24 % and

R2 is 0.882. The underestimation is nevertheless still non-

negligible. This bias may partly originate from the phase

function Pa,675 nm(ξ) used as input. The aperture half-angle

of the Sun photometer used in the AERONET stations is 0.6◦,

which is relatively large considering that the angular radius

of the solar disc is 0.266◦± 1.7 %, and that the circumsolar

region in this context is defined up to 6◦. In fact, for ξ < 6◦ the

AERONET Pa,675 nm(ξ) is only provided at three ξ : 0, 1.71

and 3.93◦. In addition, Pa,675 nm(ξ) at the first two ξ are as-

sumed to be extrapolated values, because in the AERONET

Version 2 inversion products only almucantar radiance mea-

surements for ξ ≥ 3.2◦ are considered (Holben et al., 2006).

This is a limitation of using the AERONET Pa,675 nm(ξ).

Other errors may in fact be due to the reference SAM

measurements. For example, the monthly relative bias for

November 2012 from the radiance measurements compar-

ison (cf. Fig. 1) is +23 %, where the SAM radiance mea-
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Figure 6. Scatter density plot of the libRadtran CSNI at 670 nm

modelled by defining the TTHG phase function (libRadtran

CSn,670 nm(δ= 0.52◦, α= 6◦)) vs. the reference values from the

SAM instrument (SAM CSn,670 nm(δ= 0.52◦, α= 6◦)).

surements are overestimated in average with respect to the

AERONET radiance measurements. This comparison for

November agrees with the similar comparison performed by

Wilbert (2014) and is partly explained by the broken entrance

window of the SAM instrument. This would in turn induce a

larger underestimation in the CSNI in this month.

Indeed, it is observed that the CSNI is underestimated in

November 2012 by −39 %. Other months exhibiting large

underestimations in the estimated CSNI are October and De-

cember 2012, with a relative bias of −38 and −37 % respec-

tively. The remaining months have a bias ranging from −24

to−20 % (excluding August 2012 and May 2013 which have

no observations).

The residuals of the libRadtran and SAM monochromatic

CSNI vs. the AERONET Pa,675 nm(ξ = 0◦) are exhibited in

Fig. 7 for the months of June, July and September 2012 and

January, February, March and April 2013 and Fig. 8 for the

months of October, November, December 2012. Although

the number of samples is relatively low for the AERONET

Pa,675 nm(ξ = 0◦) with the sharpest peaks, it is evident that

the underestimation is greater in the negative direction for

the AERONET Pa,675 nm(ξ = 0◦) with the sharpest peaks.

This observation supports the hypothesis that the AERONET

Pa,675 nm(ξ) might not be very accurate for the smallest ξ ,

especially for those with the sharpest peaks. It is also evi-

dent in Fig. 8 that the larger underestimation of October and

December 2012 is due to the underestimation in the libRad-

tran monochromatic CSNI for the Pa,675 nm with the sharper

peaks. However, the same cannot be said for November 2012,

because Pa,675 nm(ξ = 0◦) has relatively moderate values but

the modelled libRadtran monochromatic CSNI generally ex-

hibit a larger underestimation than other samples with similar
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Figure 7. Residuals (libRadtran CSNI at 670 nm modelled by defin-

ing the TTHG phase function minus the SAM reference CSNI

at 670 nm) vs. the AERONET aerosol phase function at ξ of 0◦

(AERONET Pa,675 nm(ξ = 0◦)) for June, July and September 2012

and January, February, March and April 2013.
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Figure 8. Residuals (libRadtran CSNI at 670 nm modelled by defin-

ing the TTHG phase function minus the SAM reference CSNI

at 670 nm) vs. the AERONET aerosol phase function at ξ of 0◦

(AERONET Pa,675 nm(ξ = 0◦)) for October, November and De-

cember 2012.

values of Pa,675 nm(ξ = 0◦). Again this is due to an overesti-

mation in the SAM radiance measurements for this month.

Another source of error may be that in the AERONET

Version 2 inversion products, including Pa,675 nm(ξ) and

ωa,675 nm, the aerosol particle shapes are assumed to be com-

posed of spheres (Dubovik and King, 2000) and spheroids

(Dubovik et al., 2002). However, in reality, dust particles

have a variety of shapes, not necessarily spheroids, and this

may affect the accuracy of the retrieved AERONET aerosol

optical properties (Dubovik et al., 2006; Kahnert and Nousi-

ainen, 2006). Nevertheless, given the uncertainty of the SAM

instrument in the aureole region to be∼ 15 %, it is concluded

that defining the moments of the TTHG phase function in

libRadtran provides an overall remarkably accurate and in-

www.atmos-meas-tech.net/8/5099/2015/ Atmos. Meas. Tech., 8, 5099–5112, 2015
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teresting estimates of the monochromatic CSNI under cloud-

free conditions over the study area.

8 Conclusions

AERONET data may very well be used to accurately model

the monochromatic beam and circumsolar irradiances un-

der cloud-free conditions in desert environment. In mod-

elling the DNIS at 670 nm both libRadtran and SMARTS

provide very similar results. The relative RMSE is 6 % for

both RTMs, while the relative bias is +2 % for libRadtran

and −1 % for SMARTS, and R2 is 0.972 and 0.964 in the

same order. For modelling the CSNI at 670 nm in the in-

terval [δ= 0.52◦, α= 6◦] five different configurations of in-

puts have been tested, two using SMARTS and three us-

ing libRadtran. Of the tested configurations, the most accu-

rate is that using libRadtran when the aerosol phase func-

tion Pa,675 nm(ξ) is defined as a three-parameter TTHG phase

function. In this case, the relative RMSE is 27 %, relative bias

is −24 % and R2 is 0.882.

The underestimation of the modelled CSNI is mainly at-

tributed to errors in the SAM reference measurements and the

AERONET aerosol phase function. It is believed that a better

representation of the aerosol phase function Pa,675 nm(ξ) for

the smallest ξ than the one provided by AERONET would

further improve the modelling results of the CSNI. Given the

uncertainty of the SAM radiance measurements in the aure-

ole region to be ∼ 15 %, it is safe to say that the methodol-

ogy presented herein provides a very accurate estimate of the

CSNI.

The results of the modelling of the CSNI are significantly

better than those obtained when representing Pa,675 nm(ξ) as

a HG phase function or when using the libraries of aerosol

optical properties available in both libRadtran and SMARTS.

It is therefore not recommended to use such parameteriza-

tions when modelling the CSNI in a desert environment.

Normally, one should be able to model the monochromatic

beam and circumsolar irradiances using the corresponding

AERONET data and the presented methodology over any en-

vironment. The validations in this study were only performed

in a desert environment. The choice of using a mean repre-

sentative value of the single scattering albedo over other en-

vironments is a point which should be addressed first.

In the work leading up to these results several other proce-

dures have been proposed. Firstly, the work exploits mea-

surements made by the SAM instrument. It is fairly new,

and no well-established procedure has been published to

check the quality of the measurements. Several elements

were developed here that may further contribute to a quality-

control procedure, whose design requires more work. Sec-

ondly, modelling the AERONET phase function Pa,λ(ξ) as a

TTHG phase function to compute the CSNI under cloud-free

conditions is proposed. This representation has the advantage

of accurately reproducing the sharp peaks of Pa,λ(ξ) for the

smallest ξ , whilst being represented by only three parame-

ters. This opens up the path for a model to be developed to

estimate the three parameters of the phase function, rather

than estimating the hundreds of Legendre moments required

to accurately represent the phase function.

The next step is to apply this approach to model the broad-

band DNIS and CSNI. This would directly contribute to the

recommendation of Blanc et al. (2014) to report the sunshape

and circumsolar ratio with the standard DNI measurements.

A further step may then be to integrate the model of Rein-

hardt (2013) and Reinhardt et al. (2014) to devise a model

which works under both cloud-free and cirrus cloudy condi-

tions.
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