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Abstract

The mechanical role of the shape of the aggregates, and their spatial distribution in concrete materials is examined.
The effect on the macroscopic mechanical response as well as on the local stress fields are investigated by numerical
means, making use of a recently developed Poisson-polyhedra model in which the aggregates have polyhedral shapes.
Comparison is made with previous microstructure models of spheres. Full-field computations are carried out on large
volume size using Fourier methods. The field maps are used to determine zones of highest stress. Furthermore, the
scale separation hypothesis for the computation of the elastic properties is investigated using numerical calculations
on various multiscale microstructures. Finally, numerical predictions for the elastic properties are compared to exper-
imental measurements, and the results discussed.
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1. Introduction

Tools for the prediction of the mechanical behavior of concrete from its microstructure become more and more
available (Chunsheng et al., 2014, He et al., 2011) and progressively give access to the design of new formulations in
order to improve its behavior (Shilstone, 1990). The presence of a very wide range of sizes for gravels with random
shapes (covering from 5 µm up to 12.5 mm) makes the description of the morphology of concrete a real challenge
for a numerical prediction of concrete’s effective properties. Such a range of sizes makes practically inaccessible a
3D investigation of concrete specimens by means of techniques like CT microtomography. Another consequence of
these multiple scales in concrete is the difficulty to produce meshes suitable for the implementation of a finite elements
code in order to predict its effective properties. For these reasons, we developed a chain of tools to produce virtual
3D samples of concrete and to predict its elastic properties. Based on iterative calculations involving the use of Fast
Fourier Transform (Willot, 2015, Escoda et al., 2011c, Escoda et al., 2011b), it predicts the elastic fields generated
under appropriate sollicitations. and gives access to the effective behavior and to detailed maps of the stress and stain
states inside the concrete specimen. This information can be used to improve the elastic properties of concrete, and
also to detect possible sites of stress and strain concentrations that could initiate damage.

The present study focuses on the “Biloba” concrete, described in Section (2). The latter also presents a microstruc-
ture model made of random Poisson polyhedra, proposed in previous works (Escoda et al., 2011a, Escoda, 2012,
Escoda et al., 2015), which is extensively used afterwards. Experimental measurements for the Biloba concrete’s
elastic response are also given. Sections (3) and (4) examine the influence of shape of the aggregates on the elas-
tic properties and to which extent the scale separation hypothesis holds. Experimental measurements and numerical
predictions are compared in Section (5). Concluding remarks are given in Section (6).
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2. “Biloba” concrete

This study focuses on the modeling of the “Biloba” concrete (Legrix, 2009). The Biloba concrete has been fab-
ricated by EDF R&D to reproduce closely a type of concrete, called “B11”, used in the reactor containment of the
power plant of Civaux, France (Granger, 1996). It is composed of sand, gravels and cement. Hereafter, we will refer
to both sand and gravels as “aggregates”. The cement is a Portland cement manufactured by the company Calcia in
Airvault, France, of type CEM-II/A-LL 42.5-R-CE PM-CP2-NF and specific surface 3810 cm2g−1. The aggregates
have been obtained by crushing rocks excavated from the quarry of Saint-Maurice-la-Clouère, France. The aggregates
have continuously-increasing size distribution, and are supplied in three separate classes: sand (0−4 mm), fine gravels
(4 − 12.5 mm) and gravels (10 − 20 mm). Hereafter, as sand particles with a diameter smaller than 0.1 mm have
size order of that of the cement, they are incorporated in the phase we will referred to as “cement paste". The latter
is modeled as a homogeneous phase. Accordingly, sand will refer to the sand particles larger than 0.1 mm. In the
Biloba sand has been sieved to obtain a granulometry curve close to that of the “B11” concrete. Granulometry curves
have been experimentally measured by the company Ginger CEBTP (norm NF EN 933) for the two classes of gravels
and by EDF (Legrix, 2009) for the sand. The volume fractions of each of the three classes are 25.9% (sand), 12.3%
(fine gravels) and 30.5% (gravels) and the total volume fraction of aggregates is accordingly 68.7% (Escoda, 2012). A
sample of the Biloba concrete is visible in Fig. (1). In this figure, the size of the largest aggregates is about 1.2 cm.

2.1. Microstructure models

The present study relies on a Poisson-polyhedra microstructure model developed in previous works (Escoda et al., 2011a,
Escoda et al., 2015) for the the Biloba concrete. In this model, the gravels and sand are polyhedra which lie in the com-
plementary set of a tesselation of Poisson planes. The tesselation is defined by a Poisson intensity λ, or number of
planes per unit volume. We denote by “Poisson polyhedra”, the polyhedra generated by such a tesselation, of which
one useful measurement is their granulometry. The granulometry of the Biloba concrete is well approximated by a
combination of three truncated granulometries of Poisson polyhedra (Escoda et al., 2015). Truncated granulometries
consist in the set of Poisson polyhedra with minimum and maximum diameter. The latter are used in the model to
obtain a multi-scale microstructure. The microstructure is simulated by sequentially implanting Poisson polyhedra,
starting with the largest ones, in a volume, until the required volume fractions for each of the three classes is obtained.
No overlap occurs in the packing process. The polyhedra are defined vectorially, but the resulting microstructure is
discretized on a grid of voxels, or image.

The model accordingly makes use of 4 parameters for each class of aggregates: the minimum and maximum diam-
eters for the truncated granulometry, the Poisson intensity and the volume fraction. For the packing of the aggregates,
an additional size parameter, ω, expressed in voxels, is used to control the displacement of the aggregates during
implantation (see Escoda et al., 2015). Following (Escoda et al., 2015), the value of ω is set to 2 voxels. The three
truncated granulometries in the model do not overlap and are defined by the following ranges (Escoda et al., 2015):
0.05–2.4 mm, 2.4–6.15 and 6.15–12.5 mm. They are denoted class 1, 2 and 3 respectively. We denote by λi and fi
(i = 1, 2, 3) the Poisson intensity (mm−1) and volume fraction of each class of aggregates. The total volume fraction of
the aggregates is denoted ft. We emphasize that in all models considered in this work, the cement paste does percolate
whereas the aggregates do not.

2.2. Elastic properties

The Young modulus of the Biloba concrete, determined experimentally, is Eb = 28.7 ± 1.4 GPa. The confidence
interval is given by the standard deviation obtained on three measurements (Escoda, 2012). A value of νb = 0.22 is
provided for the Poisson ratio of the Biloba concrete in (Reviron, 2009).

The elastic moduli of the aggregates and cement paste in the Biloba concrete have not been directly measured.
Nevertheless data provided in (Granger, 1996) and (Wrigers & Moftah, 2006) indicates a value of about νc ≈ νg ≈ 0.2
for the Poisson ratios of both the cement paste and aggregates. The cement paste in the “B11” concrete is similar to
that used in the Biloba concrete. Its modulus, measured in (Granger, 1996), is 18.0 GPa. Hereafter, we adopt the value
Ec = 20.0 GPa (see (Escoda, 2012)) for the cement paste. The Young modulus of the aggregates Eg is given by the
contrast of properties χ:

χ =
Eg

Ec . (1)
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Figure 1: “Biloba” concrete sample of diameter 11 cm (image obtained using an image scanner). Bottom-right: 20× magnification.

In the rest of this work, the following value is used: χ = 3 or equivalently Eg = 60 GPa. This level of contrast
is consistent with the data in (Granger, 1996) and (Wrigers & Moftah, 2006). For the “B11” concrete, for instance,
measurement of the Young modulus of the aggregates gives 61.4 GPa.

In the present work, a higher contrast of properties is explored, namely χ = 100. This is done by fixing Ec = 20.0
and letting Ec takes on values 100 times higher than Ec. The reason for this choice is given in (Sanahuja & Toulemonde, 2011).
In this work, the viscoelastic response of concrete is re-written as a set of linear elastic problems with varying contrast
of properties. The long-term response of the material, in the range of 10 − 100 years, is driven by a set of elastic
problems with much stiffer aggregates than in reality. The contrast of properties of the corresponding elastic moduli
varies from 11 to 317 (Sanahuja & Toulemonde, 2011). Thus the choice χ = 100 allows one to evaluate the effect
of microstructure on the mechanical properties of concrete. Obviously, the effect of microstructure should be much
stronger for such level of contrast, in agreement with previous observations for the long-term creep response of con-
crete (Sanahuja & Toulemonde, 2011). Full-field viscoelastic computations are needed for more quantitative studies.
The latter is however outside of the present study, and is left to future work. The bulk and shear moduli are read-
ily determined from the experimental Young modulus and Poisson ratio. They are denoted by κb,c,g and µb,c,g. The
superscript b, c and g refer to the (macroscopic) Biloba concrete, cement paste and aggregates, respectively.

In the rest of this work, the following notations are adopted: the displacement, strain and stress fields at point x
are denoted u(x), ε(x) and σ(x) respectively. They satisfy:

∂iσi j ≡ 0, εkl = (1/2)(∂kul + ∂luk), σi j(x) = Ci j,kl(x)εkl(x), (2)

where Ci j,kl(x) is the (isotropic) elastic stiffness tensor of the phase at point x. Cartesian coordinates along axis ei (i = 1,
2, 3) are used for all tensor fields. The mean stress components is denoted by the subscript m, i.e. σm = (1/3)σii.
Likewise, εm = (1/3)εkk.

The “augmented Lagrangian” numerical Fourier method in (Michel et al., 2000) is used to solve the above elastic-
ity problem subjected to a macroscopic strain loading ε0:

〈εi j〉 = ε0
i j. (3)

In the above, 〈 · 〉 refers to spatial means over the computational domain. We recall that periodic boundary conditions
are applied over the boundaries of the domain in the Fourier method (Michel et al., 2000). The Fourier computations
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Class 2 3
λi (mm−1) 0.0418 0.0695

fi 0.29 0.12
Resolution (mm/voxel) 0.24

Image size 10243 (24.63 cm3)
ft 0.40

Table 1: Parameters used to generate a polyhedra microstructure resembling the simplified sphere model of the B11 concrete used
in (Dunant et al., 2013), and essential geometrical descriptors.

are carried out using the microscopic elastic moduli κc,g and µc,g as inputs. The effective bulk and shear moduli,
predicted by the numerical computations are denoted κ̃ and µ̃. The latter are compared to the measured moduli κb and
µb. The effective stiffness tensor with elastic moduli κ̃ and µ̃ is denoted C̃. The components of C̃i j,kl are computed
by measuring appropriate means of the stress field. For instance, C̃11,11 is derived from the mean 〈σ11(x)〉 when
ε0

11 = 100% and all other components are set to zero. Hereafter, the following loadings:

ε0
i j = δi j, ε0

i j = (δi1δ j2 + δi2δ j1), (4)

are referred to as hydrostatic and, by convention, shear strain loadings, respectively.

3. Influence of the particles shape

3.1. Polyhedra and spheres microstructure models

In this section, we consider a microstructure model made of an assembly of 2024 spheres. The spheres are well
separated, i.e. they do not interpenetrate. This microstructure has been used as a benchmark for computational me-
chanics methods in (Dunant et al., 2013), where it is referred to as “B11” concrete. The spheres model is a simplified
representation of the largest aggregates (> 2 mm) in the Biloba concrete. The distribution of diameters of the spheres
follow the granulometry of the two largest aggregates classes.

To evaluate the effect of particle shape on the elastic properties, a second microstructure model is considered,
which is made of polyhedra instead of spheres. The parameters used to generate the Poisson-polyhedra model are
given in Table (1). As for the spheres, the model mimics the granulometry of the largest aggregates. The polyhedra are
implanted in a 3D volume, without interpenetration. Their size distribution is a combination of two truncated Poisson
polyhedra distributions which are specified by two Poisson intensities. As detailed in (Escoda et al., 2015), the two
truncated Poisson polyhedra distributions approximate the granulometry of the two largest aggregates classes. The
total volume fraction of the aggregates in the polyhedra model is 40.3%, close to that obtained in the spheres model,
of 40.2%. Furthermore, the number of polyhedra and spheres implanted in the two models is of the same order. For
illustration, 2D sections of the spheres and polyhedra models are represented in Fig. (2).

3.2. Elastic response

The local and effective elastic response of the spheres and polyhedra models are determined numerically. Stiff
inclusions are assumed, i.e. χ = 100. Full-field maps of the stress components σm(x) and σ12(x) are shown in Fig. (3)
in a 2D section parallel to the (e1, e2) plane. The latter correspond to, respectively, hydrostatic and shear strain loading,
so that the stress components represented are “parallel” to the applied strain field, and have non-zero mean.

The corresponding histograms Pσ12,m of the stress components in the cement paste are represented in Fig. (4). The
quantity Pσ12,m (t)dt is equal to the probability that t ≤ σ12,m(x) ≤ t + dt holds knowing that x is in the cement paste.
All distributions are asymmetric and clearly non-Gaussian. On average, the stress fields in the cement paste is also
much higher for the Poisson-polyhedra model than it is for the spheres models. This result is somehow expected as
the sphere model is closer to the Hashin spheres assemblage, with lowest elastic moduli, than the polyhedra model. In
contrast, the aggregates in the polyhedra model tend to be closer to each other than in the spheres model.

Histograms tails are represented in log-log plot in the top-right quadrant in Fig. (4). The latter decrease to 0 with
a similar rate ∼ tβ for t � 1 and β < 0 for the spheres and polyhedra model, and for the two types of loadings. This is

4



(a) (b)

Figure 2: 2D sections of the spheres (a) and Poisson polyhedra (b) models that simulate the “Biloba” concrete, with aggregates from class 2 and 3
only. Model (b) is generated according to the parameters given in Table (1).
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Figure 3: 2D sections of the stress components σm (a) and σxy (b) with hydrostatic strain loading 〈εm〉 = ε0 = 100% and 〈εxy〉 = ε0 = 100% resp.
for the polyhedra model. The color scale indicated on the right has been chosen to highlight the fields’s features in the matrix.

consistent with previous results obtained using computational methods on a segmented microtomography image of a
mortar material (Escoda et al., 2011c, Escoda et al., 2011b).

The means of the two stress components σm and σ12 in the cement paste are plotted as a function of the distance to
the aggregates and to the SKIZ in Fig. (5). The distance to the aggregate or SKIZ is computed using a pseudo-Euclidean
distance function (Soille, 1994). The SKIZ is the skeleton by influence zone of the aggregates (Lantuéjoul, 1980), and
consists of surfaces located in-between the aggregates (see e.g. (Escoda et al., 2011c)). Highest values of the stress
components are obtained closer to the aggregates-cement paste interface. Note that the oscillations for the statistics
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Figure 4: Histograms Pσ12,m of the shear and mean stress components σ12 (black) and σm (blue) in the cement paste, with applied shear and
hydrostatic strain loading 〈ε12〉 = ε0 = 100% and 〈εm〉 = ε0 = 100% resp.: spheres model (dotted lines) and Poisson-polyhedra model (solid lines).
The fields averages in the cement paste are 〈σm〉c = 2.8 (spheres), 4.2 (polyhedra) and 〈σ12〉c = 1.4 (spheres), 2.0 (polyhedra). Top-right plot:
distribution tails in log-log scales.

close to the interface are presumably an effect of the FFT discretization (Willot, 2015). In another study focusing on
granular media (Willot et al., 2013), the highest field values were found to lie along the gaps of nearly-touching stiff
inclusions. This is consistent with the results obtained in this work. However, for polyhedra aggregates, one must also
consider singularities of the stress fields at the corners of the inclusions. Highest stress fields are also found in zones
close to the SKIZ, which must pass in-between aggregates that are close to one another. Again, this result is consistent
with a previous study on mortar (Escoda et al., 2011c).

Effective elastic moduli are given in Table (2) and compared to Hashin and Shtrikman’s bounds (Hashin & Shtrikman, 1963)
for the bulk and shear moduli, denoted κ±HS . and µ±HS respectively. Note that the equality κ±HS = µ±HS is a fortuitous
consequence of the equality νg = νc = 0.2. The representative volume element (RVE) for a required relative precision
of the bulk and shear moduli of 5% are denoted by Vκ,µ

5%. The two are computed for the polyhedra microstructure from
the variance of the apparent moduli estimated over subdomains of the microstructure. The method, not described here,
is detailed in (Kanit et al., 2003). In addition, the variances 〈σ2

12,m〉c−〈σ12,m〉
2
c , extracted from the FFT maps, are given

in Table (2) as well as the effective modulus C̃11,11 which is computed in (Dunant et al., 2013).
The RVE size for a precision of 5% are noticeably lower than the computations performed here, for which the

precision is better than 1%. The polyhedra model generates higher extremal values of the stresses, which might
involve a higher sensitivity to the development of local damage in the microstructure. Both bulk and shear moduli lie
in-between the Hashin and Shtrikman bounds, but are closer to the lower bound. Despite the difference in the stress
field histograms observed in Fig. (4) for the polyhedra and spheres models, the bulk modulus is nearly insensitive to
the microstructure. The field variances in the cement paste, however, are notably different. Consistently with previous
observations regarding the tails of the histograms Pσm , the variances for the bulk and shear moduli are much higher
for the polyhedra model than the spheres model.

The shear modulus for the polyhedra model is, however, about 12% higher than for the spheres model. This is
presumably the result of the anisotropy of the aggregates. The shear modulus is accordingly more sensitive to the
elongation and shape of the aggregates. The increase for the modulus C̃11,11, involving both shear and bulk moduli, is
intermediate: it is about 8% higher for the polyhedra model compared to the spheres model.
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Figure 5: Mean of the stress components σm (a) and σ12 (b) in the cement paste as a function of the distance to aggregates for the Poisson-polyhedra
model. The material is subjected to hydrostatic strain loading ε0

m = 100% (a) and shear loading ε0
12 = 100% (b). The distance on the x-axis is

computed by propagating the pseudo-Euclidean distance function from the aggregates-cement interface or from the SKIZ of the aggregates. Straight
horizontal lines: average of the stress components σm and σ12 in the matrix.

4. Scale-separation assumption

4.1. Two-scales and three-scales microstructure models

This section is devoted to the validity of the scale-separation assumption. More precisely, two methods for es-
timating the elastic response of the Biloba concrete are considered. Again, a contrast of properties of χ = 100 is
assumed between the aggregates and the cement paste. The first one simply uses the full three-scales model for the
Biloba concrete which is proposed in (Escoda et al., 2015). It contains the three classes of aggregates 0.05–2.4 mm,
2.4–6.15 and 6.15–12.5 mm. FFT computations are carried out on the microstructure model for estimating the elastic
properties. Examples of FFT maps for the strain and stress fields are shown in Figs. (8) and (9). This method, however,
necessitates CPU and memory-intensive computations. The resolution should be fine enough to capture sand particles
and the image size large enough to contain a sufficient amount of large aggregates.

The Poisson intensities and prescribed volume fractions of classes 1, 2 and 3 of aggregates are λ1 = 0.518,
λ2 = 0.0695, λ3 = 0.0418 mm−1 and f1 = 24%, f1 = 12.3% and f3 = 30.5%, respectively. The microstructure size
is 16003 voxels or 14.43 cm3 with resolution 0.09 mm/voxel. The final volume fraction of aggregates is 64.3%. A 2D
section of the model is represented in Fig. (7).

The second method makes use of two microstructures and two FFT computations. First, a sand-cement microstruc-
ture is used. It contains sand, the smallest class of aggregates, embedded in the cement paste with contrast of prop-
erties of χ = 100. The volume fraction of aggregates is determined from the three-scales microstructures given
in (Escoda et al., 2015). This is the volume fraction of the smallest class of aggregates relative to the complementary
set of the two largest class. The latter is also the union of the cement paste and of the smallest class of aggregate. In
the second step, the three-scales microstructure is used, but the sand and cement paste are replaced by a homogeneous
phase with properties equal to the effective elastic response previously computed for the sand-cement microstructure.
This methodology becomes exact when the sand particle sizes are much lower than that of the other aggregates, i.e.
when scale separation can be assumed. This is however not the case for the Biloba concrete. The second method-
ology has an obvious advantage in terms of computational costs, since it requires much lower resolution for the two
computations than in the first method.

The sand-cement microstructure in the second method was generated with a Poisson intensity λ1 = 0.52 mm−1 and
volume fraction for the sand of f1 = 43.0%. The microstructure size is 10243 voxels or 15.43 cm3 with resolution 0.015
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Microstructure B11-polyhedra model B11-spheres model
κ̃/κc 3.16 3.17
κ+

HS /κ
c 26.2

κ−HS /κ
c 2.3

Vκ
5% 8.63 cm3 (3363 voxels) –

〈σ2
m〉c − 〈σm〉

2
c 1.30 0.43

µ̃/µc 3.52 3.14
µ+

HS /µ
c 26.2

µ−HS /µ
c 2.3

Vµ
5% 9.43 cm3 (3943 voxels) –

〈σ2
12〉c − 〈σ12〉

2
c 1.00 0.39

C̃11,11/Cc
11,11 3.34 3.11

Table 2: Effective elastic properties of the polyhedra and spheres simplified models for the B11 concrete: elastic moduli κ̃, µ̃ and C̃11,11, Hashin and
Shtrikman bounds κ±HS , µ±HS , stress field second-moments in the cement paste 〈σ2

12,m〉c and representative volume element for a required relative
precision of 5%.

mm/voxel. The second microstructure, containing aggregates of classes 2 and 3 embedded in an equivalent medium,
was generated using the Poisson intensities λ2 = 0.0695, λ3 = 0.0418 mm−1 with respective volume fractions f2 = 12.3
and f3 = 30.5%. The microstructure size is 10243 voxels or 24.63 cm3 with resolution 0.24 mm/voxel. Random 2D
sections of the sand-cement microstructure and that with the aggregates of classes 2 and 3 are represented in Fig. (6).

(a) (b)

Figure 6: 2D sections of the microstructures used in the computations assuming scale-separation: (a) sand-cement microstructure, (b) microstructure
with the two largest classes of aggregates embedded in an equivalent model (in grey) determined from (a). The microstructure in (b) is represented
at a much lower scale than that in (a).

4.2. Elastic response
For the 3-scales model, the microstructure resolution of 0.09 mm/voxel was insufficient to discretize the smallest

aggregates, with size as low as 0.05 mm. The volume fraction of sand is accordingly 24%, instead of 25.9% for the
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Figure 7: 2D section of the three-scales Poisson-polyhedra microstructure used to model the Biloba concrete.
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Method 3-scales microstructure Scales separation
κ̃/κc 9.0 10.5
κ+

HS /κ
c 30.6

κ−HS /κ
c 8.3

Vκ
5% 2.53 cm3 (2803 voxels) 6.43 cm3 (2663 voxels)

µ̃/µc 10.3 11.5
µ+

HS /µ
c 30.8

µ−HS /µ
c 8.6

Vµ
5% 2.83 cm3 (3083 voxels) 7.33 cm3 (3033 voxels)

Table 3: FFT predictions for the effective elastic moduli κ̃ and µ̃ of the Biloba concrete with contrast of properties χ = 100 between the aggregates
and cement paste. Column 2: full-fields computations on the 3-scales microstructure, column 3: computations involving two simplified microstruc-
tures and assuming scale separation. The RVE Vκ,µ

5% for an error estimate of 5% are given for the two methods as well as the Hashin and Shtrikman
bounds.

Biloba concrete. This difference represents a volume fraction of 4.5% of the cement paste. To overcome this, the
elastic moduli in the cement paste are slightly increased by an amount corresponding to the Hashin and Shtrikman
lower bounds.

Results for the effective elastic moduli of the Biloba concrete are given in Table (3), using the 3 scales microstruc-
ture or scale separation method. Hashin and Shtrikman bounds as well as RVEs for a relative precision of 5% are
given for the two methods. The elastic moduli predicted for the Biloba concrete are higher when scale separation is
assumed, by a relative amount of about 15%. This holds for both the bulk and shear moduli. Qualitatively similar
results were obtained in (Willot & Jeulin, 2011) for multiscale Boolean models of spheres. in the problem consid-
ered in (Willot & Jeulin, 2011), the spheres are very stiff and aggregate into cluster. The multiscale Boolean model
has stiffer elastic moduli when the ratio of the spheres diameter over the size of clusters increase, i.e. when scale
separation holds.

5. Elastic properties of the Biloba concrete

This section focuses on the elastic properties of the 3-scales model for the Biloba concrete. The effective elastic
moduli for the contrast of properties χ = 3 and χ = 100 are given in Tables (4) and (3), respectively. RVE sizes are
given for a relative precision ε = 5%. Recall that the precision ε is related to the variance D2

σm,12
(V) of the apparent

moduli computed on a domain of size V by (Kanit et al., 2003, Escoda et al., 2011c):

ε =
2Dσm,12 (V)
〈σm,12〉

,
D2
σm,12

(V)

D2
σm,12

∼ Aσm,12

3

(
1
V
−

1
V0

)
, V � Aσm,12

3 , (5)

where Aσm,12

3 and D2
σm,12

are the integral range and point variances associated to the stress fields σm,12, and V are
subdomains of the domain of computation V0 of 16003 voxels. The volumes V must be much smaller than V0, so
that the term 1/V0 represents a lower-order correction in the asymptotic expansion of D2

σm,12
(V). The integral range is

determined by fitting numerical data for D2
σm,12

(V), for increasing volume sizes V (see Fig. 10).
Stress field histograms for the two stress components σm,12 with applied hydrostatic and shear strain loading

ε0
m,12 = 100% are represented in Fig. (11). As shown in this figure, the tails of the histograms have much slower

decrease for the contrast χ = 100.
The contrast of properties of χ = 3 gives the elastic moduli predicted by the FFT method for the Biloba concrete.

The latter are, according to data provided in Table (4), Ẽ = 40.8 GPa and ν̃ = 0.2. This value is much stiffer than the
experimental measurement Eb = 28.7 GPa. Hereafter, various hypothesis are investigated to explain the discrepancy.

First, the local elastic moduli of the aggregates and cement paste could be overestimated. According to (Granger, 1996),
the values for the Young modulus in the aggregates and cement paste are with a good confidence in the intervals
[48; 75] and [14.2; 18] GPa, respectively (Table 5). The Poisson ratio varies in the ranges [0.15; 0.3] (aggregates) and
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κ̃/κc 2.04
κ+

HS /κ
c 2.12

Vκ
5% 2.53 cm3 (2803 voxels)

µ̃/µc 2.04
µ+

HS /µ
c 2.12

Vµ
5% 2.83 cm3 (3083 voxels)

Table 4: FFT predictions for the effective elastic moduli κ̃ and µ̃ of the 3-scales Biloba concrete with contrast of properties χ = 3, and Hashin and
Shtrikman upper-bounds, and RVE sizes for a required relative precision of 5%.
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Figure 8: Maps of the normalized stress field σm/(Ec〈εm〉) in the 3-scales model, for hydrostatic strain loading: contrast of properties χ = 3 (a-b)
and χ = 100 (c-d). Maps (a) and (c): 16002 pixels, 14.4 cm 2D-sections, (b) and (d): 4002 pixels, 3.6 cm enlargement. Color-scales are indicated
on the right of each map.
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Figure 9: Continuation of Fig. (8): FFT maps for the shear stress field σ12/(Eg〈ε12〉) in the 3-scales model, for shear strain loading: contrast of
properties χ = 3 (a-b) and χ = 100 (c-d). Maps (a) and (c): 16002 pixels 2D-sections, (b) and (d): 4002 pixels enlargement.
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Figure 10: Normalized variance D2
σm (V)/D2

σm of the apparent bulk modulus of the 3-scales model vs. volume size V for a contrast of properties
χ = 3, 100 (black curves). Blue curves: fit D2

σm (V)/D2
σm ∼ 1/V − 1/V0 for large volume sizes V � A3.

ν E (GPa)
Min Max Min Max

Aggregates 0.15 0.3 48 75
Cement paste 0.19 0.28 14.2 18

Table 5: Range of admissible values for the Poisson ratio and Young moduli in the cement paste and aggregates.

[0.19; 0.28] (cement paste). The experimental measurement for the bulk modulus of the Biloba concrete is κb = 15.9
GPa. We first assume that the elastic moduli measured for the cement paste are correct and fix these. We then look
for the values of the elastic moduli in the aggregates Eg and νg such that the lower Hashin and Shtrikman bounds
recover the experimental measurement κb = 15.9 GPa (Table 6). The results are incompatible with the experimental
measurements: the Young modulus is always larger than 42 GPa, which is significantly higher than the minimum value
of 48 GPa (Table 5) and of the experimental measurement of 61.4 GPa. The reverse study is carried out in Table (7):
the elastic moduli in the aggregates are fixed to their experimental values, and that of the cement paste are computed
so that the Hashin and Shtrikman lower bounds recover the experimental moduli for the Biloba concrete. Again, the
Young modulus Ec is always larger than 8, which is significantly lower than the minimum value of 14.2 (Table 5) and
lower than the experimental measurement of 18 GPa. Thus, overestimation of the local properties can not explain the
overestimation of the FFT predictions.

Second, we investigate if the presence of a porosity not accounted for in the cement paste explains the discrepancy
between FFT predictions and measurements. The porosity in the cement paste and Biloba concrete have been mea-
sured (Sémétée et al., 2010) and are respectively 39.7% and 18.8%. Of the latter, 12.4% lies in the cement paste and
6.4% in the aggregates, or in-between aggregates and cement paste. We take into account the additional porosity by
computing the upper Hashin and Shtrikman bound of a porous material with 6.4% of voids embedded in a matrix with
elastic properties previously computed by FFT for χ = 3. The effective elastic moduli are κ+

HS = 19.7, µ+
HS = 14.8 and
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Figure 11: Stress field histograms Pσm,12 (t) for the stress components σm,12 in the cement paste, with contrast of properties χ = 3, 100, in the
3-scales model, for applied strain loading ε0

m,12 = 100%. Top-right graph: log-log plot of the same histograms.

νg 0.15 0.2 0.28
Eg (GPa) 42 36 26.4

Table 6: Values of the elastic moduli in the aggregates νg and Eg, such that the Hashin and Shtrikman lower bound recovers experimental measure-
ments. The elastic moduli in the cement paste νc and Ec are fixed to their experimental values.

E = 35.5 GPa. This result is still much stiffer than the experimental measurement of Eb = 28.7 GPa.
Third, the effect of volume fraction of aggregates is investigated. The volume fraction of aggregates is, according to

a segmentation of the micro-tomography of the Biloba concrete detailed in (Escoda et al., 2015), 45.1%. This value is
thought to be underestimated. The Hashin and Shtrikman bounds for the effective elastic moduli of the Biloba concrete
with 45.1% of aggregates are 18.2 < κ < 21.2 and 12.1 < µ < 13.4 (GPa). These inequalities are incompatible with
experimental measurement κb = 16.0 and µb = 12.0 GPa.

6. Conclusion

Results obtained in this work are twofold. First, the shape of the aggregates have a strong influence on the local
stress field, notably their distribution in the cement paste, when the contrast of properties between aggregates and

νc 0.19 0.25 0.28
Ec (GPa) 8 7 6.4

Table 7: Values of the elastic moduli in the cement paste νc and Ec, such that the Hashin and Shtrikman lower bound recovers experimental
measurements. The elastic moduli in the aggregates νg and Eg are fixed to their experimental values.
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cement paste is high. These differences are notable for the tails of the histograms which quantify the occurrences
of highest stress. Such highest stress fields are located preferentially along the interface between cement paste and
aggregates, where local debonding occurs. To a less extent, the aggregates shapes also influence the effective shear
modulus. The effective bulk modulus is, however, quite insensitive to the particles shape.

The consequences of the scale-separation hypothesis between small and large aggregates was examined using full-
field numerical predictions. The latter leads to quite stiffer predictions than that computed in materials with continuous
granulometry for the aggregates.

Finally, FFT predictions were compared to experimental measurements in the linear elastic regime. The former are
much stiffer than the measurements. Some possible explanations including overestimation of the microscopic elastic
moduli, porosity not accounted for, wrong aggregates volume fraction, were ruled out. This leaves, among possible
explanations, the effect of imperfect weak interfaces between aggregates and cement paste, for which models have
been proposed (Hashin & Monteiro, 2002).

Acknowledgments

The authors are grateful to EDF for the financial support of this study (grant 47510).

References

References

Z. Chunsheng, K. Li, F. Ma, Numerical and statistical analysis of elastic modulus of concrete as a three-phase hetero-
geneous composite, Computers & Structures (139) (2014) 33–42. 1

C. Dunant, B. Bary, A. Giorla, C. Péniguel, J. Sanahuja, C. Toulemonde, A. Tran, F. Willot, J. Yvonnet, A critical
comparison of several numerical methods for computing effective properties of highly heterogeneous materials,
Advances in Engineering Software 58 (2013) 1–12. 4, 6

J. Escoda, D. Jeulin, F. Willot, Simulation of 3D granular media by multiscale random polyhedra, in: Proceed-
ings of the International Congress of Stereology (ICS11), Beijing, 2011a. Online pre-print: https://hal.
archives-ouvertes.fr/hal-00879260. 1, 2

J. Escoda, F. Willot, D. Jeulin, J. Sanahuja, C. Toulemonde, 3D morphological analysis of local elastic fields in a
cementitious material, in: Advances in Structural Engineering and Mechanics (ASEM11), Seoul, 2011b. Online
pre-print: https://hal.archives-ouvertes.fr/hal-00879268. 1, 5

J. Escoda, F. Willot, D. Jeulin, J. Sanahuja, C. Toulemonde, Estimation of local stresses and elastic properties of
a mortar sample by FFT computation of fields on a 3D image, Cement and Concrete Research 41 (5) (2011c)
542–556. 1, 5, 6, 10

J. Escoda, Modélisation morphologique et micromécanique 3D de matériaux cimentaires, Ph.D. thesis, École nationale
supérieure des mines de Paris (2012). 1, 2

J. Escoda, D. Jeulin, F. Willot, C. Toulemonde, 3D morphological modeling of concrete using multiscale poisson
polyhedra, Journal of Microscopy 258 (1) (2015) 31–48. 1, 2, 4, 7, 14

L. Granger, Comportement différé du béton dans les enceintes de confinement de centrales nucléaires, analyse et
modélisation d’ouvrage, Ph.D. thesis, Laboratoire Central des Ponts et Chaussées (1996). 2, 3, 10

Z. Hashin, P. Monteiro, An inverse method to determine the elastic properties of the interphase between the aggregate
and the cement paste, Cement and Concrete Research 32 (8) (2002) 1291–1300. 15

Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal
of the Mechanics and Physics of Solids 11 (2) (1963) 127–140. 6

15



H. He, P. Stroeven, M. Stroeven, L. Sluys, Influence of particle packing on elastic properties of concrete, Magazine of
Concrete Research 64 (2) (2011) 163–175. 1

T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination of the size of the representative volume element
for random composites: statistical and numerical approach, International Journal of Solids and Structures 40 (13–
14) (2003) 3647–3679. 6, 10

C. Lantuéjoul, Skeletonization in quantitative metallography, Issues of Digital Image Processing 34 (1980) 107–135.
5

A. Legrix, Projet biloba : élaboration d’éprouvettes de béton et de pâte cimentaire pour l’étude expérimentale de
l’influence de l’humidité sur la vitesse de fluage des bétons, ÉDF R&D internal report (2009). 2

J.-C. Michel, H. Moulinec, P. Suquet, A computational method based on augmented lagrangians and fast fourier
transforms for composites with high contrast, Computer Modelling in Engineering & Sciences 1 (2) (2000) 79–88.
3

N. Reviron, Étude du fluage des bétons en traction. applications aux enceintes de confinement des centrales nucléaires
à eau sous pression, Ph.D. thesis, École Normale Supérieure de Cachan (2009). 2

J. Sanahuja, C. Toulemonde, Numerical homogenization of concrete microstructures without explicit meshes, Cement
and Concrete Research 41 (2011) 1320–1329. 3

P. Sémété, B. Février, M. Hervé, A. Legrix, Projet biloba : courbe de désorption des bétons de type civaux b11 – essais
sur lames minces à 25◦ c, rapport interne EDF R&D (2010). 13

J. Shilstone, Concrete misture optimization, Concrete International 12 (6) (1990) 33–39. 1

P. Soille, Generalized geodesy via geodesic time, Pattern Recognition Letters 15 (12) (1994) 1235–1240. 5

F. Willot, Fourier-based schemes for computing the mechanical response of composites with accurate local fields,
Comptes rendus de l’Académie des Sciences: Mécanique 343 (3) (2015) 232–245. 1, 6

F. Willot, L. Gillibert, D. Jeulin, Microstructure-induced hotspots in the thermal and elastic responses of granular
media, International Journal of Solids and Structures 50 (10) (2013) 1699–1709. 6

F. Willot, D. Jeulin, Elastic and electrical behavior of some random multiscale highly-contrasted composites, Interna-
tional Journal for Multiscale Computational Enginneering: special issue on Multiscale modeling and uncertainty
quantification of heterogeneous materials 9 (3) (2011) 305–326. 10

P. Wriggers, S. Moftah, Mesoscale models for concrete : Homogenisation and damage behaviour, Finite Elements in
Analysis and Design 42 (2006) 623–636. 2, 3

16


	Introduction
	``Biloba'' concrete
	Microstructure models
	Elastic properties

	Influence of the particles shape
	Polyhedra and spheres microstructure models
	Elastic response

	Scale-separation assumption
	Two-scales and three-scales microstructure models
	Elastic response

	Elastic properties of the Biloba concrete
	Conclusion
	Acknowledgements

