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Abstract 

An improved apparatus based on the static-analytic method for reliable vapor-liquid 

equilibrium (VLE) data measurement is presented in this work. It has been applied to 

investigate systems containing organic sulfur compounds. New sampling mechanisms were 

combined with ROLSITM capillary samplers to achieve on-line sampling for both vapor and 

liquid phases in a pressure range between 0.1 and 10 bar. Phase samples were directly sent to 

a gas chromatograph for composition analysis. The equipment was tested against other 

commonly used experimental methods in this pressure range on the (n-butane + ethanol) and 

(diethyl sulfide + ethanol) systems. The obtained data were correlated by Wilson model and 

compared with existing data. The improved apparatus has shown comparable performances to 

existing methods, while showing some advantages such as complete PTxy phase 

measurements and less product consumption. After the validation step, additional VLE data 

for binary systems of interest, (diethyl sulfide + n-butane) and (1-pentanethiol + 1-pentanol), 

were reported and modeled in this work. 

Key words: in-situ sampling, ROLSITM capillary sampler, gas chromatography analysis, low 

pressure, organic sulfur compounds  
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1. Introduction 

Accurate knowledge of phase diagrams is of great importance in chemical engineering. 

It serves as the basis for separation process design (e.g. distillation and extraction) and ensures 

a proper selection of equipment and operating conditions. Experimental data and 

thermodynamic models are part and parcel of understanding phase behavior and 

thermodynamic properties; hence high-quality experimental data and reliable techniques 

continue to be highly regarded in industries [1]. 

Organic sulfur compounds, such as thiols and sulfides, are commonly found as 

impurities in crude oils, as well as in products from petroleum refining processes [2]. As the 

regulations for sulfur contents in market fuels are getting stricter [3], the sulfur removal 

processes need to evolve accordingly. However, experimental data for organic sulfur 

compounds are rare, especially for those having relatively long carbon chains (> 3C). We 

assume there is a lack of adapted techniques for Vapor-Liquid Equilibrium (VLE) 

measurement using analytic methods like gas chromatography. Moreover, dealing with sulfur 

component, which can be toxic, in a laboratory scale needs appropriate apparatus design to 

ensure operation security without losing data accuracy. The suggested solution consists in 

using equipment based on the “static-analytic” method.  

In this work, we focus on the development of new equipment for experimental 

acquisition of VLE data at low pressure. In effect, most experimental data for systems 

containing organic sulfur compounds (> 3C) are within low pressure (from sub-atmospheric 

pressures to several bar). In this pressure region, our literature survey has revealed that the 

most commonly used technique is the total-pressure measurement method [4,5], which is also 

known as the “static-synthetic” method. By measuring the equilibrium pressure of a multi-

phase mixture of known global composition at isothermal conditions, one may deduce phase 
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compositions by using material balance [6]. Without phase sampling, the static-synthetic 

method requires thermodynamic models to perform material balance calculations. The chosen 

thermodynamic models therefore may influence the experimental results. At pressures around 

or under 1 bar, glass dynamic circulation stills (also known as ebulliometers) are widely used. 

They are able to provide complete VLE data (PTxy). Some authors suggested using stainless 

steel [7–10], instead of glass, to extend the applications up to several bar. Although these 

apparatuses have shown promising results, they hold some typical limitations of circulation 

stills, such as large system volume and condenser cooling duty. They act as feasible 

alternatives only in selected applications. 

The “static-analytic” method consists of taking samples from all coexisting phases in an 

equilibrium cell, and analyzing sample compositions [6]. Thus, both vapor and liquid phase 

compositions are experimentally determined. Compared with the static-synthetic method, the 

static-analytic method does not require data reduction via thermodynamic models. In-situ 

sampling from a closed cell dispenses with phase circulation and condensation which are vital 

for a circulation still. Thus, chemical consumption and operation risk may be reduced by the 

static-analytic method. For these reasons, the static-analytic method seems more suitable for 

VLE measurements involving organic sulfur compounds. 

Since the publication of the first static-analytic apparatus designed in our laboratory [11], 

development has been made to extend its application. Laugier et al. [12] used a variable 

volume cell in order to measure simultaneously VLE data and volumetric properties. Baba-

Ahmed et al. [13] suggested an apparatus for measurements under cryogenic conditions (down 

to 77 K). The equilibrium cell was thereafter redesigned by Houssin-Agbomson et al. [14]. 

Guilbot et al. [15] described in detail the Rapid On-Line Sampler-Injector (ROLSITM) 

allowing in-situ withdrawals of microliters of phase samples. It has been used for numerous 

measurements afterwards [16–19]. The sampling can be achieved through the ROLSITM 
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sampler, as long as the cell pressure exceeds that of the carrier gas for gas chromatograph 

(GC), usually around 3 bar. At pressures lower than 3 bar, the lack of pressure driving force 

would make this sampling mechanism fail, as the carrier gas would enter the cell and 

contaminate the contents. Consequently, measurements under 3 bar have always posed 

sampling difficulties for our laboratory. 

In order to develop an experimental apparatus adapting to organic sulfur compounds and 

to cover the pressure gap under 3 bar, we have proposed new sampling mechanisms for 

ROLSITM capillary sampler to allow in-situ phase sampling at pressures lower than 3 bar. The 

improved static-analytic apparatus is capable of measuring PTxy equilibrium data from 0.1 up 

to 10 bar. In this work, the newly developed apparatus is presented while highlighting the 

modified samplers. The latter is validated by measuring VLE data of two well-documented 

binary systems (n-butane + ethanol) and (diethyl sulfide + ethanol). The obtained data are 

correlated through the Wilson equation [20] with Soave–Redlich–Kwong equation of state 

(SRK EoS) [21] for vapor phase, and compared with those determined by other experimental 

methods in the open literature. After the validation step, additional VLE data are reported for 

two binary systems containing organic sulfur compounds: (diethyl sulfide + n-butane) and (1-

pentanethiol + 1-pentanol). The newly measured data are also correlated by Wilson model. 

 

2. Description of the apparatus 

The “classic” static-analytic apparatus described by Laugier and Richon [11] acts as the 

starting point for our development. The essential configuration of the classic static-analytic 

type apparatus is retained. The equilibrium cell consists of a sapphire tube tightly sealed by 

two titanium flanges at the top and bottom. Its internal volume is approximately 100 mL. 

Three valves connected to the cell permit loading, discharging, degassing and evacuation 
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operations. The equilibrium cell is immersed in a thermo-regulated liquid bath (LAUDA 

Proline RP 3530 C). A variable-speed stirrer inside the cell accelerates the mass transfer 

between phases and reduces the time needed to achieve equilibrium. In order to ensure 

accurate temperature measurements in the equilibrium cell and to check for thermal gradients, 

temperature is measured at the top and bottom flanges through two 100 Ω platinum resistance 

thermometer probes. Pressures are measured by three pressure transducers (General Electric, 

model UNIK 5000) of which the maximum absolute pressures are 0.35 bar, 1 bar and 10 bar, 

respectively. The pressure transducers are maintained at a constant temperature (353 K 

throughout this work) by means of a PID regulator (WEST instrument, model 6100). Both 

temperature and pressure signals from the sensors are transmitted to a data acquisition unit 

(Agilent 34972A) which is linked to a computer for record. Sample analysis is carried out by 

a gas chromatograph (Perichrom, model PR-2100) equipped with a thermal conductivity 

detector (TCD). Peak integration and analysis is performed using the data acquisition software 

WINILAB III (Perichrom, France). 

Two ROLSITM capillary samplers are installed to perform in-situ sampling. The samples 

are firstly sent to a thermo-regulated transfer line and then swept to the GC by carrier gas for 

composition analysis. To carry out phase sampling at pressures lower than 3 bar, we made the 

following adaptations, respectively for liquid and vapor phases. 

For liquid phase, a small cylindrical chamber (PVT) is drilled in the bottom flange. The 

chamber is equipped with a piston and connected to the equilibrium cell through a capillary 

(see Figure 1). A small amount of liquid phase can be withdrawn via suction, and then 

compressed after the valve V4 is closed, in order to generate the pressure driving force 

required to sample through the liquid ROLSITM sampler (LS). The pressure exerted for 

compression can be regulated via a manometer. After taking the desired number of samples, 

the remaining liquid in the PVT chamber is pushed back into the equilibrium cell. The 
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assembly of PVT chamber and ROLSITM capillary sampler is the subject of a patent recently 

submitted [22]. 

[Figure 1] 

Vapor phase sampling under 3 bar is achieved by using a 6-port sample injection valve 

(6PV). The 6-port valve is connected to the transfer line, and is thermo-regulated. Prior to 

sampling, it allows the vacuum pump to evacuate the sample loop (SL, dashed line in Figure 

1). A vapor phase sample is then taken through the vapor ROLSITM sampler (VS) via vacuum 

and swept to GC by switching to carrier gas circulation. The 6-port valve is not used for vapor 

phase sampling, when the cell pressure is above the pressure of carrier gas. 

The main innovative modification in this improved apparatus, compared with the classic 

version, is to isolate a small amount of liquid phase in the PVT chamber and compress it for 

sampling. Piston movement is carefully controlled to ensure that the isolated liquid is 

representative of that in the equilibrium cell. No significant impact on equilibrium has been 

perceived after withdrawing this quantity from the liquid phase. Considering sample volume 

(usually less than 5 µL per sample) taken by ROLSITM capillary sampler for analysis, the 

compressed liquid allows a sufficient number of samples to obtain a representative mean 

value for the composition, as well as check for repeatability. After sampling, the remaining 

liquid can be flushed back to the equilibrium cell without disturbing the established 

equilibrium. Further testing was conducted to validate the performance of the liquid sampling 

system. Under some equilibrium conditions, after filling once the PVT chamber and obtaining 

repeatable liquid phase compositions, we emptied the PVT chamber and repeated the liquid 

sampling procedure to take more samples. Despite refilling the PVT chamber with 

independent charges, we could still ensure liquid composition repeatability within ±1%. 
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The main advantage of compressing the liquid phase, instead of sampling via vacuum as 

for the vapor phase, is the possibility to control the generated pressure driving force. As liquid 

is denser and more viscous than vapor, the pressure driving force may be insufficient for 

sampling via vacuum, especially under sub-atmospheric conditions. With the proposed liquid 

sampling system, viscous fluids such as amines can be easily dealt with. 

 

3. Experimental 

The validation of the improved apparatus is conducted by carrying out isothermal VLE 

measurements for two well-documented binary systems. The selected test systems, (n-butane 

+ ethanol) and (diethyl sulfide + ethanol), were previously measured using a variety of 

different methods (see Table 1), so that the performance of the improved apparatus can be 

compared with existing methods. We focus mainly on the pressure range in which the classic 

static-analytic type apparatus is unable to perform sampling, i.e. lower than 3 bar. 

[Table 1] 

After the validation step, two binary systems of interest, (diethyl sulfide + n-butane) and 

(1-pentanethiol + 1-pentanol), are investigated. Isothermal data for the system (diethyl sulfide 

+ n-butane) were previously measured by the static-synthetic method at 317.60 K [25]. This 

data set serves as a double check on our apparatus. 

All the details concerning the chemicals used are presented in Table 2. 

[Table 2] 

3.1. Calibration 

The temperature probes were carefully calibrated against a 25 Ω reference platinum 

resistance thermometer (TINLEY Precision Instruments). The reference thermometer was 
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calibrated by the Laboratoire National d’Essais (Paris) based on the 1990 International 

Temperature Scale (ITS 90). The three pressure transducers were calibrated against a digital 

pressure balance (Desgranges & Huot 24610).  

The following GC columns were used to analyze the compositions of samples: 

- HayeSep T, 100/120 mesh (length 1.6 m, diameter 2 mm, from Restek France) 

maintained at 413 K for the system (n-butane + ethanol) 

- Porapak Q, 50 / 80 mesh (length 2.1 m, diameter 2 mm, from Restek France) 

maintained at 493 K for the systems (diethyl sulfide + ethanol) and (diethyl sulfide + 

n-butane) 

- 10% Squalane, 80 / 100 mesh (length 2 m, diameter 2 mm, from Restek France) 

maintained at 423 K for the system (1-pentanethiol + 1-pentanol) 

The TCD of gas chromatograph was repeatedly calibrated by injecting known amounts of 

each pure compound via a syringe into the injector. 

The uncertainty estimation procedure is described in Appendix. Both measurement 

repeatability and calibration uncertainty have been considered. We report all the expanded 

uncertainties (U, coverage factor k = 2) for experimental data in Section 5. 

3.2. Experimental procedures 

The equilibrium cell and its loading lines were evacuated. About 15 mL of the less 

volatile component was introduced via a syringe. The liquid was degassed by periodically 

removing vapor phase through an overhead valve, while heating to the desired temperature. 

Meanwhile, adequate stirring was maintained inside the cell. The lighter component was then 

loaded via a thermal press to a pressure level corresponding to the pressure of the first 

measurement. Phase equilibrium was assumed to be achieved while temperature and pressure 
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readings stabilized for at least 30 minutes. For each equilibrium condition, at least 5 samples 

of both vapor and liquid phases were withdrawn and analyzed to ensure composition 

repeatability within ±1%. The lighter component was then further introduced to measure the 

next equilibrium condition. 

 

4. Data correlation 

The γ-φ approach was considered for VLE data correlation. The Wilson equation [20] 

was chosen for liquid phase, while the SRK equation of state [21] was used for vapor phase. 

The pure compound properties used for modeling are presented in Table 3. All calculation 

was performed with the software Simulis Thermodynamics [26]. 

[Table 3] 

Wilson interaction parameters (λ12 and λ21) were fitted on the data obtained through our 

improved apparatus, by minimizing the objective function (OF): 

�� = ∑����	
���
����	
 + ���	
���
����	
 �        (1) 

The fitted Wilson interaction parameters are presented with the experimental data in the next 

section. 

 

5. Results and discussion 

5.1. Test systems 

5.1.1. n-Butane + ethanol 

The experimental data and correlation results for the system (n-butane + ethanol) are 

given in Table 4. The isothermal Pxy diagram is plotted in Figure 2, along with existing data. 
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The obtained results have also been expressed in terms of relative volatility α1/2, an important 

index for the design of a distillation column [29], and presented versus liquid phase 

composition in Figure 2. 

[Table 4] 

[Figure 2] 

As observed from Figure 2, good agreement is observed between the measurements of 

this work and those performed by other methods, for both liquid and vapor compositions. As 

the main objective is to validate the sampling mechanisms below 3 bar, few points at higher 

pressures were measured. However, with the interaction parameters fitted on the data 

measured in this work, the entire isotherm (as well as the azeotropic point) is well represented 

(see Table 5). 

[Table 5] 

The proposed apparatus is able to cover the entire pressure range of the test system, 

from 0.4 to 5 bar. Although the static-synthetic measurements conducted by Holderbaum et al. 

[23] were capable of covering the same pressure range, experimental vapor phase 

compositions were not available. Soo et al. [19] used a classic static-analytic apparatus similar 

to that of Valtz et al. [16], and yielded vapor phase information. However, without the 

proposed modifications at the time, the measurements were restricted to pressures between 

4.0 and 5.0 bar. The improved apparatus has shown the ability to provide the desired PTxy 

data for the entire pressure range. Prior to the new measurements, at least two apparatuses 

were necessary to cover the entire pressure range, while essential information, such as the 

vapor phase compositions, would still be missing at pressures lower than 4 bar. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
11 

 

Rapidity of data acquisition using the proposed apparatus is comparable to that of the 

classic version. Measurements were conducted under continuous mode by consecutive 

loading of the lighter component after each equilibrium condition. Only the static-analytic 

approach outputs data at a faster rate, but it does not provide experimental information on 

vapor phase and requires proper selection of thermodynamic models. 

5.1.2. Diethyl sulfide + ethanol system 

The experimental data and correlation results for the system (diethyl sulfide + ethanol) 

are given in Table 6. The isothermal Pxy diagram and the relative volatility versus liquid 

composition are plotted in Figure 3, along with the existing data. 

[Table 6] 

[Figure 3] 

The entire pressure range of 0.5 – 0.9 bar can be covered by both experimental methods. 

One observes, from Figure 3, that the data measured by both methods are in good agreement. 

The maximum pressure azeotrope has been identified. The differences between the calculated 

data and the experimental ones are generally close to the experimental uncertainties (see 

Table 6). The deviations of the calculated data from our data and those given by Ref. [24] are 

very similar (see Table 5). Our apparatus has shown comparable performance with circulation 

still at sub-atmospheric pressures, while the lower consumption of chemicals is an advantage 

for measurements with toxic or expensive components. Moreover, it is easier to handle 

systems containing gaseous or viscous components in a static cell than in a circulation still. 
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5.2. Newly investigated systems 

5.2.1. Diethyl sulfide + n-butane system 

The experimental data and correlation results for the system (diethyl sulfide + n-butane) 

at 317.62 K and 343.13 K are given in Table 7. The isothermal Pxy diagram is plotted in 

Figure 4, along with the existing data. 

[Table 7] 

[Figure 4] 

Measurements were performed not only under the pressure of GC carrier gas (usually 

around 3 bar), but also extended up to 7.3 bar. The data measured by the proposed apparatus 

at 317.62 K are in good agreement with those obtained by Dell’Era et al. [25] at 317.60 K. 

The deviations of the calculated data from both data sets are also similar (see Table 5). We 

notice that Dell’Era et al. [25] provided PTxy data measured by the static-synthetic method, 

instead of PTx data as the authors of Ref. [4,5] did. However, the vapor phase compositions 

are computed (through SRK EoS [21]) rather than experimentally determined. In practice, the 

vapor phase volume needs to be minimized so that the global composition is close to the 

liquid phase composition, as pointed out by Dicko et al. [30]. 

Additional data were measured at 343.14 K and correlated by Wilson model with 

satisfactory results (see Table 5). 

5.2.2. 1-Pentanethiol + 1-pentanol system 

The experimental data and correlation results for the system (1-pentanethiol + 1-

pentanol) at 372.75 K and 392.72 K are given in Table 8. The isothermal Pxy diagram is 

plotted in Figure 5, along with the existing data. 
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[Table 8] 

[Figure 5] 

To the best of our knowledge, no VLE data for the system (1-pentanethiol + 1-pentanol) 

were available in the open literature. The new PTxy data are well correlated by Wilson model. 

The deviations are generally similar to those obtained for the other 3 systems (see Table 5). 

The maximum pressure azeotropes are captured at both temperatures. They are computed 

through Wilson model: P = 0.468 bar, x1 = 0.831 at 372.75 K and P = 0.882 bar, x1 = 0.771 at 

392.72 K. 

 

6. Conclusion 

In this work, we presented a new apparatus capable of providing reliable and complete 

VLE data (PTxy) from 0.1 up to 10 bar. It was applied to investigate systems containing 

organic sulfur compounds (especially those having over 3 carbons). The apparatus is based on 

the static-analytic method. Starting from a classic configuration, improvements have been 

made for both vapor and liquid samplers to permit in-situ sampling and GC analysis even at 

pressures lower than that of the carrier gas. Continuous operation ensured that data can be 

measured in a relatively short time. 

The improved apparatus was tested against two binary systems: (n-butane + ethanol) 

and (diethyl sulfide + ethanol). The experimental results were correlated by Wilson model and 

compared with the available data. Good agreements have been observed between the obtained 

data and those measured through commonly used experimental methods. In the past, a 

complete phase diagram of these two systems would have required at least two measurement 
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techniques, while the comparison showed that the new apparatus alone is sufficient to yield 

the complete phase diagram. 

Once the apparatus was validated, two systems of interest were then investigated: 

(diethyl sulfide + n-butane) and (1-pentanethiol + 1-pentanol). The obtained data were 

correlated by Wilson model, leading to satisfactory results. 

The improved apparatus addresses an identified lack of VLE data for systems 

containing organic sulfur compounds. However, its application can be extended to other 

systems within the same pressure range (under 10 bar). With the growing demands for 

accurate VLE data in this range, the presented apparatus provides a solution to industries 

seeking process design and optimization using experimental thermodynamics. Additional 

experimental data measured through the new apparatus will be published in future papers. 

 

 

Appendix: Uncertainty Estimation 

To estimate the uncertainties in temperature, pressure and composition, we have 

followed the guidelines of NIST [31]. Both measurement repeatability and calibration 

uncertainties are taken into account. 

The mean of a series of independent observations can be considered as a good 

approximation to the value of the measurand (θ). The standard uncertainty (u) due to this 

calculation, also known as “repeatability”, is determined by the recommended expression: 

������� = � �������∑ ��� − ��� �!��"�        (A.1) 
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where the subscript rep denotes repeatability, N is the number of observations, θi is the result 

of ith observation, and θavg is the mean of N observations. 

The standard uncertainty arising from calibration (ucalib) is estimated by considering two 

sources: reference (uref) and polynomial regression (ureg) between the displayed values and 

those given by the reference. The former is provided by the reference manufacturer, while the 

latter is evaluated statistically. The measurement result θ is calculated through the polynomial 

of which the coefficients are “uncertain” and dependent on each other. The standard 

uncertainty ureg(θ) can be estimated through the law of propagation of uncertainty which is 

based on a first-order Taylor series approximation of the polynomial: 

��� ��� = #∑ $%&%�'(! �!�)��*�"+ + 2∑ ∑ $%&%�'( � %&%�-�*."�/�*���"+ ��)�, ).�   (A.2) 

where f is the polynomial of degree K, ai is the ith order coefficient of the polynomial f, u(ai) 

is the standard uncertainty of the coefficient ai, and u(ai, aj) is the covariance associated with 

ai and aj. All u(ai) and u(ai, aj) can be estimated by calculating the covariance matrix from the 

calibration data. 

The combined standard uncertainty of the measurement result θ, designated by uc(θ), is 

obtained from: 

�1��� = �����! ��� + �1�2�3! ��� = �����! ��� + ���&! ��� + ��� ! ���   (A.3) 

The combined standard uncertainty uc is then multiplied by k = 2, leading to the overall 

expanded uncertainty (U) with a level of confidence of approximately 95%. 
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Nomenclature 

List of Symbols 

a = coefficient of the polynomial f (in Appendix) 

f = polynomial correlating the displayed values and those given by the reference during 

calibration step (in Appendix) 

k = coverage factor for uncertainty estimation 

K = degree of the polynomial f (in Appendix) 

N = number of independent observations (in Appendix) 

P = pressure (bar) 

T = temperature (K) 

u = standard uncertainty (see Appendix) 

u(ai, aj) = covariance associated with ai and aj (in Appendix) 

U = overall expanded uncertainty 

v = liquid molar volume 

x = mole fraction in liquid phase 

y = mole fraction in vapor phase 

Greek letters 

α1/2 = relative volatility of component (1) versus component (2) 

γ = activity coefficient 
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θ = measurand (in Appendix) 

λ = Wilson interaction parameter 

φ = fugacity coefficient 

ω = acentric factor 

Subscripts 

1 = relative to component (1) of binary system 

2 = relative to component (2) of binary system 

c = relative to combined uncertainty (in Appendix) 

avg = relative to arithmetic mean (in Appendix) 

cr = relative to critical point 

cal = relative to calculated data 

calib = relative to calibration (in Appendix) 

exp = relative to experimental data 

ref = relative to reference (in Appendix) 

reg = relative to polynomial regression (in Appendix) 

rep = relative to measurement repeatability (in Appendix) 
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Table 1. Test systems measured via the proposed apparatus and previously performed 

measurements 

 

Table 2 Chemical sample 

 

Table 3 Critical pressure (Pcr), critical temperature (Tcr), acentric factor (ω) and liquid molar 

volume (v) at 298.15 K of the involved compounds 

 

Table 4. Experimental data and correlation results for the n-butane (1) + ethanol (2) system 

measured via the proposed apparatus 

 

Table 5. Deviations of calculated data from experimental data for the four binary systems 

measured by the proposed apparatus and by other methods 

 

Table 6. Experimental data and correlation results for the diethyl sulfide (1) + ethanol (2) 

system measured via the proposed apparatus 

 

Table 7. Experimental data and correlation results for the diethyl sulfide (1) + n-butane (2) 

system measured via the proposed apparatus 
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Table 8. Experimental data and correlation results for the 1-pentanethiol (1) + 1-pentanol (2) 

system measured via the proposed apparatus 
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Table 1 

Improved apparatus Previous experimental methods 

Test System T (K) P (bar) Method Data type P (bar) Ref. 

n-butane + 
ethanol 

323.22 0.4 – 5.0 

Static-
synthetic 

PTx 1.3 – 5.0 [23] 

Classic static-
analytic 

PTxy 4.0 – 5.0 [19] 

diethyl sulfide 
+ ethanol 

343.15 0.5 – 0.9 
Circulation 
still 

PTxy 0.5 – 0.9 [24] 
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Table 2 

Chemical name Source Initial purity 
Purification 

method Final purity 
Analysis 
method 

n-Butane Air Liquide 0.995 vol. None -- SM a 

Ethanol Fischer Chemical 0.9999 mol. None -- SM 
Diethyl sulfide Sigma-Aldrich 0.98 mol. None -- SM 

1-Pentanol Sigma-Aldrich 0.99 mol. None -- SM 
1-Pentanethiol Sigma-Aldrich 0.98 mol. None -- SM 

a Supplier method 
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Table 3 

Compound n-butane Ethanol Diethyl sulfide 1-Pentanol 1-Pentanethiol 
Pcr

 a (bar) 37.96 61.37 39.60 39.09 34.70 
Tcr

 a (K) 425.12 513.92 557.00 588.15 598.00 
ω

 a 0.200 0.649 0.295 0.579 0.321 
v b (cm3/mol) 101.40 58.63 108.36 108.54 124.53 

a from Ref. [27] 
b calculated through DIPPR correlation [28] 
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Table 4 

x1 exp U(x1) 
Nb. of 

samples 
y1 exp U(y1) 

Nb. of 
samples 

Pexp
 a 

(bar) 
∆y1

 b 
∆P c 
(bar) 

T = 323.22 K d; λ12  = 1414.3 J/mol & λ21 = 8536.9 J/mol 
0 -- -- 0 -- -- 0.294 -- -- 

-- e -- -- 0.272 0.009 6 0.413 -- -- 
-- e -- -- 0.423 0.008 6 0.526 -- -- 

0.014 0.001 9 0.568 0.009 5 0.702 -0.019 -0.015 
0.032 0.001 11 0.743 0.007 5 1.205 -0.014 -0.016 
0.053 0.002 8 0.819 0.005 5 1.713 -0.009 0.000 
0.078 0.003 9 0.863 0.004 6 2.208 -0.003 0.009 
0.109 0.004 10 0.892 0.003 5 2.718 0.000 0.019 
0.205 0.006 7 0.924 0.003 6 3.720 0.001 0.031 
0.323 0.008 9 0.938 0.002 6 4.320 0.002 0.014 
0.544 0.009 8 0.943 0.002 6 4.734 -0.002 -0.020 

a U(P) = 0.002 bar for P < 1 bar; U(P) = 0.003 bar for P > 1 bar 
b ∆y1 = y1 exp - y1 cal 
c ∆P = Pexp - Pcal 
d U(T) = 0.02 K 
e Liquid phase compositions were below the detection threshold of the TCD. 
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Table 5 

Binary system T (K) AAD y1
 a AARD P b (%) Ref. 

n-butane (1) + ethanol (2) 323.22 0.006 0.8 this work c 
 323.25 0.004 1.4 [19] 
 323.75 -- 0.4 [23] 
     

diethyl sulfide (1) + ethanol (2) 343.13 0.006 0.7 this work c 
 343.15 0.003 0.4 [24] 
     

diethyl sulfide (1) + n-butane (2) 317.62 0.004 1.2 this work c 
 317.60 0.001 1.0 [25] 
 343.14 0.002 0.5 this work c 
     

1-pentanethiol (1) + 1-pentanol (2) 372.75 0.007 0.5 this work c 
 392.72 0.005 0.3 this work c 

a Average absolute deviation: 

���	�� = (1/
)� 
���	 ��� � − ��	 ��� 	���
�

���
 

b Average absolute relative deviation: 

����	�	(%) = (100/
)� 
����� � − ���� 	��/���� ��
�

���
	 

c Data set used for parameter fitting 
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Table 6 

x1 exp U(x1) 
Nb. of 

samples 
y1 exp U(y1) 

Nb. of 
samples 

Pexp
 a 

(bar) 
∆y1 ∆P (bar) 

T = 343.13 K b; λ12 = 497.6 J/mol & λ21 = 4778.8 J/mol 
0 -- -- 0 -- -- 0.720 -- -- 

0.027 0.001 12 0.069 0.002 6 0.753 0.001 -0.004 
0.063 0.002 6 0.139 0.004 5 0.798 0.000 0.005 
0.110 0.003 6 0.204 0.006 6 0.825 -0.001 -0.001 
0.148 0.004 9 0.244 0.006 6 0.848 0.000 0.004 
0.243 0.006 6 0.317 0.007 6 0.871 0.003 -0.001 
0.321 0.007 6 0.362 0.008 6 0.878 0.009 -0.002 
0.368 0.008 6 0.375 0.008 6 0.883 0.003 0.001 
0.444 0.008 5 0.407 0.008 6 0.877 0.008 -0.003 
0.649 0.008 6 0.483 0.008 5 0.847 0.016 -0.005 
0.761 0.006 5 0.541 0.009 5 0.811 0.022 -0.002 
0.902 0.003 10 0.660 0.008 5 0.707 0.002 0.009 
0.964 0.002 10 0.811 0.005 5 0.608 -0.002 0.017 
0.979 0.001 10 0.885 0.004 5 0.563 0.006 0.009 

1 -- -- 1 -- -- 0.497 -- -- 
a U(P) = 0.002 bar 
b U(T) = 0.03 K 
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Table 7 

x1 exp U(x1) 
Nb. of 

samples 
y1 exp U(y1) 

Nb. of 
samples 

Pexp
 a 

(bar) 
∆y1 ∆P (bar) 

T = 317.62 K b; λ12 = 346.0 J/mol & λ21 = 1053.6 J/mol 
0.090 0.003 6 0.009 0.001 5 3.909 0.001 0.006 
0.268 0.007 6 0.024 0.001 5 3.233 0.000 0.005 
0.461 0.009 5 0.042 0.002 5 2.551 -0.002 0.000 
0.678 0.008 5 0.079 0.003 5 1.719 -0.003 -0.040 
0.847 0.005 5 0.157 0.005 5 0.991 -0.007 -0.036 
0.973 0.001 6 0.507 0.009 5 0.354 -0.013 -0.003 

1 -- -- 1 -- -- 0.190 -- -- 
T = 343.14 K b; λ12 = 304.0 J/mol & λ21 = 994.4 J/mol 

0.088 0.005 6 0.014 0.001 5 7.323 0.002 -0.044 
0.225 0.006 5 0.030 0.001 5 6.308 0.001 -0.022 
0.383 0.008 5 0.051 0.002 6 5.206 -0.001 -0.033 
0.608 0.008 5 0.096 0.003 5 3.717 -0.002 0.000 
0.805 0.006 5 0.186 0.006 5 2.231 -0.006 -0.033 
0.969 0.002 6 0.604 0.009 5 0.806 0.001 0.001 

1 -- -- 1 -- -- 0.497 -- -- 
a U(P) = 0.002 bar for P < 1 bar; U(P) = 0.003 bar for P > 1 bar 
b U(T) = 0.03 K 
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Table 8 

x1 exp U(x1) 
Nb. of 

samples 
y1 exp U(y1) 

Nb. of 
samples 

Pexp
 a 

(bar) 
∆y1 ∆P (bar) 

T = 372.75 K b; λ12 = 384.2 J/mol & λ21 = 2970.6 J/mol 
0 -- -- 0 -- -- 0.243 -- -- 

0.056 0.002 6 0.197 0.006 5 0.283 0.011 -0.001 
0.130 0.004 8 0.351 0.008 6 0.323 0.010 -0.003 
0.203 0.006 7 0.452 0.009 5 0.357 0.010 -0.003 
0.321 0.008 7 0.560 0.009 6 0.401 0.009 0.000 
0.543 0.009 6 0.685 0.008 5 0.442 0.005 -0.004 
0.838 0.005 6 0.834 0.005 5 0.466 -0.002 -0.002 
0.942 0.002 6 0.925 0.002 5 0.461 0.000 -0.001 

1 -- -- 1 -- -- 0.451 -- -- 
T = 392.72 K b; λ12 = 243.6 J/mol & λ21 = 2868.5 J/mol 

0 -- -- 0 -- -- 0.534 -- -- 
0.052 0.002 6 0.147 0.004 5 0.591 0.007 -0.004 
0.123 0.004 6 0.280 0.007 6 0.658 0.004 -0.004 
0.209 0.006 6 0.392 0.008 6 0.723 0.000 -0.002 
0.390 0.008 7 0.550 0.009 6 0.814 0.003 0.000 
0.584 0.008 6 0.670 0.008 7 0.861 0.008 -0.003 
0.828 0.005 10 0.819 0.005 6 0.882 0.008 0.002 
0.865 0.004 7 0.849 0.005 5 0.877 0.008 0.001 
0.940 0.002 9 0.920 0.003 5 0.859 0.004 0.001 

1 -- -- 1 -- -- 0.831 -- -- 
a U(P) = 0.002 bar 
b U(T) = 0.03 K 
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Figure 1. Flow diagram of the proposed apparatus. 6PV: 6-port sample injection valve; C: 

carrier gas; EC: equilibrium cell; GC: gas chromatograph; LS: liquid ROLSITM sampler; MS: 

magnetic stirrer; PP: platinum resistance thermometer probe; PT: pressure transducer; PVT: 

PVT chamber for liquid phase sampling; SL: Sample Loop; Vi: valve; VP: vacuum pump; VS: 

vapor ROLSITM sampler; VSM: variable speed motor. 

 

Figure 2. (A) Isothermal Pxy diagram for the VLE of the n-butane (1) + ethanol (2) system. 

(B) Relative volatility α1/2 plotted versus x1. (○) Data measured in this work at 323.22 K; (△) 

Data from Holderbaum et al. [23] measured by static-synthetic method at 323.75 K; (□) Data 

from Soo et al. [19] measured by classic static-analytic method at 323.25 K; (—) calculated 

by Wilson model. Error bars: expanded uncertainties calculated from composition 

uncertainties (k = 2). 

 

Figure 3. (A) Isothermal Pxy diagram for the VLE of the diethyl sulfide (1) + ethanol (2) 

system. (B) Relative volatility α1/2 plotted versus x1. (○,●) Data measured in this work at 

343.13 K; (□,■) Data from Sapei et al. [24] measured by circulation still at 333.15 K; (—) 

calculated by Wilson model. Error bars: expanded uncertainties calculated from composition 

uncertainties (k = 2). 

 

Figure 4. Isothermal Pxy diagram for the VLE of the diethyl sulfide (1) + n-butane (2) system. 

(○) Data measured in this work at 317.62 K and 343.14 K; (□) Data from Dell’Era et al. [25] 

measured by the static-synthetic method at 317.60 K (vapor phase compositions were 

calculated through SRK EoS [21]) ; (—) calculated by Wilson model. 
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Figure 5. Isothermal Pxy diagram for the VLE of the 1-pentanethiol (1) + 1-pentanol (2) 

system. (○,●) Data measured in this work at 372.75 K and 392.72 K; (—) calculated by 

Wilson model. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

 


