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Abstract 

Surficial silicifications have been long considered to be indicative of warm and dry climates. Here 

we describe various forms of supergene silicification in a Miocene lacustrine sequence in the Missour 
Basin near Jbel Ghassoul (Morocco) in a landscape with accentuated relief. The silicification is almost 

exclusively limited to a 10 - 40 m wide zone from the edges of scarp and mesa landforms. This 
distribution is interpreted to record the locations where groundwaters which produced the silicification 

discharged from a higher level paleolandscape.  

The main component of the silica was imported late and significantly post-dates the deposition of 

the sediments. This implies that significant volumes of silica-bearing solutions flowed through these 
formations in response to an hydraulic gradient generated by relief. Silicification thus occurred only after 

uplift and incision of the sedimentary fill of the Missour Basin. The zones of silicification of the Jbel 
Ghassoul sequence can be linked geomorphically to remnants of high level pediments that have been 

dated in the literatures as early to middle Pleistocene and interpreted to have been formed during cold 
climates. Low temperatures in outcrops near the discharge zones during cold periods is considered to be a 

key factor in silica precipitation from groundwaters.  
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Silicification in sediments that have not been deeply buried has long been considered to be 
synsedimentary and indicative of warm and dry climates. This partly resulted from the fact that the early 

descriptions of silcretes in Australia and Africa, where siliceous pans armour the landscapes (Passarge, 
1904; Lamplugh, 1907; Woolnough, 1927; Storz, 1928; Frankel and Kent, 1938), connected them to the 

current climates in these countries. As a consequence, silcretes in ancient (especially Tertiary) 
sedimentary sequences in other places around the world were also considered to be an indicator of warm 

and dry paleoclimates.  However, we now know that the silicification in landscapes in Australia and 
Africa is ancient and has nothing to do with the current climates (Thiry et al., 2006).  

Questioning of these earlier interpretations started with the distinction between groundwater 

silcretes, which need groundwater flows to import the silica (Thiry and Milnes, 1991), and pedogenetic 
silcretes, which are formed in situ in soil and regolith environments and are more closely related to warm 

and dry climates (Thiry, 1997; 1999).  In the Paris Basin some silcretes are clearly related to Pliocene-
Quaternary landscapes (Thiry et al., 1988) and thus to temperate or cold climates.  

Many studies have been devoted to supergene silicifications in sandstones and carbonate rocks, 
and to siliceous materials including flints and jasperoid materials.   However, it has not been usual to 

examine the association of various types of silicification in sedimentary sequences containing different 
lithologies.  Here we describe various forms of supergene silicification with varied mineralogical and 

micromorphological features in a relatively young continental lacustrine sequence in a landscape with 
accentuated relief. These factors constrain an interpretation of the morphology, origin, environment of 

formation and age of these interesting features.  

Geomorphological and paleoclimatic setting 
The Missour Basin is an intra-mountain depression delineated by Atlasic faults (Fig. 1; 

Beauchamp et al., 1996; Laville et al., 2007) and the uppermost part of the fill consists of middle 

Miocene (Benammi & Jaeger, 1995) and younger Cenozoic and Quaternary continental-lacustrine 
sediments.   It was primarily a molasse basin fringing the Atlas Mountain belts and subsided during the 

Oligo-Miocene. After the Neogene, a generalized compressional tectonic event generated further relief in 
the Atlas system and deformed the Oligo-Miocene molasse deposits (Beauchamp et al., 1996; Frizon de 

Lamotte et al., 2009).  A compressional tectonics regime has continued through the Quaternary to the 
present day, as indicated by significant current seismicity (Medina and Cherkaoui, 1991; Sébrier et al., 

2006). Detailed analyses of stream morphology provide evidence for the post-Miocene initiation of relief 
(Babault et al., 2008) and for Late Quaternary tectonism (Choubert, 1946; Raynal, 1961; Martin, 1981; 

Lefèvre, 1989; Beauchamp et al., 1996; Gomez et al., 1996).  

The Missour Basin sediments are now exposed in vast dissected pediments that converge to the 

Moulouya River (Raynal, 1961; Lefèvre, 1989, 2008) (Fig. 2), the extensive tributaries of which define 

the current drainage basin. In the west, Jbel Ghassoul peaks at 1439 m whereas the bed of the Moulouya 
River to the southeast is at about 1000 m elevation. In the Missour area the higher level (older) P4-P5 

pediments are considered to be early to middle Pleistocene in age (Moulouyen = Pretiglian and Elsterian) 
based on their association with the Acheulean stone tool industry (Lefèvre, 1989).  
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Figure 1 – Missour Basin setting. (A) Geologic sket ch of the Missour Basin showing the distribution of  

Miocene and younger sediments. The Moulouya River a nd its tributaries define the modern drainage 
basin which is "confined" to the north. (B) Aerial view of the mining site showing the N scarp and SE-
sloping and dissected upper surface of the Jbel Gha ssoul landform abutting the Moulouya River 
pediments. Numbers show main sampling sites (see Fi g. 3). 

 

 

Figure 2 – Cross section of the Missour Basin (Moul ouya River valley) showing dissected paleopediments  
‘anchored’ to Jbel Ghassoul. P1-P2 late Pleistocene , P4 middle Pleistocene, P5 middle-early 
Pleistocene (after Lefèvre, 1989).  

The Atlas Mountains were periglacial during Pleistocene cold stages (Dresch and Raynal, 1953; 

Awad, 1963; Martin, 1981; Couvreur, 1966; Hughes et al., 2004). Glaciers reached as low as 2000 m in 
the High Atlas and 2100-2300 m in the Middle Atlas (Awad, 1963; Hughes et al. 2011). Rock glaciers, 

commonly found in areas of discontinuous permafrost, have also been recognised down to 2100 m 
elevation in the Middle Atlas (Awad, 1963). As well as cryonival and ice-wedge structures that are 

typical of periglacial environments, stratified debris, bedded scree, stone polygons and solifluction 
features have been described in the Moulouya River basin and bordering areas down to 1300 m elevation 

(Raynal et al., 1986).  

The regional snowline in the Middle Atlas during the main glacial phases of the Pleistocene is 

estimated to have been at ca 2800 m elevation (Awad, 1963). During the late Pleistocene the mean 

minimum temperature of the coldest month was 0°C at ca. 900 m whereas today it is at ca. 1600 m 
(Messerli and Winiger, 1992).  The presence of rock glaciers in the Middle Atlas also suggests that 

temperatures in the Pleistocene cold stages, when they were active, were about 10°C lower than today 
(Hughes et al. 2004).  More broadly, in the Mediterranean area, a temperature depression of at least 11°C 

in summer for the coldest Pleistocene cold stage (MIS 12, 420-480,000 years ago) has been suggested 
(Hughes et al., 2007). 

Thus, the extensive Pleistocene pediments in the Missour Basin are interpreted to have formed 
under cold and dry climatic conditions with intense congelifraction (frost shattering and ice heaving) 
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whereas erosion marked by linear gullies and alluvial terraces occurred during warmer and wetter 
climates (Lefèvre et al., 1985; Lefèvre, 1989). 

The Jbel Ghassoul formation 
The Jbel Ghassoul formation is composed of four main sedimentary units that were deposited in 

the distal parts of the original molasse basin (Raynal, 1961; Trauth, 1977; Duringer et al., 1995) (Figs 2, 
3).  

(1)  A thick, red, fluviatile, silty marl at the base, unconformably overlying Mesozoic bedrock. 

(2) A white gypsum-rich unit overlying the red marl and formed mainly of powdery gypsum 

interspersed with a few clay layers.  This unit contains horizons with swallowtail- and fishtail-

twinned gypsum crystals that indicate evaporitic lagoonal paleoenvironments. 

(3) A claystone unit composed of alternating marl and dolostone layers in which the Ghassoul clay 

layers are more or less continuous and about 10 to 70 cm thick. The principal component of the 
Ghassoul clay is Mg-rich smectite (Li-stevensite) which formed in pre-evaporitic, confined 

palustrine environments (Trauth, 1977) and is mined in underground galleries accessed from 
erosional scarps. 

(4) A dominantly dolomitic uppermost unit with thick, massive dolostone beds that were deposited in 

lacustrine and palustrine paleoenvironments. 

 

 
Figure 3 – Schematic section through dissected pale opediment composed of Jbel Ghassoul formation 

showing location of sampling sites. (1) "gogotte"-l ike silicification within disrupted zone of claysto ne 
unit, (2) layered silicifications confined to clays tone unit, (3) nodular silicification in overlying 
dolostone unit. 

These sedimentary units show numerous facies changes from the distal parts of the basin towards the 
foothills of the Middle Atlas Mountains where conglomeratic (colluvial and alluvial) facies prevail (Fig. 

2; Duringer et al., 1995; Chahi et al., 1999).  

Secondary gypsum occurs in the gypsum unit, as well as in the claystone unit, as fibrous veins, 

rosettes, and powdery gypsum in vertical fractures and along bedding planes (Duringer et al., 1995).  This 

gypsum may be of recent origin and related to the incision of the Jbel Ghassoul formation.  However, it 
could also be of synsedimentary origin due to remobilisation of gypsum during periods of water table 

lowering, or may have been derived from gypsum lunettes formed around evaporitic depressions.  

Silicification is particularly abundant in the claystone unit where it occurs in a variety of structures 

and morphologies including lenses and irregular metre-sized bodies, as well as nodules and millimetre- to 
centimetre-wide veins. In places, silicification has been particularly intense and the volume of silica can 

exceed that of the claystone host. Silicification has also developed above and below the claystone unit, in 
the upper part of the gypsum unit and in the uppermost dolostone unit where it occurs as nodules and 

fracture fillings.   
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The distribution of silicification in the landscape is shown in Figure 4.  It is confined to the edges 

of outcrops in scarps and valleys cut into the sedimentary sequence, but does not extend for more than 10 

to 20 m into the landforms, as demonstrated by observations in mine galleries. The silicified horizons 
occur 30-40 m above current base level defined by the local modern drainage gully network and clearly 

correlate with the paleopediments of early to middle Pleistocene age (Lefèvre , 1989; Fig. 2).  

 

Figure 4 – Disposition of silicified zones with reg ard to current relief and morphology of the Jbel Gh assoul 
formation.  

Of particular note also is that the sedimentary layering, particularly in the claystone unit, is 

completely disrupted for some 10 to 20 m inwards from the margins of scarps. The disintegration is 
marked by sub-vertical dislocations more or less parallel to the edges of mesas, collapse structures and 

brecciation. These zones of disruption are specific to outcrops of the claystone unit and do not occur in 
the underlying and thus more recently incised red marl. 

These dislocation structures may relate to the general processes of breakup of the pediments and 
scarp retreat. They could, for example, be caused by collapse due to lateral wasting of the slopes and even 

near-surface dissolution of the underlying gypsum unit. On the other hand, many aspects of these 
dislocations are comparable to cryogenic structures, such as frost shattering and ice wedging, further 

deformed by differential frost heaving. Thus, they are considered to be related to periglacial structures 
which have been observed regionally (Raynal, 1961) and thus connect to the Pleistocene cold climates 

considered to be responsible for the development of the piedmont landscape (Lefèvre et al., 1985; 
Lefèvre, 1989, 2008). Periglacial structures have been observed as low as 1300 m elevation approaching 

the height of Jbel Ghassoul (Couvreur, 1966, 1988; Raynal et al., 1986). 

The extent of silicification in the upper parts of the Jbel Ghassoul formation is indicated by the 

fact that the pediments downslope, especially in the mined areas, are completely covered by prehistoric 

artefacts and chips of siliceous material. Evidence of an established prehistoric industry for the production 
of stone tools is also widespread over the palaeopediments between Jbel Ghassoul and the Moulouya 

River. 

Description of the silicified facies 
Three sites representative of the silicified facies have been sampled (Fig. 3).  

1) ‘Gogotte’-like silicified masses, centimetres to many decimetres in size, are rounded, generally 

light-coloured with a rough aspect, and contain lustrous and dark coloured zones and nodules in 
places.  They are confined to the disrupted and fragmented zones of the claystone unit and are 

well exposed at the entrance to the mine galleries. 
2) Layered silicifications with shiny fracture surfaces and a brittle cortex are closely related to the 

Ghassoul clay layers.  They were sampled in the mine area in erosional channels behind 
outcrops of the gypsum unit and display sedimentary-like layering. 
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3) Nodular silicified zones, light or dark in colour and centimetres to decimetres in size, with a 
flinty fracture, are arranged in layers or aligned along fractures in dolostone beds.   They were 

sampled in the uppermost part of the claystone unit and in the base of the overlying lacustrine 
dolostone unit. 

‘Gogotte’ silicifications 
‘Gogotte’-like silicified masses occur near the base of the claystone unit in zones where the 

primary stratigraphy has been significantly disturbed and disrupted by abundant gypsum along sub-
vertical fractures more or less parallel to the margins of the scarp or mesa landforms (Fig. 5). They are 
well exposed at the entrance to mine galleries but persist only for some tens of metres into the body of the 

landform.  

 

Figure 5 – ‘Gogotte’-like silicified masses within the 
disrupted and disturbed zone in outcrops of 
claystone at the edges of mesa landforms.  

 

 

Figure 6 – ‘Gogotte’-like silicified zones 
within disrupted and disturbed zones 
of the claystone unit. (A) Centimetric 
‘gogottes’ within gypsum bearing 
marls. (B) ‘Gogotte’ showing 
successive silicified layers (indicative 
of accretionary growth). (C) Section of 
a ‘gogotte’ showing spindle-shaped 
voids resulting from dissolution of 
gypsum crystals. 
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Although sedimentary structures can be wholly disrupted in these outcrops, the gogottes are 

nevertheless aligned along superimposed horizontal planes cross cutting the disruption features (Fig. 6A). 

The gogottes always have a regular rounded shape and often have superposed folds or envelopes, each 
covering an earlier one (Fig. 6B).  These envelopes indicate that the silicification was a process of 

accretion, by addition of centimetre-thick layers or zones. Gypsum in these outcrop and near-outcrop 
zones is mostly formed of large secondary crystals whose relationship with the silicification is 

complicated. Some gypsum crystals have been silicified: others have been incorporated into the gogotte 
structures (Fig. 6C) and thus clearly pre-date the silicification. However, gypsum is mobile in the outcrop 

zone and numerous gypsum crystals and rosettes encase the gogottes and post-date the silicification. 

Layered silicifications in the claystones 
These silicifications are closely related to the smectitic Ghassoul clay layers. They occur as 

irregular and superimposed metre-sized masses, encased by gypseous marls and greenish clays (Figs 7, 
8). The silicified masses almost always display layering inherited from the claystones (Fig. 8A) but 

consist of decimetric masses enwrapped in laminae composed of brown clays and can be arranged in 
specific layers (Fig. 8B). Some silicified horizons are formed of corrugated laminae that resemble flexible 

deformation of clay layers. Others contain vacuoles with centimetre-sized tubular or irregularly-shaped 
hollows, more or less interconnected, that clearly result from dissolution.  

 

 

Figure 7 – Layered silicified bodies in close 
relationship with Ghassoul clay layers. 
Original layering of the deposits are mostly 
preserved. 

 

The layered silicifications are generally of dark colour without visible grains, and have a lustrous 

conchoidal fracture (Fig. 8C). They contain thin laminae, traces of roots and burrows, and a 
pseudobreccia structure related to desiccation. Joints and pores are often coated with bluish chalcedony of 

pearly aspect. The silicified masses often have a brittle cortex that is more or less powdery.  

These silicifications are particularly plentiful near the outcrop at the scarp face but disappear 

within of metres of the entrances to the mining galleries.  Waste rock heaps at the gallery entrances 
contain only sparse silcrete fragments. 
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Figure 8 - Layered silicified masses in close 
relationship with Ghassoul clay layers. 
(A) Typical horizons of silicified masses. 
(B) Onion-like, brittle, silicified laminae 
around silicified zones. (C) Silicified mass 
with dark shiny core speckled with beige 
granules; the lower part is irregular and has a 
dull lustre; the upper part has a porcellanite 
lustre transitioning to brittle silica. 

Silicified nodules in the dolostones 
The lacustrine dolostones in the upper part of the Jbel Ghassoul formation contain silicified 

nodules with a splintery to conchoidal fracture and a black patina. These are plentiful at the base of the 
dolostone unit and less common towards the top. Their size varies from millimetre-sized chips to 

decimetre-sized masses. They are amoeboid in shape, from 2 - 10 cm in thickness, and appear to be 
aligned on sedimentary structures stretching out along the stratification (Fig. 9A). Thinner, millimetre-

thick slabs of silica representing silica-infilled veins and fractures sometimes form a network 
interconnecting the amoeboid masses (Fig. 9B). These silicifications are generally light coloured, beige, 

grey or bluish, and more or less translucent (Fig. 9C). Sometimes they have a dull fracture and contain 
some residual carbonate in the form of nodules or scattered micrite in the siliceous matrix. 
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Figure 9 - Nodular silicifications in the lacustrin e 
dolostone unit. (A) Flint-like nodules with a 
black patina. Note the irregular shape of the 
nodules and the interconnecting network of 
more or less continuous silicified joints. 
(B) Silica veneers along a fracture. 
(C) Silicified nodule with possible 
dehydration cracks. 

Mineralogy of the silicified materials 
All the sampled silicified materials were analysed by XRD. Although silica minerals are 

dominant, there are also traces of dolomite and sometimes gypsum.  In summary: 
1) Quartz is the main mineral in all the silicified materials. It has sharp and intense diffraction 

lines (Fig. 10A) indicating good crystallinity. All the gogottes have this type of quartz. On the 
other hand, the layered silicifications in the claystones have broadened diffraction lines 

indicating quartz with numerous lattice defects and a low degree of crystallinity (Fig. 10B).  
2) Moganite is a hydrated silica variety (Flörke et al., 1984) and often accompanies quartz with 

broadened diffraction lines in the layered silicifications.  It is especially well developed in the 

brittle silicified laminae in close association with the smectitic clay layers. 
3) Opal-CT also occurs in the shiny and brittle silicified laminae associated with the Ghassoul 

clay layers (Fig. 10C). Petrographic observations show that these materials contain botryoidal 
lussatite in pore spaces. 

4) A weak diffraction band sometimes occurs near 4.45 Å (Fig. 10C). This diffraction band 
appears in most of the silicified samples that contain opal-CT. It is most probably related to the 

(110) and (020) reflections of residual clay mineral sheets within the opal-CT. This may point 
to the destruction of octahedral layers in the original clay minerals, and transformation of the 

tetrahedral layers into tridymite or cristobalite tetrahedral layers, without total destruction of 
the basic clay structure (Rayot et al., 1992).  
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Figure 10 – X-Ray Diffraction diagrams of the 
silicified materials. (A) Well crystallized 
quartz in a gogotte sample. (B) Moganite in 
brittle silicified laminae of the layered 
silicification. (C) Opal-CT in a flint-like layer 
within the layered silicification. Note the 
diffraction band near 4.45 Å most probably 
inherited from alteration of primary clay 
minerals. This band also appears in B where 
it is relatively intense in relation to the 
moganite pattern. 

Petrography of the silicified materials 
Thin section studies differentiate the three types of silicified facies in the Jbel Ghassoul formation 

and provide details of their interrelationships.  These observations also provide the basis for establishing a 
temporal sequence of silica deposition, transformation and recrystallization.  

The gogotte structures 
The petrofabric of the gogottes is quite monotonous and they are mostly composed of very fine 

microcrystalline quartz. The only inclusions are small rhombs of dolomite 2 - 30 µm in diameter (Fig. 
11A). The microcrystalline quartz matrix has two distinct fabrics: (1) one in which there is no observable 
remnant of the primary (pre-silicified) material, either in terms of the granularity of the microquartz, or 

any impurity inclusions; (2) and the second in which there is an inherited organisation indicated by micro-
nodular structures perceptible by their darkness due to micro-inclusions and quartz grain size variations. 

Some rare structures appear to be silicified shell fragments. 
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Figure 11 – Gogotte silicifications. 
(A) Microcrystalline quartz with small 
euhedral dolomite crystals; crossed polars. 
(B & C) Microcrystalline quartz matrix and 
pore filing of botryoidal silica composed of 
palisade quartz overlain by sub-euhedral 
quartz; B analysed light, C crossed polars. 
(D) Microcrystalline matrix and petaloid 
quartz, succeeded by a fringe of chalcedony 
towards the centres of the pores (v). Crossed 
polars. 

Palisade/mosaic quartz sequences 

“Classical” crystallization sequences (Fig. 11B & 11C) occur in pores and voids in the gogottes.  

These start as coatings on the walls and are botryoidal deposits formed of fan-like, elongated palisade 
quartz that obviously result from the recrystallization of chalcedony, or even opal.  The palisade quartz, 

which is either length-fast or length-slow, and differs from one sample to another, is succeeded by sub-
euhedral mosaic quartz in the centres of the pores or voids.  

Petaloid quartz 

The occurrence of petaloid (or petal-like) quartz (Arbey, 1980) is one of the characteristics of the 

matrix of the gogotte silicifications. These are large quartz crystals 100 - 250 µm in length that have 
developed in a radial fashion likened to the spreading of a flower (Fig. 11D). The central seeding points 

are often small, elongated quartz crystals more or less oblique to the beams of the crystallaria (Fig. 11D 
and 12B). The enlargement of these small crystals was hindered by the growth of the crystals along the 

beams of the crystallaria. The terminations of the large crystals are often euhedral and display growth 
lines. Some of these crystals are length-slow and display a “cubic” habit (Fig. 12B). 

Quartz with “pseudo-cubic” habit  

Pseudo-cubic quartz crystals are large, display zones and growth facets with angles close to 90°, 

are length-slow, and have the c-axis oriented along the diagonals of the cubes (McBride & Folk, 1977; 
Arbey, 1980). These crystals are remarkable because of the crenulated growth zones that are separated by 
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thin films that appear brownish in polarized light and hollowed out in reflected light (Fig. 12). It is 
difficult to determine if these films correspond to solid or fluid inclusions, or to amorphous silica. 

Pseudo-cubic quartz habits are interpreted to be symptomatic of sulphate-rich environments (Arbey, 
1980).  

 

Figure 12 – "Gogotte” silicifications. (A) Large 
pseudo-cubic quartz crystals with common 
orientation that have grown in a pore or void 
from a palisade quartz base. Crossed polars.  
(B) Pseudo-cubic terminations of petaloid 
quartz. Crossed polars. 

 

Pseudo-cubic quartz crystals can be millimetre-sized in pores that may have resulted from 

dissolution of gypsum crystals (Fig. 12A). A question arises as to the origin of these large quartz crystal 

domains of monocrystalline appearance. They develop from the uneven edge of a pore space on which the 
first silica precipitates are palisadic quartz. From this, some crystals of specific orientation develop to the 

detriment of other orientations. Thus, the large domains that show a single orientation and are of 
monocrystalline appearance under the optical microscope are in fact polycrystalline domains, resulting 

from the juxtaposition of several crystals of the same orientation.  It is possible that the development of 
this particular orientation results from the influence of foreign ions, in this particular case sulphate, 

favouring the preferential development of particular crystal faces (Merino et al., 1994; Bosbach & 
Hochella, 1996; Takahashi et al., 2004). 

The layered silicifications 
The layered silicifications are characterized by an abundance of opal-CT and moganite. Weak 

diffraction lines near 4.45 Å, and sometimes 2.50 Å, point to silica tetrahedra in the opal-CT inherited 

from tetrahedra in pre-existing clay minerals (Rayot et al., 1992). The powdery cortices of these silicified 
horizons are distinguished by the absence of opal-CT and other paragenetic varieties of silica. This 

suggests that these forms of silica were unstable and did not survive dissolution or recrystallization.  

The layered silicifications also contain remnants of primary sedimentary structures in places, for 

example sedimentary layering and siliceous microorganism fossils. In addition, zones of microcrystalline 

quartz have developed from recrystallisation of the opal facies. 
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Preserved sedimentary structures 

The sedimentary layering preserved in these silicifications is marked by alternations of sub-
millimetric laminae of brown opal (completely isotropic under crossed polars) and lighter-coloured 

laminae that show a weak length-slow birefringence (Fig. 13A & 13B). The birefringence in the lighter 
coloured laminae is probably due to relict precursor clay minerals, as highlighted by XRD. However, it’s 

not clear if the birefringent laminae are exclusively formed of smectite or also contain some opal. In fact, 
thin sections of these materials can be cut without the need for artificial hardening because it appears that 

opal has ‘impregnated’ the clays. Other samples have laminae with lumpy brown opal and contain 
numerous micro-pores filled with concretionary opal.  

Some samples contain siliceous micro-organisms, most probably radiolarians (Fig. 13C).  Others 

have millimetre-thick laminae composed completely of siliceous tests cemented by brown opal. In most 

samples, however, the siliceous tests are scattered in a matrix of opal or microcrystalline quartz. In the 
microcrystalline quartz facies, the tests have been recrystallized to microquartz and can be recognized 

only by a very weak difference in refringence (perhaps due to remnant opal) when defocusing the 
microscope. 

 

Figure 13 – Layered silicifications. (A & B). The 
lighter laminae contain clay minerals; the 
dark laminae are formed of opal (opal-CT by 
DRX). A= analysed light, B= crossed polars. 
(C) Siliceous tests (possible radiolarians) 
embedded in opal; crossed polars.  

 

Silica-filled cracks 

As distinct from the gogotte silicifications, cracks millimetres to many centimetres in length have 
developed in the horizons of layered silicifications (Fig. 13). Nodular and pseudo-breciated facies 

composed of opal often contain hair-like and curved cracks infilled with diverse varieties of silica.  These 
structures evoke clays that have undergone shrinkage, bioturbation and/or pedogenesis (Fig. 14A). 

Frequently, the cracks are cross-cutting and successive phases of development and infilling can be 
observed (Fig. 14B). In an initial analysis, the geometry and the infillings of the cracks suggest that they 

relate to an expanding system. However, it may be that shrinkage due to dehydration of a clayey matrix 
could explain the arrangements.  
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Figure 14 – Layered silicifications. (A) Micro-
nodular silicification in which the nodules are 
formed of opal containing a scatter of very 
fine microcrystalline quartz.  The cracks are 
infilled with diverse quartz varieties. Crossed 
polars. (B) Silica-infilled fracture which shows 
several stages of fracture development and 
infilling. (C1) pseudo-chalcedonite, (C2) 
length-slow chalcedonite, (op) opal matrix, 
(µQ) microcrystalline quartz; analysed light.  

Microcrystalline quartz matrix 

In addition to opal, it is the microcrystalline quartz matrix that characterizes the layered 

silicifications. Domains of microcrystalline quartz are homogeneous and show no particular structure.  On 
the other hand, the transition between the opal and the microcrystalline quartz matrices is always irregular 

and indented, and there are often remnants of opal within the microcrystalline quartz (Fig. 15A). 
"Primary" structures such as the laminations and the cracks control the distribution of opal and 

microcrystalline quartz.  In some places there is opal in and around the cracks (Fig. 15B); in other places 
varieties of quartz occur within the cracks with microcrystalline quartz surrounding them.  

The spatial relations between opal and microcrystalline quartz, as well as the "ghosts" of siliceous 
microfossils within the microcrystalline quartz domains, indicate that microcrystalline quartz has 

developed as a result of recrystallization of opal.  

Silica deposits in pores and joints 

The earliest silica precipitates in pores and voids are generally mammillary-structured and micro-
laminated varieties of opal or fibrous silica with low birefringence (pseudo-chalcedonite).  These are 

succeeded by micro-laminated chalcedony and finally chalcedony sheaves, or even quartz, in the centres 
of voids, to complete the sequence.   In places, ribbons of opal and pseudo-chalcedonite are interrupted by 

"better crystallized" silica, especially chessboard- or zebraic-chalcedonite with closely juxtaposed length-
slow and length-fast fibres (Fig. 16A & 16B). The contact between the two silica varieties is irregular and 

cuts across the ribbons of primary silica deposits, thus indicating recrystallization of the opal/pseudo-
chalcedonite to chessboard-chalcedonite. 

The largest pores or voids, more than a millimetre in diameter, often result from the dissolution of 
gypsum. These structures contain thick concretionary silica deposits with successive crosscutting 

sequences. They are often composed of lutecite, a length-slow fibrous silica variety with characteristic 
pseudo-rhombohedral herringbone chevron-patterns (Fig. 16C).  
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Figure 15 – Layered silicifications. The dark 
domains are opal (opal-CT by XRD) and the 
light domains microcrystalline quartz; 
analysed light. (A) Recrystallization of opal to 
quartz tends to blur micronodular structures 
inherited from the former claystones. 
(B) Recrystallization of opal to microquartz 
does not affect opal deposits infilling the 
cracks. 

 

 

Figure 16 – Layered silicifications. (A & B) Silica  
deposits in a pore; (C1) ribboned pseudo-
chalcedonite, (C2) chalcedonite sheaves in 
the central part of the pore, (C3) twisted 
chalcedonite derived from recrystallization of 
pseudo-chalcedonite which cuts across the 
ribbons (arrow), (op) opal matrix; A=analysed 
light, B=crossed polars. (C) Successive silica 
deposits in a large void; (C1) pseudo-
chalcedonite at the edge of the void, (L) 
lutecite with characteristic chevron-pattern, 
(C3) chalcedonite, (op) opal and 
microcrystalline quartz matrix; crossed 
polars.  

Nodular silicifications 

The silicified zones within with the dolostones never contain opal. They are exclusively composed 
of diverse varieties of quartz: fibrous quartz including pseudo-chalcedonite, chalcedonite and quartzine, 

microcrystalline quartz, isomorphic amoeboid quartz, and petaloid quartz. Two types of silicification 
coexist: silica precipitates in voids, and epigenetic replacements of the original dolomitic matrix with 

preservation of primary sedimentary structures.  

Silicification of the original dolomitic matrix 

Epigenetic silicification of the original dolostone matrix has produced mainly microcrystalline 
quartz and small amoeboid or flame-like quartz crystals, but also small tangled silica spherulites. Many of 
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the petrographic fabrics are comparable to those described in other silicified carbonate rocks (Thiry and 
Ben Brahim, 1997; Thiry and Ribet, 1999). 

Microcrystalline and fine amoeboid quartz fabrics are the most common. The crystal size of the 
quartz seems to have been controlled by the primary carbonate fabric and its structures are preserved (Fig. 

17A & 17B). 

Chalcedonite spherulites about 50 µm in diameter also replace the primary dolomitic matrix (Fig. 

17C). Their growth is centrifugal, towards the outside, and the outer shells are less refringent.   They may 

coalesce and form interpenetrated contacts or rectilinear sutures with triple junction points. Micrite 
inclusions can remain within the spherulites.  

Isometric and petaloid quartz, about 50 µm in diameter, also develop within the micrite. 
Sometimes these forms have micrite inclusions in zones that follow the outlines of the quartz. The micrite 

zones retain spherulitic features and appear to result from the recrystallization of former chalcedonite 
spherulites. 

In places, subeuhedral quartz develops within the micrite. These crystals display successive 

growth zones formed alternatively of aureoles of limpid quartz and aureoles of quartz with micrite 
inclusions, similar to those described elsewhere in carbonate rocks (Thiry and Ribet, 1999). 

 

Figure 17 – Nodular silicifications. (A & B) Silica  
varieties differentiated according to their 
position in relation to pores; (p) pore, (µQ) 
opal and microquartz around pores, (Q) 
isometric quartz resulting from silicification 
of original carbonate matrix; A= analysed 
light, B=crossed polars. (C) Chalcedonite 
spherulites within micritic matrix; (m) 
dolomicrite. Analysed light. (D) Thick silica 
deposits and concretions in a pore. Silica 
deposits show successive overlapping 
stages.  The darkest spherulites are formed of 
pseudo-chalcedonite which is overlain by 
chessboard chalcedonite, and then quartzine 
developed during the final stage of 
silicification.  The carbonate matrix has been 
replaced by microquartz and larger quartz 
crystals clouded by micro-inclusions of 
calcite. Analysed light. 
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Silica deposits in pores 

Silica deposits in pores and cracks in the dolostones are not basically different from those found in 
the layered silicifications. However, they are distinguished by the absence of opal, although the 

chessboard- or zebraic-chalcedonite that occurs possibly results from the recrystallization of opal, as 
observed in the layered silicifications.  As a general rule, the precipitation sequences evolve from poorly 

crystallised towards better crystallized varieties of silica, generally chalcedonite or quartzine, and more 
rarely isometric quartz crystals. The deposits are sometimes very thick, reaching 200 - 400 µm (Fig. 

17D). 

The silica matrix appears mostly to be composed of microcrystalline quartz and chalcedonite. 

However, defocusing the microscope highlights small "ghosts" of juxtaposed concretionary features. 
Importantly, there is a systematic connection between silicification and zones of high porosity that may 

be partly or totally infilled with silica deposits. The textures suggest a concomitant dissolution and 
silicification process that preserves the primary carbonate sedimentary structures.  

Interpretation of micromorphological features 

The gogotte silicifications 
The arrangement of the gogotte silicifications that crosscut the disruption and collapse structures 

indicates that they formed after the disintegration of the rocks in outcrop, and thus post-date the incision 
of the Moulouya Valley and exposure of the Jbel Ghassoul formation.  

The development of tightly cemented lenses, with very low residual porosity, is achieved by 

concentric growth and develops by precipitation of successive centimetric layers of silica, which are in 
sharp contact with the host rock. There is apparently no particular structure that promoted silica 

precipitation in the centre of the gogottes. The source of silica is external and has to be imported in 
solution, indicating considerable water flows through these zones. These water flows are not conceivable 

under the current dry climate of the region and thus must relate to wetter periods in the past. The 
horizontal arrangement of the gogottes suggests that they developed in relation to a water table.   

The layered silicifications  
The layered silicifications are confined to the smectitic clay layers of the Ghassoul clay unit. Part 

of the silica is of sedimentary origin and is inherited from the siliceous microfossil tests contained within 

the clay layers. But an important part of the silica probably results from alteration of the Mg-rich clay 
minerals in the claystones.   These are relatively unstable due to the solubility of Mg in surface waters. 

Alteration of Mg-minerals by meteoric waters often leads to leaching of Mg and the in situ preservation 
of silica which forms a silcrete, such as during weathering of serpentinite (Nickel and Thornber, 1977; 

Nahon, 1979; Stanger, 1985; Skarpelis, 2006; Lacinska and Styles, 2013). This alteration corresponds to a 
relative accumulation of the silica derived from the clay minerals according to a mechanism similar to 

that described in the acidic environments in which silicification was widespread in central Australia 
(Rayot et al., 1992; Thiry et al., 2006). The tetrahedral rings of the clay mineral structures would favour 

formation of opal-CT tetrahedral rings by solid state transformation without destroying the entire clay 
mineral structure. The presence of XRD reflections near 4,45 Å, interpreted to indicate residual clay 

mineral frameworks, is an additional argument for a direct relationship between the claystones and the 
layered silicifications as a result of "decationization" of the clay minerals. 

In this sense, the numerous cracks in the layered silicifications could have resulted from shrinkage 

due to a loss of volume during the "decationization" of the clay minerals. The silicification of the clay 
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minerals would involve mass loss, particularly Mg relative to Si, and thus engender shrinkage cracks. 
This represents a relative accumulation of silica.  

Silica deposits within the pores and the cracks must on the other hand be due to silica importation 
in water and represent absolute accumulations. The precipitation sequence is always from "poorly" 

crystallized phases (high solubility) towards "better" crystallized phases (which are less soluble and thus 
more stable).  

Recrystallization of the "poorly" crystallized silica phases (opal and pseudo-chalcedonite) is 

common in the matrix in the layered silicifications and indicates a readjustment in keeping with water 
flow through the formation. The silica precipitates in pores and cracks tend towards "better" crystallized 

phases. 

Nodular silicifications  
The sequences of crystallisation in the silicified nodules in the dolostones range from crypto-

crystalline forms to well developed crystals and indicate a change of composition of incoming solutions 
during silicification. In order to silicify carbonate material, devoid of clays and quartz, all silica has to be 

imported. The silica precipitated in pores and voids thus represents the outcome of throughflow of silica-
bearing solutions. This explains the relations observed between porosity and silicification. The absence of 

geotropism in the silica deposits, which are arranged in a regular fashion around pores, points to a water-
saturated regime.  

The silica in solution was acquired from elsewhere, and the most plausible hypothesis is that the 

alteration of the Mg-rich clay minerals and siliceous microfossil tests in the claystone unit is the source of 
the silica. 

Discussion 
Although the various forms of silicification are different in appearance and arrangement, there are 

many common characters that relate to the mechanisms and conditions of development. 

Origin of the silica and water flow 

All of the silicifications are late with regard to the deposition of the sediments. Those constrained 
to the clayey horizons may possibly be ascribed to early diagenesis as a result of recrystallization of 

siliceous microfossils and alteration of smectitic clays. Those in the dolostones are obviously later again 
because silica infilled fractures could only develop after hardening of the dolostones. Finally, the 

gogottes, which occur within disintegrated rocks, are absolutely late: they post-date the disruption of the 
sedimentary layering relating to scarp retreat, and formed in zones near the current outcrop.  

The importation of silica implies that significant volumes of silica-bearing solutions have flowed 
through these formations.  This would have required an hydraulic gradient generated by a significant 

landscape relief and incisions into the landscape that constituted discharge zones. In addition, micro-
karstic dissolution of the dolostones to generate porosity into which incoming silica was precipitated can 

only occur via water flows.  

Spatial disposition of the silicified zones 

The connection with the current landscape and morphology in which the Jbel Ghassoul formation 
occurs is particularly spectacular for the gogotte silicifications. The rounded siliceous lenses are arranged 

across the superficial disruption structures and disappear quickly, within 10-20 m, beyond the entrances 
to the underground mining galleries. The layout is similar for the layered silicifications which are 

https://www.researchgate.net/publication/240674746_Interpretation_of_palaeoweathering_features_and_successive_silicifications_in_theTertiary_regolith_of_Inland_Australia?el=1_x_8&enrichId=rgreq-17d77a5e-13a0-403c-bde1-7cc6da19ba24&enrichSource=Y292ZXJQYWdlOzI3MTY0NjY1NztBUzoyMDQ4MjIwNDIxNTcwNTZAMTQyNTg0NDc4ODYzNA==
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plentiful and prominent in outcrops of the smectitic clays and yet do not occur in the mine galleries. There 
is less information about the distribution of the nodular silicifications in the dolostones. However, these 

are plentiful in the neighbourhood of the layered silicifications but become sparse and eventually 
disappear higher in the sequence. 

The silicified zones are almost exclusively limited to a 10 - 40 m wide zone from the edges of 
outcrops in scarps (Fig. 4). Furthermore, they occur down-dip of the Jbel Ghassoul formation and at the 

base of scarps. They are absent or very rare up-dip, particularly on the NW side of Jbel Ghassoul fronting 
the Middle Atlas highlands from which the Jbel is separated by erosion. This distribution of the silicified 

zones is interpreted to record the locations of outflow of groundwaters that produced the silicification. 

Age of the silicifications 

The age of the silicifications is difficult to establish. Nevertheless, our observations lead to the 
following suggestions.   

1) The supply of silica to cracks and pores requires groundwater flows that were only possible 
after uplift and incision of the Jbel Ghassoul formation in order to create an hydraulic gradient. 

This would mean a post-Miocene age as deduced from regional geodynamics (Laville et al., 
2007; Babault et al., 2008).  

2) The silicifications are above the present day local fluvial base level and relate to the P4-P5 
paleopediments (Fig. 2) of the Moulouya system (Lefèvre, 1989). The high pediment abutting 

the scarps of Jbel Ghassoul is considered to have been a zone of outflow for groundwater 
perched above the claystone unit. We envisage something like the geomorphology in Figure 

18 to provide the hydrological regime that would account for the groundwater source. 
Correlation of the silicifications with the P4-P5 pediments points to an early to middle 

Pleistocene age. 
3) Linking the silicifications to early to middle Pleistocene paleopediments that display frost-

shattering features points to cold climates prevailing in the Moroccan mountains and 
continental basins at the time (Raynal et al., 1986; Lefèvre, 1989; Hughes et al., 2011).  

 

 
 
Figure 18 – Suggested reconstruction of P4-P5 lands cape to account for the hydrological regime which 
generated the groundwater source for the silicifica tion in seepage discharge zones.  Disruption of the  
hydrological regime and loss of the groundwater sou rce would have occurred when incision and erosion 
separated Jbel Ghassoul from the Middle Atlas. 

The mineral sequences 
The variety of silica phases reflects the chemistry of the solutions from which they precipitated 

(Williams and Credar, 1985). All the silica deposits in pores and cracks show similar mineral successions, 
starting with crypto-crystalline forms and progressing towards better developed crystals and, ultimately, 

euhedral quartz. These mineral sequences represent an evolution of the parent solutions from relatively 
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concentrated and enriched in impurity ions towards more diluted solutions with less impurity ions (Thiry 
and Millot, 1987; Heaney, 1993).  But at the same time it is important to recognise that the host rock is 

also involved in reaction with the incoming groundwaters.  

At first, when pores and cracks are not yet coated by silica precipitates, the incoming solutions 

react and equilibrate with the host rock and progressively leach away cations and anions.  In this 
environment, where there is an abundance of impurity ions, "poorly" crystalline silica will precipitate. As 

silica deposits increasingly cover the walls of the pores and cracks, the host rock is isolated from the 
solutions that flow through it, the concentrations of impurity ions are reduced and more highly crystalline 

silica precipitates (Thiry, 1997; Thiry and Ben Brahim, 1997). So, the changing mineralogical sequence 
in the pores is also related to a spatial and lateral sequence that develops along the flow path of the 

groundwater silica solutions (Fig. 19).  The incoming solution is expected to have had a composition that 
was in equilibrium with the final precipitates of silica (euhedral quartz) in the pores, namely that of 

relatively dilute fresh waters. This explains why the silica deposits develop systematically towards more 
crystalline and less soluble phases, rather than fluctuate in crystallinity as would be expected if the 

composition of the incoming solutions directly controlled the nature of the precipitates. 

 

Figure 19 – Development of mineralogical sequence a long the drainage path of incoming siliceous 
groundwater solutions. Contact with the host rock ( dolostone or clay) tends to load solutions with 
impurity ions and thus initiate precipitation of po orly crystallized silica. It is only when incoming 
solutions are isolated from the host rock by initia l silica deposits that better crystallized forms ar e 
precipitated. 

Geochemistry and precipitation mechanisms 

Silicification as a result of groundwater flow involves three successive mechanisms: (1) Si goes 
into solution; (2) Si is transported, and (3) Si solubility is lowered and precipitation is initiated.  There is 

always silica available for solution in sedimentary formations, ranging from the varieties of silica present 
and/or the alteration of silicate minerals, in particular clay minerals. The groundwaters of temperate 

regions have silica contents near 15-20 mg/L in equilibrium with clay minerals common in the aquifers 
but supersaturated with regard to equilibrium with quartz (Davies, 1964; Hem, 1985).  

The precipitation of silica is governed by saturation in relation to the various silica phases. The 

kinetics of precipitation are slow to very slow compared with those of the other common supergene 
minerals (for example, gypsum and calcite) (Lasaga, 1995). The precipitation of silica in acutely localized 

zones, as in gogottes and nodules, implies a strong or sharp gradient of supersaturation imposed by 
particular local conditions. Three mechanisms can be envisaged. 

1) Silica concentration by evaporation of the solution and subsequent precipitation is the “classical” 
precipitation mechanism called on to explain superficial silicification.  This cannot apply to the 

Jbel Ghassoul situation.  Firstly, there would need to have been evaporation of considerable 
volumes of water to explain the silica mass balance, and this could not have occurred beneath 

even a limited thickness of rock/soil cover.  Secondly, groundwater flowing through the Jbel 
Ghassoul formation would have been rapidly saturated in calcite and gypsum in preference to 

silica, which has low dissolution kinetics, and evaporation of such waters would inevitably have 
led to precipitation of calcite and gypsum, which has not been observed.   
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2) Zones of precipitation would correspond to specific environments that "catalyse" the precipitation 

of silica and/or the crystalline growth of quartz. There is little information about the details of 

quartz crystallogenesis at low temperature. Speculatively, there may be an important role of some 
trace elements or specific organic compounds (Mucci et al., 1989; Bennett, 1991; Coddy, 1991). 

This could occur in the outcrop zone near the point of groundwater discharge.  The mixing of 
groundwater with surface water could initiate precipitation of silica mediated by organic or other 

compounds, but this must happen without dilution of the incoming solution. 

3) Temperature acts in a very significant way on silica solubility (Rimstidt, 1997; Williams et al., 

1985). Quartz solubility decreases with the temperature according to an exponential law (Fig. 20): 
it is more than halved by cooling the solution from 25 to 12.5 °C, and also from12.5 to 0°C. These 

temperatures are in the range that exists between the subsoil and the landsurface in cold climates. 
Thus, in cold periods, the silica in groundwater may precipitate if the water cools significantly by 

getting closer to the landsurface. Various forms of silica, including opal, may precipitate along a 
sharp boundary between cold subsoil and groundwater if cooling is rapid and the supersaturation 

high. 

 

Figure 20– Variations in quartz and chalcedonite so lubility with temperature (Bethke, 2002). The solub ility 
of quartz falls to more than half its value between  12.5 and 0°C. 

Silica precipitation by cooling a solution is the most probable mechanism to explain silicification 

at or near the point of discharge of groundwaters from the early to middle Pleistocene paleolandscape in 
the Jbel Ghassoul region.  Moreover, this mechanism for silica deposition is completely independent of 

the nature of the host rock, which is a specific feature of the Jbel Ghassoul silicifications.  

Conclusion 
The similarity of silicification phenomena in the various sedimentary facies of the Jbel Ghassoul 

formation in this location is remarkable and points to specific mechanisms including: (1) importation of 

silica via groundwater flow, (2) dilute groundwater solutions as evidenced by euhedral quartz crystals 
forming the final stage of precipitation sequences, (3) precipitation fronts with very strong gradients, and 

(4) the confinement of silicification to groundwater discharge zones.  These silicifications are comparable 
to groundwater silcretes described in the Paris basin, in Australia and on the Hamada plateaux in Morocco 

(Thiry and Milnes, 1991; Thiry and Ribet, 1999; Thiry and Ben Brahim, 1997; Thiry, 1999). They imply 
important water flows to provide the silica and substantial landscape relief to provide an hydraulic 

gradient that drives the water flows. 

The silicification of lacustrine carbonate rocks is generally interpreted to be an indicator of a 

warm and dry climate (Fersmann, 1926; Kaiser, 1928; Storz, 1928; Radier, 1959; Millot et al., 1959; 
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Nash et al., 1994). This is also the case for the silicifications that affect the wide calcareous plateaus of 
the dry landscapes of North Africa (Auzel and Cailleux, 1949; Alimen and Deicha, 1958). However, 

micromorphological analyses reveal that the silicifications of the Jbel Ghassoul formation are post-
sedimentary and their geomorphological disposition provides a basis for linking their formation to cold 

climates of the early to middle Pleistocene. Other silicified materials in the Atlas piedmont (Hamada du 
Guir) show similar features and have also been interpreted as post-sedimentary silicifications promoted 

by groundwater flows (Thiry and Ben Brahim, 1997).  

These studies show that caution is advisable when assigning a palaeoclimatic interpretation to 

silicification features. The problem is of broad interest and is not only restricted to the Atlas piedmont 
formations. In the Paris basin, the silicification of Fontainebleau sandstones, which was assigned to a dry 

climate (Alimen, 1936), turned out to be connected to groundwater flows under a temperate/cold climate, 
in landscapes incised during the Quaternary (Thiry et al., 1988).   By dating calcite crystals included in 

the silicified sandstone pans, it has been possible to assign the silicification specifically to the last glacial 
stages of the Quaternary (Thiry et al., 2013). Similarly, the silicification of lacustrine carbonate rocks in 

the Paris basin that had been interpreted previously as synsedimentary and concomitant with deposition 
turned out to be related to groundwater outflows following uplift of the sequence (Thiry and Ribet, 1999). 

Such silicifications due to near-surface groundwater cooling is suspected for many silicification features 
in Tertiary sequences, and even in older outcropping formations (such as Cretaceous sandstones) that 

experienced periglacial conditions during Pleistocene times in France and elsewhere in Europe and North 
America. Cold stages are major factors in shaping landscapes in Europe and North America and thus 

silicifications here may be markers of landscape incision.  

On the other hand, the case is very different for siliceous duricrusts with pedological characters 

(illuviation features, geotropic profile) that are well described from Australia and the Paris basin (Thiry, 

1999; Thiry et al., 2006).  These were formed during warm palaeoclimates with contrasted wet and dry 
seasons. Silicifications formed via acidification of the groundwater (sulphide oxidation and ferrolysis) are 

another type, but correspond to climates with low rainfall (Thiry et al., 1995; Thiry et al., 2006).  

In all cases, the documentation and interpretation of micromorphological features in relation to 

field occurrences of silicified materials is crucial and provides the key to unravelling their origin and 
environment of formation. 
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