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Abstract The Stokes flow is numerically computed in porous media based
on 3D Boolean random sets of spheres. Two configurations are investigated
in which the fluid flows inside the spheres or in the complementary set of
the spheres. Full-field computations are carried out using the Fourier method
of Wiegmann (2007). The latter is applied to large system sizes representative
of the microstructure. The overall permeability of the two models as well as
the Representative Volume Element (RVE) are estimated as a function of
the pore volume fraction. We give numerical estimates for the asymptotic
behavior of the permeability in the dilute limit for the solid phase, and close
to the percolation threshold of the pores. FFT maps of the velocity field are
presented, for increasing values of the pore volume fraction. The patterns of
the local velocity field is analysed using various morphological criteria. The
tortuosity of the streamlines is found to be much higher than the geometrical
tortuosity, for both models. The histograms of the velocity field are computed
at increasing pore volume fraction. The covariance of orientation is used to
characterize the spatial correlation of the velocity field.

Keywords Porous media · Stokes flow · FFT methods · Representative
Volume Element · Tortuosity · Streamlines

1 Introduction

Since the pioneering works of Carman (1937), the permeability of random
media has been a long-standing problem. In some early works, estimates for
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the permeability of flow around spheres have been derived making use of peri-
odic structures (Richardson and Zaki, 1954; Martin et al, 1951) or of concentric
sphere models (Happel, 1958; Kuwabara, 1959). Other studies have focused on
dilute, random suspensions of spheres (Childress, 1972; Howells, 1974; Hinch,
1977) or on periodic arrays (Zick and Homsy, 2006; Sangani and Acrivos, 1982;
Cheng and Papanicolaou, 1997). Another approach, based on variational for-
mulations, consists in deriving rigorous bounds for permeability (Doi, 1976;
Rubinstein and Torquato, 1989; Torquato and Lu, 1990). These bounds take
into account two-point correlations functions as well as the so-called “surface-
surface” and “surface-void” correlation functions. Interestingly, earlier bounds
made use of three-point correlation functions (Prager, 1961; Weissberg and
Prager, 1970). More recently, self-consistent schemes for the effective perme-
ability have also been proposed (Boutin, 2000; Koo and Sangani, 2002). We
refer to (Torquato, 2002; Dormieux et al, 2006) for an overview on the subject.

Among numerical methods for the computation of the effective perme-
ability, finite-difference schemes (Martys et al, 1994) and, more recently, fast
multipole expansions (Koo and Sangani, 2002) as well as Boltzmann Lattice
Methods (Belov et al, 2004; Lee and Lee, 2013) have been used. Recently, large-
scale computations have been carried out using a finite element method (Karim
et al, 2014). Interestingly, several Fourier-based algorithms have been devised
to treat Stokes flow (Wiegmann, 2007; Monchiet et al, 2009; N’guyen et al,
2013; Bignonnet and Dormieux, 2014). Such Fourier-based numerical methods
solve periodic Stokes flow problems, which are based on a rigorous homoge-
nization theory (Ene and Sanchez-Palencia, 1975; Matheron, 1965, 1966). The
FFT method of (Wiegmann, 2007) has been used to predict the effective per-
meability of open foam structures, using 3D images (Redenbach et al, 2011).
However, the local velocity and pressure fields occuring in porous random
microstructures has not been extensively studied in 3D. The “Representa-
tive Volume Element” (RVE) has been tackled elasticity and conductivity for
polycrystals (Kanit et al, 2003), Boolean models (Willot and Jeulin, 2009)
and multiscale materials (Willot and Jeulin, 2010), making use of Matheron’s
theory of regionalized variables (Matheron, 1971). Other recent works include
optics (Azzimonti et al, 2013) and acoustic (Peyrega and Jeulin, 2013). Results
are also provided in (Du and Ostoja-Starzewski, 2006) for Stokes flow in a 2D
hard-core models of discs, however the subject has not been studied to the
same extent for permeability in random media.

This work focuses on the slow motion of a fluid past a random set of ob-
stacles. It is organized as follows. The Stokes equation and microstructure of
interest are given in Sec. (2), where we also present the numerical Fourier-based
method. The Representative Volume Element (RVE) for the permeability is
studied in Sec. (4). The microstructure permeability is computed in the en-
tire range of pore volume fraction in Sec. (5). The asymptotic behaviour in
the dilute and percolation limit is studied in Sec. (6). The streamlines, their
tortuosity, the velocity field’s histograms and covariances are computed in
Sec. (7).
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2 Stokes Flow in porous media

We consider a domain V made of a porous (P ) and solid (S) phase. We note
f = VV = |P |/|V | the pore volume fraction and 1− f = 1− VV = |S|/|V | the
volume fraction of the solid phase. For simplicity, we take V = [−L/2;L/2]3,
a cubic domain of side L aligned with the axis ek (k = 1, 2, 3) of a Cartesian
coordinates system. We are interested in the steady-state flow of an incom-
pressible Newtonian fluid in the pores. The fluid velocity vector u(x) is defined
in the pores where it follows the Stokes equation:

µ∆ui(x) = ∂ip(x), ∂iui(x) = 0 (x ∈ P ), (1)

where µ is the fluid viscosity, measured in Pa·s, p(x) is the pressure field at
point x, measured in Pa and ∆ is the Laplacian operator. At the pore-solid
interface ∂S, the fluid satisfies the no-slip boundary condition:

u(x) = 0 (x ∈ ∂S). (2)

By convention, the domain of definition of the fluid is extended to the solid
phase as:

u = 0 (x ∈ S). (3)

Along the boundary of the domain, periodic boundary conditions for the fluid
velocity are applied:

u(x± ekL) ≡ u(x). (4)

A macroscopic pressure gradient of intensity δP along the direction E is ap-
plied:

〈∂ip(x)〉 = δPEi, |E| = 1, (5)

where 〈·〉 stands for the average over the domain V . The boundary conditions
for the pressure field specifies that its fluctuations p∗ are periodic (Ene and
Sanchez-Palencia, 1975):

p∗(x) = p(x)− δP (x ·E) = p∗(x± Lek). (6)

The permeability tensor κij , measured in m2, is defined at the macroscopic
scale by Darcy’s law:

〈ui(x)〉 = −κij
µ
〈∂jp(x)〉 = −κijEj

µ
δP. (7)

In the remaining part of this work, we assume that the porous phase is macro-
scopically isotropic. By convention, we choose E = e1 so that the permeability
tensor κ is identified with its component κ = κ11 and:

κ = −µ〈u1(x)〉
δP

. (8)

The permeability is independent of the fluid viscosity.
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Equations. (1)-(6) are solved numerically using the iterative Fourier-based
scheme of Wiegmann (2007). The velocity and pressure field are discretized on
a 3D grid of voxels. The method consists in rewriting the Stokes flow problem
as a set of four Poisson equations which are discretized by centered differ-
ences. Artificial forces are added along solid surfaces to enforce the no-slip
condition (2). Each component of the local velocity vector is interpreted as
the flow of the fluid across voxel faces. The gradient and Laplacian operators
are discretized by finite differences between adjacent voxels. The system of
equations is solved iteratively using the generalized minimal residual method
for linear systems (Saad and Schultz, 1986). Finite differences are computed in
the Fourier domains using the shift operator. The method uses 3D microstruc-
ture images, and no meshing is necessary, which allows one to treat arbitrarily
complex geometries.

The permeability of the medium is computed numerically by setting δP = 1
[Pa], averaging on the velocity field u1(x) and using Eq. (8). By convention,
we also fix µ = 1 [Pa·s]. In (Wiegmann, 2007), convergence is achieved using
minimal residual method (MINRES). At each iterations, Fourier transforms
are used to invert the Laplacian operator. In the limit of a very high number of
iterations, the fluid velocity is zero inside the obstacles. In practice, iterations
are stopped when the following two conditions are met:

max
x∈S
||u(x)|| ≤ η1 max

x∈P
||u(x)||, (9)

〈||u(x)||〉S ≤ η2〈||u(x)||〉P , (10)

where 〈·〉S,P are averages over the solid and porous phases and η1 = 10−3,
η2 = 10−4.

In the following, we also compare our numerical results with analytical
bounds and estimates. We consider the Carman-Kozeny estimates (Carman,
1937; Kozeny, 1927):

κ ≈ κCK =
f3

cγ2
, (11)

where γ = |∂S|/|V | is the specific surface area, or surface area density, mea-
sured in m−1, and c is an empirical constant. This adjustable parameter takes
into account the shape of particles in random media. For the Boolean model,
we fix it to c = 5 (Happel, 1958). For comparison purpose, the upper-bound
κUB proposed in (Doi, 1976) is considered:

κUB =
2

3

∫ ∞
0

dh

[
f2

γ2
FSS(h)− 2f

γ
FSP (h) + FPP (h)

]
, (12)

where FSS , FSP and FPP are the solid-solid, fluid-solid and solid-solid sur-
face correlation functions, respectively. They are readily computed using the
method given in (Doi, 1976). The histograms Pui

of the components of the
velocity field read:

Pui
(t) =

1

P

∫
P

d3x δ(t− ui(x)). (13)
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They are numerically computed from full-fields FFT maps. The latter also
provide the tortuosity τ of the fluid streamlines which is defined by:

τ =
Lf
L
. (14)

In the above, L is the distance between two opposite faces in the domain, and
Lf is the mean length of the fluid paths which connect two points located
at opposite faces. For comparison purposes, we also estimate the geometrical
tortuosity:

τGeo =
LGeof

L
, (15)

defined from the length LGeof of geodesics in the porous phase. The latter are
the shortest paths in the pores that connect two opposite sides of the domain.
Another quantity of interest is the static viscous tortuosity τ0 (Johnson et al,
1982, 1987; Perrot et al, 2008) related to the fluctuations of the fluid local
velocity by:

τ0 =
〈u2〉
〈u〉2

, (16)

with 〈u2〉 = 〈uiui〉 and 〈u〉2 = 〈ui〉〈ui〉. The tortuosity factor given in (Matyka
and Koza, 2012) is similarly defined as:

τA,B
Matyka =

〈||u||〉
〈u1〉

. (17)

Finally, we estimate the correlation of orientations of the local velocity field
from Altendorf and Jeulin (2011) using the following morphological criterion,
based on scalar products:

Cα(h) =

∫
x∈V

d3h
(u(x) · u(x + h))2

||u(x)||2||u(x + h)||2
. (18)

3 Boolean model of spheres

In the remaining part of this work, is considered a Boolean model of spheres (Math-
eron, 1967) of constant diameter D > 0. In this model, the sphere centers are
located according to a Poisson point process in V , so that spheres are allowed
to overlap. The model is parametrized by the density of spheres centers or
equivalently by the spheres volume fraction. We denote 1− q the spheres vol-
ume fraction and q the volume fraction of the embedding medium. Two types
of models are considered where spheres are either “solid” or “porous”. In model
(A) flow occurs solely outside the spheres whereas in model (B) flow occurs
inside spheres only. Therefore, we have f = q for model (A) and f = 1 − q
for model (B). We denote the permeability of these models by κA and κB
respectively.
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The specific surface area γ is obtained from:

γ = −4
∂C(h)

∂h

∣∣∣∣
h=0

, (19)

where C(h) is the covariance function (Matheron, 1967). In a Boolean model
of spheres (Matheron, 1967) we have for models (A) and (B), respectively:

CA(h) = q1+
3h
2D−

h3

2D3 , CB(h) = 1− 2q + q1+
3h
2D−

h3

2D3 . (20)

For both models the specific surface area is:

γ = −6q

D
logq (21)

Therefore the Carman-Kozeny estimates (Eqs. 11) for models (A) and (B)
read, respectively:

κCK-A =
fD2

180 log2(f)
, κCK-B =

f3D2

180(1− f)2 log2(1− f)
. (22)

In the following, the Boolean model is discretized over a 3D grid of L×L×L
voxels, with increasing size L = 100, 256, 512 (Fig. 1). The spheres diameter D
is equal to D = 15 voxels. This makes sure the particles ressemble spheres, as
shown in the enlarged 3D view in Fig. (1). Hereafter, by convention, all lengths
are rescaled by the spheres radius R, or equivalently, we take D = 2R = 2 [m].
Accordingly, microstructures contain an increasing number of spheres when
L increases. The entire range of pore volume fraction fAc ≤ f ≤ 1 for model
(A) and fBc ≤ f ≤ 1 for model (B) is considered, where fBc and fAc are the
percolation threshold of the spheres and of its complementary, respectively.
The following approximate values are available: fBc ≈ 0.2895 (Rintoul and
Torquato, 1997) whereas fAc ranges from 0.0317 (van der Marck, 1996; Priour
Jr, 2014) to 0.0540 (Jeulin and Moreaud, 2006) according to different authors.

Note that the spheres are reproduced periodically in all directions without
further modification. In particular, some spheres are completely surrounded
with the fluid in model A.

4 Representative Volume Element

The effective permeability is estimated by the apparent permeability κ, com-
puted by averaging on the velocity field (7). This estimation gives the exact
permeability only in the limit of very large system sizes L→∞. In a volume
V of finite size, the relative error ε of the estimate for the permeability is given
by:

ε =
2Dκ(V )√

nκ
(23)

where D2
κ(V ) is the variance of the apparent permeability over n random

realizations of volume V . Alternatively, using a single large realization of size
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Fig. 1 Boolean model of spheres discretized on a grid of 5123 voxels. Spheres diameter: 15
voxels; Spheres volume fraction: 10%.

V , we compute an estimate of D2
κ(V ′) for all volumes V ′ < V by considering

disjoint subdomains V ′ ⊆ V . The asymptotic expansion of D2
κ(V ′) when V �

V ′ and V ′ →∞ reads (Matheron, 1971):

D2
κ(V ′)

D2
κ

∼ Aκ3
(

1

V ′
− 1

V

)
, (24)

where Aκ3 is the integral range for the permeability (Kanit et al, 2003). In the
above, the term 1/V represents a lower-order correction compared to 1/V ′.
The point variance D2

κ = 〈u21〉 − 〈u1〉2 is numerically estimated using the
velocity fields u1(x). In practice, the term 1/V can be neglected and we have:

D2
κ(V ′)

D2
κ

∼ Aκ3
V ′
. (25)

Likewise, fluctuations are encountered when estimating the pore volume
fraction in a volume V . The latter scales as:

D2
f (V )

f(1− f)
∼ Af3

V
, V � Af3 , (26)

where we refer to Af3 as the integral range for the microstructure. For model
(B) (Matheron, 1967):

Af3 (f) =

∫
|h|≤2R

f1+
3h
2D−

h3

2D3 − f2

f(1− f)
d3h , (27)

for model (A) f must be replaced by 1− f in relation (27).
The point-variance D2

κ is numericaly obtained by computing second mo-
ments of the velocity field over the voxels grid. The variances D2

κ(V ′) are
computed by first subdividing a large volume V into a set of non-overlapping
subdomains, each of size V ′. In practice, cuboidal domains are considered and
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Fig. 2 Effective permeability κA,B of the Boolean models (A) and (B) (disks and circles)
with respect to the pore volume fraction f , at two resolutions. Solid lines: Carman-Kozeny
estimate κCK and upper-bound κUB .

the apparent permeability in each subdomain is given by the mean of the ve-
locity field u1 over each region. Accordingly, when the volume V ′ is small, the
variance is computed over a large data set. Conversely, the variance D2

κ(V ′)
corresponding to the maximum volume size V ′ = V/8 is computed over a set
of 8 values.

5 Permeability of the Boolean models

The effective permeability is estimated for increasing pore volume fraction
f in the range [fAc ; 1] for model (A) and [fBc ; 1] for model (B). Results are
plotted in Fig. 2 in lin-log scale. As expected, the permeability is largest for
the complementary model of spheres (B), with lower percolation threshold
than in model (A). Both models show a convexity change in lin-log scale at
about 65% for model (B) and 50% of pore volume fraction for model (A).

Furthermore, the estimate κCK-A (shown in green in Fig. 2) is close to FFT
predictions in the range 0.3 < f < 0.8. Outside of this region, the estimate
differs noticeably from the FFT data. As reported in (Happel, 1958), the
Carman-Kozeny estimate (11) with c = 5 agrees well with experimental data
in the range 0.26 < f < 0.8 for particles of various shapes maintained in a
fixed position. This indirectly confirms the validity of the FFT computations
for Stokes flow. Interestingly, the Carman-Kozeny estimate κCK-B for model
B (red curve) is close to our FFT predictions in a different range of porosity,
namely 0.7 < f < 0.9. In this domain, the regions surrounding the spheres
are mostly disconnected, and the solid phase is akin to a set of random fixed
particules with non-spherical shape. In the dilute regime f → 1, as expected,
the Carman-Kozeny estimate fails for all models.



Stokes flow through a Boolean model of spheres: Representative Volume Element 9

FFT fields are also used to study the representative volume element for the
permeability as a function of the pore volume fraction f . The integral range Aκ3
is estimated numerically by fitting the left-hand side of (25) with a scaling law
D2
κ(V ′) ∼ 1/V ′. As expected, the latter is recovered when V is large enough.

This is illustrated in Fig. 3 where the variance of the apparent permeability
D2
κ(V ) of model B with f = 0.68 is represented as a function of V . For a

requested precision ε, the corresponding RVE size is obtained using (23) and
the previously determined integral range.

In Fig. 4 the relative precision is fixed to ε = 5%. We set V = `3 and
plot the RVE lengths `Aκ and `Bκ for the permeability in models (A) and (B)
respectively, as a function of f . The microstructure RVE lengths `Af and `Bf
at the same relative precision are plotted for comparison. For both models,
the RVE size for the permeability strongly increases when approaching the
percolation threshold. Strong microstructural effects are especially important
for model B. Using the discretization D = 15 voxels, a system with 13503

voxels is required to estimate the permeability κB at 5% relative error when
f ≈ 0.32.

The RVEs for permeability appear to be significantly higher than in elas-
ticity or thermal conductivity (Kanit et al, 2003; Willot and Jeulin, 2009).
It is also useful to compare these results with numerical data obtained for
a Stokes flow around randomly-distributed, non-overlapping discs (Du and
Ostoja-Starzewski, 2006). The authors studied the convergence of the appar-
ent permeability with respect to the size of the computational domain. High-
est convergence rates were obtained at lowest porosity (50%). Conversely, the
worst convergence rates were observed at highest porosity (80%). In 3D, the
RVE for model A is quite insensitive to the porosity in the range 0.5 < f < 0.8,
but increases with f in the dilute regime f > 0.8 (Fig. 4). The behavior ob-
served in 2D for non-overlapping discs is accordingly qualitatively recovered in
3D for the Boolean model, but for a different range of porosity. Interestingly,
(Du and Ostoja-Starzewski, 2006) link the increase of the RVE with that of
the size of the channels located in-between obstacles.

6 Dilute limit and behaviour near the percolation thresholds

We first consider the behavior of the permeability in models (A) and (B) in the
dilute limit f → 1, i.e. for a small volume fraction of obstacles. Numerical FFT
data are represented in log-log scale in Fig. (5a) (black and white symbols).
The latter are compared to the dilute expansions provided by Rubinstein and
Torquato (1989) and Torquato (2002):

κA ≈ κA,dil =
2R2

9(1− f)
, κB ≈ κB,dil =

4R2

9(1− f) log2(1− f)
, f → 1 (28)

which are valid for spherical obstacles and voids, respectively. The first-order
corrections above are plotted in Fig. (5a) in blue (model A) and red (model B).
The solid line in black represents the upper bound from Doi (1976) computed
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Thick lines: RVE lengths `A,Bf for the microstructure at the same precision. Horizontal black

line: length ` of the most representative employed microstructure with L3 = 5123 voxels.
Vertical lines: percolation thresholds fAc and fBc . All lengths are given in units of spheres
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using the results of Rubinstein and Torquato (1989). The analytical expan-
sion (28) is in good agreement with FFT data in the region 1 − f < 10−2.
For 1 − f > 10−2, the effective permeability in model (A) is significantly
lower than the dilute expansion and upper-bound. Similarly, the permeability
of model (B) predicted by FFT computations is smaller than expansion (28)
for 1 − f > 10−2. In the highly-dilute regime 1 − f < 10−2, the agreement
between expansion (28) and FFT data for model (B) is not as good as for
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model (A). Remark however that particles in model (B) have highly elongated
shapes so discretization effects should be important in this case. The obstacles
surface/volume ratio is indeed, on average, |∂γ/∂q| → ∞ when q = 1− f → 0
(Eq. 19).

The behavior of the permeability close to the percolation thresholds f →
fAc for model (A) and f → fBc for model (B) is represented in Fig. (5b). In the
latter, the percolation thresholds are fixed to f → fAc = 3.17%, fBc = 28.95%
and the permeability is plotted as a function of f − fA,Bc in log-log scale. We
consider volumes discretized on grids of 2563 and 5123 voxels and fit the data
with power laws in a region of interest |f−fA,Bc | < 0.2 close to the percolation
threshold. The latter are shown in blue (2563 voxels) and red (5123 voxels).

Numerical fits indicate:

κA ∼ 0.28R2(f − fAc )3.2, κB ∼ 0.18R2(f − fAc )2.0. (29)

Predictions from the literature give κA ∼ (f−fAc )4 (Feng et al, 1987) for model
(A). Likewise, an exponent equal to 4 was numerically determined by Martys
et al (1994) for model (A), using spheres of diameter 15 voxels in a grid of 1003

voxels. In the same condition, with a larger grid we recovered an exponent of
about 3.5. In the present work, the range of validity of the fits (29) is limited to
at most one decade. Computations on larger systems are required to confirm
the above results.

Numerical values for the exponents near the percolation threshold are
rough estimates, due to the challenging numerical computations but indicate
that the exponent in model (B) is significantly lower than in model (A), i.e.
close to the percolation threshold, the permeability in model B increases at a
faster rate when f increases.
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7 Local fields

In this section, are given and discussed maps of the velocity and pressure fields.
The fields histogram and streamlines tortuosity are also studied.

7.1 Maps and histograms of the velocity field

FFT field maps are represented in Tabs. (1) and (2) for models (A) and (B)
respectively. The maps are 512×512 voxels, 2D sections along the plane (e1, e2)
where e1 is oriented right to left and e2 top to bottom. The norm ||u|| of the
velocity vector as well as its components ui are shown at 4 fixed values of the
pore volume fraction. The component u1 is parallel to the applied pressure
field whereas u2 and u3 are transverse components. To compare the field maps
for different values of the pore volume fraction, the colour scale is given and
the values are indicated on the corresponding side of the field. Blue and red
correspond to the lowest and highest values respectively, with green and yellow
in-between, whereas the solid phase is coloured in grey. To highlight the fields
patterns, each map has been thresholded at 75% of its maximum values. The
maximum and minimum values of the velocity field, prior to the thresholding,
is given in small font along the colour scale.

At lowest pore volume fraction fA = 11% in model (A), the velocity field
is localized at a few bright spots, which appears in yellow in the 2D section in
Tab. 1, column 1. As expected, the velocity field is small even in regions where
the largest pores appear. These zones are, presumably, either disconnected
from the percolating paths, or not well connected to them. At higher pore
volume fraction fA = 0.22%, the density of hot spots increases (parallel com-
ponent u1, column 2). Furthermore, the velocity field in these spots is higher.
In general, the maximum value of the parallel component u1 increases with
the pore volume fraction from 0.06 (fA = 0.22%) to 3.08 (fA = 11%). The
minimal value, which is always negative, also increases with the pore volume
fraction, i.e. streamlines going backward are increasingly rare events. At the
highest pore volume fraction fA = 0.90, the velocity component u1 is very
low in regions comprising 2 or 3 obstacles close to one another (shown in dark
blue). It is also significantly higher in a few large zones of the pores (shown in
red). This suggests that, even at high pore volume fraction, only a fraction of
the pores participates to the overall permeability. At the pore volume fraction
fA = 0.90, the transverse components u2 and u3 are much more homogeneous
than u1.

The field patterns for the parallel component u1 observed on the FFT
maps is confirmed by the field histogram Fig. 6 (a). When f = 90%, the field
histogram Pu1 is strongly non-symmetric. A local maximum field histogram is
observed at u1 ≡ 0, corresponding to regions located around clusters of obsta-
cles. A second local maximum is observed at higher values of the velocity field,
u1 ≈ 0.6. At lower pore volume fraction, the field histogram is non-symmetric.
However, they contain one local maximum only at u1 = 0. The histogram
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Fig. 6 (a) Histogram of the parallel component of the velocity field u1 in model B, for
three pore volume fraction, in lin-log plot. (b) Histogram of the transverse component of
the velocity vector u2 in model B for various pore volume fraction, in lin-log plot.

for the transverse component u2, or equivalently, that of u3 is represented in
Fig. 6 (b). As for the parallel component, we observe a sharp peak around
u2 = 0 for the density of probability Pu2

. Except for the highest pore volume
fraction (f = 0.95) on Fig. 6 (b), the transverse component shows a strongly
non-Gaussian distribution of the velocity.

7.2 Streamlines and orientation of the velocity field

We now extract streamlines from the 3D velocity fields, defined as paths paral-
lel to the velocity vector at each point. They span the microstructure domain
from side (of equation x1 = −L/2) to the opposite one (of equation x1 = L/2).
The streamlines’s tortuosity τ is represented in Fig. (7a) for models (A) and
(B) at increasing pore volume fraction and compared to the geometrical tortu-

osity τA,B
Geo . Each point corresponds to one random configuration and different

symbols are used for different system sizes. Dotted straight lines indicate the
percolation threshold where τ = ∞. For model (A), in the region close to
the percolation threshold, around fA < 30%, the system sizes L = 256 and
L = 512 used in this work are too small and the numerical results show strong
variations. In any case, we expect the tortuosity to be a decreasing function
of f . As shown in Fig. (7a) the streamlines’s tortuosity for model (A) is only
slightly lower than that of model (B), except when the pore volume fraction
approaches the percolation threshold. As expected, lower tortuosity implies
higher permeability. Indeed, the permeability of model (A) is higher than that
of model (B), at given pore volume fraction f (Fig. 2). Nevertheless the per-
meability in model (A) is often 2 or 3 times higher than that of (B), whereas
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Fig. 7 (a) Tortuosity τA,B of the fluid streamlines computed using FFT data for models A

(filled disks) and B (circles). Diamonds: geometrical tortuosity τA,B
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defined by Eq. (17). Inner graph: close-up in the region f . 1.

the difference in terms of tortuosity is much smaller. For a given pore vol-
ume fraction, the morphological tortuosity, deduced from geodesic paths is
much smaller than the tortuosity deduced from fluid flow characteristics. As a
consequence the overall permeability κ cannot be predicted directly from the
geometrical tortuosity τGeo.

The static viscuous tortuosity τA,B
0 and that defined in Eq. (17) τA,B

Matyka are
represented in Fig. (7b). They are computed as a function of the porosity f for

both models A and B. The tortuosity τA,B
0 is much higher than the streamlines

tortuosity τA,B, especially in the dilute regime f ≈ 1.
The tortuous behavior of the velocity field at low pore volume fraction is

confirmed by the covariance of orientation Cα(h) plotted in Fig. 8 for model
(A). The latter decreases with h at low pore volume fraction, and stays nearly
constant for h ≥ hc, where hc depends on f . The length hc represents the typi-
cal size of regions where the velocity field is locally correlated due to viscosity.
Beyond hc, the finite covariance Cα(h) is a result of macroscopic coupling,
i.e. the overall direction of the fluid follows that of the applied pressure gra-
dient. As expected, the limiting value of Cα(h) increases with f , because of
the tortuous path followed by the fluid near the percolation threshold, and hc
increases with f , because the size of the channels followed by the fluid also
increases with f . In the limit f = 1, we expect Cα(h) ≡ 1, a result consistent
with Poiseuille flow.

8 Conclusion

In this numerical work, we used FFT-based full-fields computations for the
Stokes flow to estimate the effective permeability of two simple 3D Boolean
random models, where the fluid flows inside spheres or its complementary set.
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Fig. 8 Covariance of the orientation of the velocity field Cα(h) for model (A), for various
increasing pore volume fraction f .

Very large system sizes were required to carry out computations, especially
near the percolation points. For volume fractions 5% higher than the perco-
lation threshold and a relative precision of 5% on the permeability, the size
of the RVE becomes larger than 80 times the spheres’s radius. No analytical
formula was found to provide meaningful estimates of the effective permeabil-
ity, for any considered model. Similar tortuosity ratios were observed for the
fluid’s streamlines, for both models, except in the vicinity of the percolation
threshold. This is contrast with the geometrical tortuosity, which is signifi-
cantly lower than that of the streamlines.

The effective permeability was found to be quite different for the two mod-
els, with the highest one recovered for spherical obstacles and corresponding
to the lowest percolation threshold. Furthermore, as highlighted by the field
maps and histograms, at moderate pore volume fraction, the velocity field is
heterogeneous, and very small in regions located around or in-between clusters
of obstacles. The velocity histograms were found to be non-Gaussian in gen-
eral. These results confirm that the permeability, a highly structure-dependent
property, is not only affected by the tortuosity but also by the distribution of
the channels’s size and surface areas.
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