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Abstract

Background: We propose an a posteriori estimator of the error of hyper-reduced
predictions for elastoviscoplastic problems. For a given fixed mesh, this error estimator
aims to forecast the validity domain in the parameter space, of hyper-reduction
approximations. This error estimator evaluates if the simulation outputs generated by
the hyper-reduced model represent a convenient approximation of the outputs that
the finite element simulation would have predicted. We do not account for the
approximation error related to the finite element approximation upon which the
hyper-reduction approximation is introduced.

Methods: We restrict our attention to generalized standard materials. Upon use of
incremental variational principles, we propose an error in constitutive relation. This error
is split into three terms including a tailored norm of the hyper-reduction approximation
error. This error norm is defined by using the convexity of an incremental potential
introduced to state the constitutive equations. The second term of the a posteriori error
is related to the stress recovery technique that generates stresses fulfilling the finite
element equilibrium equations. The last term is a coupling term between the hyper-
reduction approximation error at each time step and the errors committed before this
time step. Unfortunately, this last term prevents error certification. In this paper, we
restrict our attention to outputs extracted by a Lipschitz function of the displacements.

Results: In the proposed numerical examples, we show very good preliminary results
in predicting the validity domain of hyper-reduction approximations. The average
computational time of the predictions obtained by hyper reduction, is accelerated by a
factor of 6 compared to that of finite element simulations. This speed-up incorporates
the computational time devoted to the error estimation.

Conclusions: The numerical implementation of the proposed error estimator is
straightforward. It does not require the computation of the incremental potential. In
the numerical results, the estimated validity domain of hyper-reduced approximations
is inside the reference validity domain. This paper is a first attempt for a posteriori error
estimation of hyper-reduction approximations.

Keywords: Reduced integration domain; Hyper-reduction; POD; Incremental
variational principle
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Background
Reduced-Order models aim at reducing the computational time required to obtain solu-
tions of Partial Differential Equations (PDE) which are physically-based and parameter
dependent. They reduce the computational complexity of optimization procedures or
parametric analyses [1-3].
Reduced-Order Models are very useful to model complex mechanical phenomena,

when parametric studies are mandatory to setup convenient nonlinear constitutive
equations or boundary conditions. In such situations, many open questions about physi-
cal assumptions arise and the scientist’s intuition alone cannot guarantee that convenient
simplified numerical approximations are chosen. Here, we consider hyper-reduced (HR)
simulations, involving both a reduced-basis approximation and reduced-coordinate esti-
mation by using a mesh restricted to Reduced Integration Domain (RID) [4,5]. The
introduction of the RID is crucial for elastoviscoplastic models, because in many prac-
tical cases, no speed-up is achieved if the mesh is not restricted to the RID. In such a
framework, error estimation provides a valuable algorithmic approach to check if hyper-
reduced simulations have been performed in the validity domain of the hyper-reduced
model, and if they allow a physical understanding of the simulation outputs.
HR simulations may not be performed in faster time than predictions using meta-

modeling, response surface methods, or virtual charts [6]. But, unlike these methods,
Reduced-Order Models involve equations related to physical principles (i.e. the balance
of momentum), physical constitutive equations and data, validated by experiments. Such
an approach enables certification of outputs of interest [7], or error estimation of pre-
dictions obtained by using Reduced-Order Models [7-11]. Moreover, error estimation is
mandatory in many model reduction of parametric Partial Differential Equations, when
one needs to evaluate, in the parameter space, a trust region or a validity domain related
to Reduced-Basis accuracy [12-14]. Error estimation is alsomandatory to perform a priori
model reduction by using greedy algorithms [15,16] or the A Priori Hyper-reduction
method [4].
Unfortunately, in nonlinear mechanics of materials, parametric PDEs are rarely affine

in parameter, and it is quite difficult to reduce equations and data to an approximate
affine form as proposed in [15] by using the Empirical Interpolation Method [17,18]. The
novelty of this paper is the use of an incremental variational principle [19-21] to develop
an a posteriori estimator of errors for HR predictions in case of generalized standard
elastoviscoplastic models. As usual, the finite element (FE) solution fulfills incremental
equations in time, but no differential equations related to the continuous time variable.
The incremental variational principle enables to preserve formulations discrete in time
when comparing the HR solution to the FE solution. This approach enables to state a
relationship between a tailored norm of the hyper-reduction approximation error and
the a posteriori estimator of this error. Here, we term hyper-reduction approximation
error (HRAE) the difference between the FE solution of the PDE and its estimation by
the hyper-reduced model. The reference solution is the FE solution, not the exact solu-
tion of the PDE. In the sequel, the proposed tailored norm of the displacement is denoted
by ‖u‖u, where u is the predicted displacement over the domain �. The error estima-
tor is denoted by η. We follow the theory of constitutive relation error (CRE) proposed
by P. Ladevèze [22]. This kind of a posteriori error has been developed for a large set of
constitutive equations [9,23-26]. Although constitutive relation error (CRE) can handle



all approximation errors due to time discretization, FE approximation, and eventually a
separated representation of the displacements [27], we restrict our attention to approx-
imation errors due to the additional assumptions incorporated in the numerical model
by the hyper-reduced formulation. Here, the CRE η requires the construction of stresses
fulfilling FE equilibrium equations.
In the numerical part of this paper, we apply the error estimation to forecast the validity

domain of hyper-reduced predictions of simulation outputs. Adjoint sensitivity analyses
have been introduced for certification of outputs in [8,28]. In case of time dependent
problems, the adjoint equation or the mirror problem [25] is solved backward in time
from T to 0. Here, we circumvent such a complex numerical solution by restricting our
attention to Lipschitz functions of the displacements for simulation outputs, similarly to
[29]. The output function is denoted by s(u) ∈ RNs . The Lipschitz continuity of the output
s(u) reads:

∃ co ∈ R
+ ‖s(u) − s(v)‖2F � co ‖u − v‖2u, u ∈ Vh, v ∈ Vh, (1)

where Vh is the convenient Hilbert space related to the FE approximation of the PDE, ‖·‖F
is the Frobenius norm onR

Ns . The elastoviscoplastic problem is both discretized in space
and in time by the finite element method and the forward Euler scheme. The solution of
this FE problem at discrete time tn ∈ {to, . . . , tNt } is denoted by unFE :

unFE(x; μ) =
Nξ∑
i=1

ξ i(x) qni (μ) x ∈ �, μ ∈ D, Vh = span(ξ1, . . . , ξNξ
) (2)

where (ξ i)
Nξ

i=1 are the FE shape functions, x the space coordinate, μ is a vector of param-
eters and D is a given parameter space.The hyper-reduction approximation of this FE
solution is denoted by unHR:

unHR(x; μ) =
Nψ∑
k=1

ψk(x) γ n
k (μ) x ∈ �, μ ∈ D, ψk ∈ Vh (3)

where (ψk)
Nψ

k=1 is a given reduced-basis, (γ n
k )

Nψ

k=1 are the reduced coordinates evaluated
by using equilibrium equations set-up on the RID denoted by �Z , �Z ⊂ �, by following
the hyper-reduction method [5]. The HRAE is denoted by en, en = unFE − unHR. Because
of the time discretization, we cannot consider the approximation error en separately for
each time index n. We must account for the error at all discrete times simultaneously.
Therefore, the upper bound of interest related to the Lipschitz continuity reads:

∃ co ∈ R
+

Nt∑
n=1

‖s(unHR + en) − s(unHR)‖2F � co
Nt∑
n=1

‖en‖2u, en ∈ Vh, unHR ∈ Vh (4)

The reference validity domain of the hyper-reduced model is denoted by DV . Its
definition reads:

DV =
{

μ ∈ D |
Nt∑
n=1

∥∥s (unHR + en
) − s(unHR)

∥∥2
F � εD

}
(5)

where εD is a given tolerance. The proposed numerical error estimation aims to forecast
a reliable approximation of DV by the recourse to hyper-reduced simulations, a pos-



teriori estimations of errors and a FE simulation used to generate reduced-bases. The
approximate validity domain is denoted by D̃V :

D̃V =
{
μ ∈ D | cη η

(
(unHR)

Nt
n=1, (σ̂

n)Nt
n=1

)
� εD

}
(6)

where cη is a substitute for the Lipschitz constant co, η is a substitute for the tailored norm
of the HRAE, (unHR)

Nt
n=1 is the sequence of hyper-reduced predictions over the full time

interval and (σ̂ n)Nt
n=1 is a sequence of stresses fulfilling the FE equilibrium equation at

each discrete time tn, where σ̂ n is an affine function of the stress estimated from unHR. In
the sequel, both sequences (unHR)

Nt
n=1 and (σ̂ n)Nt

n=1 are denoted by uHR and σ̂ respectively.
Various Reduced-Basis construction methods can be incorporated into the hyper-

reduced model. For the sake of simplicity, in the following numerical examples, the
Reduced-Basis is provided by a Proper Orthogonal Decomposition [30-32] of the FE
solution related to a given parameter value μ1 ∈ D. The POD modes are orthonormal
solutions of the following mimization problem:

(ψk)
Nψ

k=1 = arg min
(ψ�

k)
Nψ

k=1∈Vh

Nt∑
n=1

∥∥unFE(·;μ1) − ψ�
k

〈
ψ�

k ,u
n
FE(·;μ1)

〉∥∥2
L2(�)

(7)

where 〈·, ·〉 is the L2 scalar product defined on � and ‖ · ‖L2(�) is the related norm. The
hyper-reduced model is set-up in order to provide an accurate approximate solution for
μ = μ1:

cη η
(
uHR

(·;μ1) , σ̂ (·;μ1)) � εHR, εHR � εD (8)

where εHR is a given tolerance. Hence μ1 ∈ D̃V . Moreover cη fulfills the following
constraint:

Nt∑
n=1

∥∥s (unFE (·;μ1)) − s
(
unHR

(·;μ1))∥∥2
F � cη η

(
uHR

(·;μ1) , σ̂ (·;μ1)) (9)

In this paper μ1 is arbitrary chosen. Nevertheless, the knowledge of an approximate
validity domain aims to validate this choice or to adapt it. In the sequel, for clarity, we do
not mention the vector of parameters μ in the notations.

Methods
This section is organized as follows. The generalized standard constitutive equations are
presented first. They are based on an incremental variational principle proposed in [33].
Then, we introduce the hyper-reduced incremental problem to be solved. The following
section is devoted to the construction of the FE-equilibrated stress within the framework
of the hyper-reduced modeling. The next sections introduce the error estimator, the tai-
lored norm related to the CRE and the partition of the CRE. We finish by remarks on the
numerical implementation of the proposed approach.

Incremental potential for the constitutive equations

The constitutive laws are described by using an incremental potential in the framework
of the irreversible thermodynamic processes. A priori error estimators and incremen-
tal variational formulations were introduced in [33] for mechanical problems of bodies



undergoing large dynamic deformations. Extensions of this approach were proposed in
[20,21] for effective response predictions of heterogeneous materials. The strain history
is taken into account by using internal variables denoted by α. These variables are the
lump sum of the history of material changes. This approach has its roots in the works
by Biot [34], Ziegler [35], Germain [36] or Halpen and Nguyen [37] and has proven its
ability to cover a broad spectrum of models in viscoelasticity, viscoplasticity, plasticity
and also continuum damage mechanics. The FE solution is approximated by an hyper-
reduced predictions denoted by unHR, αn

HR, σ n
HR respectively for the displacements, the

internal variables and the Cauchy stress, at discrete time tn. For the sake of simplicity,
we denote by εnHR the strain tensor ε(unHR), in the framework of the infinitesimal strain
theory.
According to the framework of the incremental variational formulations, the constitu-

tive law is defined by a condensed incremental potential, denoted by w	(εnHR), such that:

σ n
HR = ∂w	

∂ε
(εnHR), n = 1, . . . ,Nt (10)

In practice, we do not implement the computation of the partial derivative of w	 with
respect to the component of the strain tensor. Nevertheless, Equation (10) is fulfilled up
to the computer precision. The internal variables are solutions of the following equation
[21]:

αn
HR = arg Infα� J(εnHR,α�), (11)

J(ε,α) = w(ε,α) + (
tn − tn−1) ϕ

(
α − αn−1

HR (x)
tn − tn−1

)
, (12)

w	(ε) = Infα� J(ε,α�), (13)

where w(ε,α) is the free energy of the material, and ϕ(α̇) is its dissipation potential [36].
The two potentials w and ϕ are convex functions of their arguments (ε,α) and α̇ respec-
tively, according to the theory of generalized standard materials [36,37]. Examples of
constitutive laws can be found in [38]. A detailed example is given in the last section of
this paper.
The convexity of w	 is proved in [21] under the assumption that w and ϕ are convex

functions. In the sequel, the explicit knowledge of the condensed incremental potential is
not required for the mathematical formulation of the error estimator.
By recourse to the Legendre transformation, the dual potential of w	, denoted by w�

	,
reads:

w�
	 (σ̃ ) = Supε�

(
ε� : σ̃ − w	

(
ε�

))
(14)

We restrict our attention to convex functions w	, hence:

w	(̃ε) = Supσ �

(̃
ε : σ � − w�

	(σ �)
)

(15)

Therefore:

w	(̃ε) + w�
	(σ̃ ) − ε̃ : σ̃ ≥ 0 ∀ ε̃, σ̃ (16)



The definition of the partial derivatives ∂w	

∂ε
and ∂w�

	

∂σ
is extended to fulfill the following

equations:

σ̃ ε = arg Supσ �

(̃
ε : σ � − w�

	(σ �)
) ⇔ ε̃ = ∂w�

	

∂σ
(σ̃ ε) (17)

ε̃σ = arg Supε�

(
ε� : σ̃ − w	(ε�)

) ⇔ σ̃ = ∂w	

∂ε
(̃εσ ) (18)

Hence, by construction, σ n
HR and εnHR fulfill the following equation:

w	(εnHR) + w�
	(σ n

HR) − εnHR : σ n
HR = 0 (19)

Hyper-reduced setting

The continuous medium is occupying a domain �. The boundary ∂� of � is denoted by
∂U� ∪ ∂F�. On ∂U�, there is the Dirichlet condition u = uc. On ∂F�, there is a given
force field Fn. The FE displacement field belongs to a function space uc+Vh. The reduced
subspace is denoted by VROM:

VROM = span(ψ1, . . . ,ψNψ
) ⊂ Vh (20)

We denote by V the matrix form of empirical modes defined on the FE basis:

ψk(x) =
Nξ∑
i=1

ξ i(x) Vik , k = 1, . . . ,Nψ (21)

By following the hyper-reduction method [39], we generate the RID �Z by using the
empirical modes (ψk)

Nψ

k=1 and the strain modes (ε(ψk))
Nψ

k=1. When the RID is known, we
determine the set of available FE residual entries when the stress estimation is restricted
to �Z . This set is denoted by Z such that:

Z = {i ∈ {1, . . . ,Nξ },
∫

�\�Z

ξ2i d� = 0} (22)

Therefore, we can define truncated test functions insuring a weak form of the balance
of momentum restricted to the domain �Z , since these test functions are set to zero over
�\�Z . These truncated test functions are denoted by (ψZ

k )
Nψ

k=1 such that:

ψZ
k (x) =

∑
i∈Z

ξ i(x) Vik , k = 1, . . . ,Nψ (23)

The statement of the hyper-reduced incremental problem is the following. Given a
parameter vector μ, find an estimation of the reduced coordinates γ n such that unHR ∈
uc + VROM fulfills the constitutive equations and the principle of virtual work:

unHR(x) = uc +
Nψ∑
k=1

ψk(x) γ n
k x ∈ � (24)∫

�Z

ε(ψZ
k ) : σ n

HRZ d� =
∫

∂F�∩∂�Z

ψZ
k . Fn d� ∀ k ∈ {1, . . . ,Nψ } (25)

αn
HR = arg Infα� J(ε(unHR),α�) ∀x ∈ �Z (26)

σ n
HRZ = ∂w	

∂ε
(ε(unHR)) ∀x ∈ �Z (27)

where : is the contracted product for second-order tensors. We must emphasize the fact
that Equation (24) gives access to the displacement in all the domain� although the equi-



librium is set only on �Z . Hence, when the hyper-reduced solution is known, the stress
σ n
HR can be estimated on the full domain � by using Equation (10).
The FE equations are obtained by substituting in equations (24) to (26), the following

items:

• the shape functions (ξ i)
Nξ

i=1 for (ψk)
Nψ

k=1,
• the test functions (ξ i)

Nξ

i=1 for (ψZ
k )

Nψ

k=1,
• the full domain � for �Z ,
• the variables ((qi)

Nξ

i=1,u
n
FE , σ

n
FE ,α

n
FE) for

(
(γk)

Nψ

k=1,u
n
HR, σ n

HR,αn
HR

)
.

However, in Equation (27), the incremental potential related to the hyper-reduced pre-
diction is not the incremental potential of the FE prediction, because αn−1

FE and αn−1
HR

may differ. So, σ n
FE fulfills the constitutive equation, but it may not be a derivative of w	.

Therefore, we introduce a correction term in stress, denoted by δσ n, such that:

σ n
FE = ∂w	

∂ε
(εnFE) + δσ n (28)

where εnFE = ε(unFE) and δσ n account for the variation of the internal variables due to the
difference between

(
εiFE

)n−1
i=1 and

(
εiHR

)n−1
i=1 at time instants before tn. The convexity of w

and φ insures that the FE solution is unique, if no rigid mode is available.

Dual reduced-subspace

In this section, we introduce the technique of construction of the stress fields σ̂ n fulfilling
the finite element equilibrium equation at each discrete time tn. These stress fields are
used in the next sections to build a CRE. The FE equilibrium equation is a linear equation
upon stresses denoted by σ n. It defines an affine space such that σ n ∈ σ n

N +Sh, where σ n
N

is a particular solution of Neumann boundary conditions (i.e. in the linear elastic case for
instance), and Sh is the following vector space:

Sh =
{
σ ∈ L2(�) |

∫
�

ε(u�) : σ d� = 0 ∀u� ∈ Vh

}
(29)

The following linear elastic problem gives us σ n
N :

unN ∈ Vh (30)∫
�

ε(u�) : σ n
N d� =

∫
∂F�

u� . Fn d� ∀ u� ∈ Vh (31)

σ n
N = Eo ε(unN ) ∀x ∈ � (32)

where Eo ∈ R
+ is an abritary constant.

By the recourse to the stress predicted by the FE simulation for μ = μ1, we obtain the
snapshots of stress fields

(
σ n
FE(·;μ1) − σ n

N
)Nt
n=1 that span a subspace of Sh:

σ n
FE

(·;μ1) − σ n
N ∈ Sh, n = 1, . . . ,Nt (33)

Similarly to the approach proposed in [10] for elasticity, we introduce a dual reduced-
subspace denoted by SROM ⊂ Sh. SROM is generated by the usual POD applied to(
σ n
FE(·;μ1) − σ n

N
)Nt
n=1. Its dimension is denoted by Nσ

ψ , and it is such that Nσ
ψ ≤ Nt .



Hence, the hyper-reduced predictions of the stress tensor can be projected into the
space of admissible stresses fulfilling the FE equilibrium equation. This projection reads:

σ̂ n = σ n
N + arg min

σ �∈SROM
‖σ n

HR − σ n
N − σ �‖L2(�) (34)

The above minimization problem is a global L2 projection of the stress σ n
HR onto the

reduced basis that span SROM. The dual basis being a POD basis, it is orthonormal with
respect to the L2 scalar product. So the computational complexity of the stresses projec-
tion scales linearly with the number of Gauss points of the mesh and Nσ

ψ . In practice, this
computational complexity is negligible compared to the complexity of the evaluation of
σ n
HR, by using the constitutive equations.

The constitutive relation error and its partition

The reference solution being incremental in time, no continuous formulation in time is
considered for the error estimator. The error estimation proposed in [33] for incremental
variational formulation, is related to an asymptotic convergence assumption in order to
get an upper bound of the approximation error related to the FE discretization. This upper
bound depends on a constant related of the weak form of the partial differential equations.
Here, we propose to apply the Constitutive Relation Error method proposed in [22] to
estimate the constant cη without assuming an asymptotic convergence of the HRAE.
Following the method proposed in [22], a constitutive relation error, denoted by η, can

be introduced as follows:

η(uHR, σ̂ ) =
Nt∑
n=1

∫
�

w	(ε(unHR)) + w�
	(σ̂ n) − ε(unHR) : σ̂ n d� (35)

where σ̂ n is defined by Equation (34). The following properties hold:

η(̃u, σ̃ ) ≥ 0 ∀ ũ ∈ uc + Vh, ∀ σ̃ (36)

η(uHR, σ̂ ) = 0 ⇔ σ̂ n = ∂w	

∂ε
(ε(unHR)) ∀x ∈ � ∀ n ∈ {1, . . . ,Nt} (37)

η(uHR, σ̂ ) = 0 ⇒ en = 0 ∀x ∈ � ∀n ∈ {1, . . . ,Nt} (38)

The first property (36) comes from the Legendre transformation (14). The property (37)
comes from Equation (19). The proof of Property (38) is the following. If η(unHR, σ̂ n) =
0 ∀ n ∈ {1, . . . ,Nt} then (unHR, σ̂

n,αn
HR) fulfills the constitutive equations, the Dirichlet

conditions and the FE equilibrium equation. As (unHR, σ̂
n,αn

HR) fulfills all the equations of
the FE problem, it is a solution of the FE problem and en = 0.
We propose for ‖en‖u an Hilbert norm parametrized by the approximate solution unHR

and the exact solution unFE . This parametrized norm is defined by:

‖en‖2u =
∫

�

ε(en) : G(ε(unHR), ε(unFE)) : ε(en) d� (39)

where ε(·) is the symmetric part of the gradient and G a symmetric positive-definite
fourth-order tensor. If the identity tensor is substituted for G, we obtain a usual H1(�)

norm.We assume that there is no rigidmode, neither in the FE solution nor in the reduced
basis.



The following mathematical developments aim to establish a relation between
η(uHR, ∂w	

∂ε
(εFE)) and the tailored norm ‖en‖u. We choose G by the recourse to the con-

vexity of the incremental potential w	. According to the Legendre transformation, we
have:

w�
	

(
∂w	

∂ε

(
εnFE

)) = εnFE :
∂w	

∂ε

(
εnFE

) − w	

(
εnFE

)
, n = 1, . . . ,Nt , (40)

Hence, we can remove the contribution of the dual potential w∗
	 in η

(
uHR, ∂w	

∂ε
(εFE)

)
:

η

(
uHR,

∂w	

∂ε
(εFE)

)
=

Nt∑
n=1

∫
�

w	(εnHR) − w	(εnFE) − ∂w	

∂ε
(εnFE) : (ε

n
HR − εnFE) d�

(41)

Let us define the scalar function f (λ):

λ ∈[ 0, 1] , f (λ) = η

(
β(λ),

∂w	

∂ε
(εFE)

)
, (42)

w.r.t βn(λ) = unFE + λ
(
unHR − unFE

)
, n = 1, . . . ,Nt (43)

We assume that f is C2 on [ 0, 1]. The application of the Taylor Lagrange formula at
order 2 leads to:

∃ λc ∈] 0, 1[ s.t. f (1) = f (0) + f ′(0) + 1
2
f ′′(λc) (44)

The function evaluation and its derivatives read:

f (0) = 0 (45)

f (1) = η

(
uHR,

∂w	

∂ε
(εFE)

)
(46)

f ′(0) = 0 (47)

f ′′(λ) =
Nt∑
n=1

∫
�

(
εnHR − εnFE

)
:
∂2w	

∂ε2
(
ε

(
βn(λ)

))
:
(
εnHR − εnFE

)
d� (48)

Therefore, by choosing:

G
(
εnHR, εnFE

) = 1
2

∂2w	

∂ε2
(
εnFE + λc

(
εnHR − εnFE

))
(49)

we obtain the following property:

Nt∑
n=1

∥∥en∥∥2u = η

(
uHR,

∂w	

∂ε
(εFE)

)
(50)

This property is an intermediate result before establishing the relationship between
‖en‖2u and the error estimator. The incremental potential being strictly convex, G is
definite positive. A schematic view of

∑Nt
n=1 ‖en‖2u is shown on Figure 1.

Similarly, a norm on stresses can be defined to measure the distance between the
admissible stress σ̂ n and σ n

FE − δσ n, by the recourse to the dual potential w�
	 such that:∥∥σ̂ n − σ n

FE + δσ n∥∥2
σ

=
∫

�

(
σ̂ n − σ n

FE + δσ n) : H (
σ̂ n, σ n

FE − δσ n) : (σ̂ n − σ n
FE + δσ n) d�

(51)



HR

HRFE

W  (  ) d
n=1

Nt

FE
W  (  ) d

n=1

Nt

ue n 2

n=1

Nt
n

n

Figure 1 Tailored norm. Schematic view of the physically-based norm of the approximation error, related to
the convexity of the incremental potential. The ordinates of points on the dashed line are given by
z (ε�) = ∑Nt

n=1

∫
�
w	

(
εnFE

) + ∂w	

∂ε

(
εnFE

)
:
(
ε�n − εnFE

)
d�.

where H is a positive symmetric fourth order tensor. To establish the relation betweenH
and the Hessian matrix of the potential w�

	, we consider η(uFE , σ̂ ). Intermediate stresses
(Sn(λ))

Nt
n=1 are introduced such that:

Sn(λ) = σ n
FE − δσ n + λ (σ̂ n − σ n

FE + δσ n), n = 1, . . . ,Nt (52)

By the recourse to the Taylor Lagrange formula, we obtain the following property:

λc ∈] 0, 1[ , s.t
Nt∑
n=1

‖σ̂ n − σ n
FE + δσ n‖2σ = η(uFE , σ̂ ) (53)

w.r.t H
(
σ̂ n, σ n

FE − δσ n) = 1
2

∂2w�
	

∂σ 2 (Sn(λc))

Property. The proposed constitutive relation error fulfills the following partition:

η(uHR, σ̂ ) =
Nt∑
n=1

‖en‖2u +
Nt∑
n=1

‖σ̂ n − σ n
FE + δσ n‖2σ +

Nt∑
n=1

∫
�

ε(en) : δσ n d� (54)

The last term of the sum is a coupling term between the error en and the HRAE commit-
ted before the discrete time tn. Since we can’t certify that this term is positive, η is not an
upper bound of the HRAE.

Thanks to the definition of δσ by Equation (28), we have the following properties:

η(uFE , σ FE − δσ ) = 0 (55)

η(uHR, σ FE − δσ ) =
Nt∑
n=1

‖en‖2u (56)

We start proving the partition property by considering the following sum of terms:

A = η(uHR, σ̂ ) − η(uHR, σ FE − δσ ) − η(uFE , σ̂ ) + η(uFE , σ FE − δσ )

In A, the contributions of w	 and w�
	 are canceled when considering the definition of

η, and we obtain:

A =
Nt∑
n=1

∫
�

−εnHR : σ̂ n + εnHR :
(
σ n
FE − δσ n) + εnFE : σ̂ n − εnFE :

(
σ n
FE − δσ n) d�



Then:

A =
Nt∑
n=1

∫
�

−εnHR :
(
σ̂ n − σ n

FE + δσ n) + εnFE :
(
σ̂ n − σ n

FE + δσ n) d�

=
Nt∑
n=1

∫
�

(
εnFE − εnHR

)
:
(
σ̂ n − σ n

FE
)
d� +

Nt∑
n=1

∫
�

(
εnFE − εnHR

)
: δσ d�,

where εnFE − εnHR = ε(en). Therefore, according to properties (53), (55) and (56), the
following partition is fulfilled:

η (uHR, σ̂ ) =
Nt∑
n=1

‖en‖2u +
Nt∑
n=1

‖σ̂ n − σ n
FE + δσ n‖2σ

+
Nt∑
n=1

∫
�

ε(en) : δσ n d�

+
Nt∑
n=1

∫
�

ε(en) :
(
σ̂ n − σ n

FE
)
d�

Since en ∈ Vh and σ n
FE − σ̂ n ∈ Sh, then:∫

�

ε(en) :
(
σ̂ n − σ n

FE
)
d� = 0 ∀n

This ends the proof.

Property. If en = 0, for n ∈ {1, . . . ,Nt} then unHR = unFE , α
n
HR = αn

FE , δσ
n = 0 and:

η(uFE , σ̂ FE) =
Nt∑
n=1

‖σ̂ n
FE − σ n

FE‖2σ (57)

σ̂ n
FE = σ n

N + arg min
σ �∈SROM

‖σ n
FE − σ n

N − σ �‖L2(�) (58)

In the general case, the closer σ̂ n to σ n
FE − δσ n the better the error estimation. The

proposed error estimator incorporates errors related to the projection of the stress onto
the dual reduced basis.

Numerical implementation of the CRE

The numerical implementation of the incremental potential and its dual is not required
for the error estimation. Let’s consider the following function of a scalar coordinate λ:

λ ∈[ 0, 1] , g(λ) = w	

(
εnHR

) + w�
	(τ (λ)) − εnHR : τ (λ), (59)

τ (λ) = σ n
HR + λ

(
σ̂ n − σ n

HR
)

(60)

Then:

g(0) = 0 (61)

η(uHR, σ̂ ) =
Nt∑
n=1

∫
�

g(1) d� (62)

d g
d λ

(λ) =
(

∂w�
	

∂σ
(τ (λ)) − εnHR

)
:
(
σ̂ n − σ n

HR
)

(63)



Therefore, the following property holds:

η(uHR, σ̂ ) =
Nt∑
n=1

∫
�

∫ 1

0
(̂εn(λ) − εnHR) :

(
σ̂ n − σ n

HR
)
dλ d� (64)

w.r.t. ε̂n(λ) = ∂w�
	

∂σ
(τ (λ)), τ (λ) = σ n

HR + λ
(
σ̂ n − σ n

HR
)

(65)

Here, ε̂n(λ) is the strain tensor given by the constitutive equation upon the stress τ (λ)

at time tn and the internal variables αn−1
HR at time tn−1. Hence, the numerical estimation

of ε̂n(λ) can be performed by the usual implementation of the constitutive equations of
generalized standard materials [40-42].
In the following numerical simulations, we have estimated the integral on λ by the value

of first derivative of g for λ = 1.

Numerical estimation of the constant cη
In practice, we have more modes than necessary to achieve accurate predictions for μ =
μ1, because the POD of (unFE(·, μ1))Nt

n=1 is accurate up to the numerical precision. The
total number of available modes is denoted by Nψ such that Nψ ≤ min(Nξ ,Nt) and
Nψ ≤ Nψ . This gives access to several hyper-reducedmodels by restricting the number of
modes involved in the reduced basis related to the displacements. The constant cη is set-
up by using these approximate hyper-reduced solutions and the known stresses predicted
by the FE model:

cη = max
Nψ∈{1,...,Nψ}

∑Nt
n=1

∥∥s (unFE (·;μ1) − s
(
unHR

(·;μ1))∥∥2
F

min
{
η

(
uHR

(·;μ1) , σ FE
(·;μ1)) , η

(
uHR

(·;μ1) , σ̂
(·;μ1))} (66)

Hence the constraint (9) is fulfilled. Let us denote by Nc
ψ the number of displacement

modes for which the maximum in Equation (66) is reached. In our opinion, if we expect
that the error estimator behaves like an upper bound, we should not take Nc

ψ modes to
generate the final HR model. In the following example, we are setting Nψ = Nc

ψ + 1.

Results and discussion
We apply the estimation of the validity domain to a beam composed with a layer of tin
alloy (SnX) on a layer of copper (Cu). This is a cantilever beam shown in Figure 2. The
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Cu
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Fu  = 03

x

y

z
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Zoom

Cu

SnX

n

Figure 2 Meshes. On the top, we show the boundary condition and the mesh of the FE model. On the
bottom, we show the RID involving 31 elements of the original mesh.



thickness of the tin is 0.155 mm, the thickness of the copper in 0.111 mm, the width and
the length of the beam are respectively 2. mm and 12. mm. These are the dimensions
of an experimental specimen used at the Centre des Matériaux. The simulation output
is the difference between an experimental transverse displacement at point A, shown in
Figure 2, and its prediction by the mechanical model:

s(unHR) = y · unHR(A; μ) − unexp (67)

where y is the transverse axis and unexp is a given experimental measurement of the trans-
verse displacement of the point A. The copper is assumed to be elastic and isotropic. Its
Young modulus is 63000. MPa and its Poisson coefficient is 0.3. The tin alloy is isotropic
and elastoviscoplastic with a linear kinematic hardening. The potentials of the tin alloy
read:

α = (εp, α̃) (68)

w(ε,α) = 1
2

(
E

1 + ν
(ε − εp)2 + ν E

(1 − 2ν) (1 + ν)
Tr(ε − εp)2

)
+ 1

3
C α̃ : α̃ (69)

ϕ(α̇) =
(
2
3

ε̇p : ε̇p
) 1

2
(
Ro + h

2
3

(ε̇p : ε̇p)
1
2m

)
− h

m + 1

(
2
3

ε̇p : ε̇p
)m+1

2m

+ 1
δ((ε̇p − ˙̃α) : (ε̇p − ˙̃α))

+ 1
δ(|Tr(ε̇p)|) (70)

δ(0) = + ∞ (71)

δ(x �= 0) = 0 (72)

where E = 80000. MPa, ν = 0.3, m = 8., Ro = 0.1 MPa. These material coefficients
are reasonably good enough to fit experiments performed at the Centre des Matériaux.
The parameters of the mechanical model are the material coefficients h and C related to
viscoplasticity and kinematic hardening respectively. The range of variation forμ = (h,C)

is [ 15.MPa, 30.MPa]×[ 3000.MPa, 40000.MPa]. The pointwise load follows a sinusoidal
time variation:

Fn = −Fmax sin
(

π
n
Nt

)
y, Fmax = 0.04 N, Nt = 5 (73)

The FE simulation used to generate the reduced basis is performed on an arbitrary
sampling point μ1 = (20. MPa, 30000. MPa). The POD of the FE solution gives Nψ =
9 displacement modes with non-zero eigenvalue. It also provides Nσ

ψ = 48 admissible

stress modes. We denote by (ψσ
k )

Nσ
ψ

k=1 the statically admissible modes related to the POD
of (σ n

FE(·;μ1) − σ n
N )

Nt
n=1. Some of these modes are shown in Figure 3.

Figure 4 shows that the proposed error estimator incorporates errors related to the
projection of the stress onto the dual reduced basis. In this example, if the number of
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Figure 3 Empirical modes. Some POD modes: on the left for displacements and on the right for admissible
stresses.

modes of the dual reduced-basis is too small (i.e. smaller than 24), the error estimator does
not account for the improvement of uHR when the reduced-basis (ψk)

Nψ

k=1 has more than 3
modes. The convenient choice ofNσ

ψ is set-up by considering its influence on the smallest
value of η for large values of Nψ . Here, Nσ

ψ = 29 makes this influence negligible for all
values of Nψ . When Nσ

ψ has been fixed, we can estimate cη according to Equation (66).
Figure 5 shows the curve related to the HRAE and the error estimator cη η obtained for
the sampling point μ = μ1, when varying the number of displacement modes for the
maximization problem (66).
For the proposed example, inside the plastic zone, the stress field through the thickness

of the beam is very sensitive to modifications of the parameters h and C. Here, the valid-
ity domain of the hyper-reduction approximations is defined by εD = 0.052

∑Nt
n=1(unexp)2.

It is shown in Figure 6. The hyper-reduced model is set-up by choosing εHR = εD
25. 102 .

Then, Nψ = 7 and the related RID �Z , shown in Figure 2, involves 31 elements over a
total of 120 elements. The average number of Newton-Raphson iterations is 4 per time
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Figure 4 Convergence of the error estimator. The constitutive relation error depends on both displacement
approximation and admissible stress approximation. Here, μ = μ1.
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Figure 5 Constant fitting. The coefficient cη is fitted upon the simulation outputs obtained for μ = μ1 such
that the error estimator gives an upper bound of the output error, in the case μ = μ1.

step. The speed-up obtained with this hyper-reduced model, including the error estima-
tion, is 6. Without error estimation the speed-up is 8. Hence, the cost of error estimation
is quite reasonable and the computational-complexity reduction is preserved. Here, the
FE model is very simple. The bigger the FE model, the larger we expect the speed-up
to be.
The estimation of the validity domain is shown on the right of Figure 6. It is quite restric-

tive. This means that most of the points in D̃V are in the reference validity domain DV .

Figure 6 Error prediction on outputs. On the left, in blue, the reference validity domainDV over the
parameter spaceD, on the right the approximate one D̃V . The white star is located at the sampling point μ1.
The black dashed line is the limit of the reference validity domain defined by an error on the outputs lower
than 5%.



Here, for small values of the parameter h, the prediction of the validity domain is too con-
servative. Such a situation can appear when the average influence of a parameter on the
solution is larger than its influence on the output, because the error estimator is linked to
the HRAE in an average sense.
We have tried the proposed numerical approach in case of Nψ = Nc

ψ (here Nc
ψ = 6),

by using the same RID. The estimated validity domain and the boundary of the reference
validity domain for the related HR model are shown in Figure 7. This modification has
significant influence on the numerical results. Once again, all the points in D̃V are in the
reference validity domain.
We have performed additional numerical simulations by substituting a Dirichlet bound-

ary condition to the pointwise load. In this case, the time evolution of the load is:

unc = −Umax sin
(

π
n
Nt

)
y, Umax = 1.8 mm, Nt = 5 (74)

Figure 8 shows the estimation of the validity domain of the hyper-reduced model com-
pared to the boundary of DV , for this case of a non-zero Dirichlet boundary condition.
Both reference validity domain and its estimation are different compared to the previous
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Figure 7 Error prediction on outputs for Nψ = 6. In blue, the approximate validity domain D̃V . The white
star is located at the sampling point μ1. The black dashed line is the limit of the reference validity domain
defined by an error on the outputs lower than 5%.
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Figure 8 Error prediction on outputs in case of non-zero Dirichlet boundary condition. In blue, the
approximate validity domain D̃V . The white star is located at the sampling point μ1. The black dashed line is
the limit of the reference validity domain defined by an error on the outputs lower than 5%.

ones because the reduced bases are different. They have a better accuracy with respect to
Nψ = 7 and Nσ

ψ = 29.
We can notice that the higher h and C, the smaller the plastic strains in the beam. Since

the hyper-reduced model is accurate for low plastic strains, the validity domain covers the
high values of h and C.

Conclusions
We propose an a posteriori estimator of hyper-reduction errors that aims to evaluate
if the simulation outputs predicted by hyper-reduced models are convenient approx-
imations of the outputs that the finite element simulation would have predicted. By
choosing a tailored norm of the approximation error on displacement, we show how the
proposed error estimator is related to the HR approximation error. This error estima-
tor receives the contribution of a coupling term between the error at time step n and
the error committed before. We show that this term prevents rigorous error certifica-
tion. But in practice, numerical examples show a restrictive estimation of the validity
domain of the HR model. By restrictive, we mean that this domain is inside the ref-
erence validity domain computed by using both the FE solution and the HR solution.
The speed-up achieved by the HR model including the estimation of the constitutive



relation error is 6 on the proposed numerical elasto-viscoplastic examples. The estima-
tion of the validity domain requires the computation of a constant similar to a Lipschitz
constant. This constant is estimated without any additional simulation of FE solution,
but the FE solution at the sampling point μ = μ1. As shown in is this paper, the
numerical implementation of the proposed error estimator is very simple. It does not
require the computation of the incremental potential or of its dual. This paper is a
first attempt for a posteriori error estimation of hyper-reduction approximations. More
numerical experiments are in preparation for the assessment of the proposed numerical
approach.
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