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Abstract

In this work, we study the importance of socio-
economic factors of residential customers for esti-
mating daily peak and total load, at fine temporal
granularity. We do so by generating a compact set of
heuristic rules using random forests. Compared with
black-box time series prediction models in previous
works, the rule set we obtain is highly interpretable
and makes it easy to fuse human experts domain knowl-
edge. In addition, we quantify and rank the importance
of socio-economic features in the rule set for the
forecast task. Our experimental analysis, which uses
a publicly available dataset of over 3,800 households,
providing consumption data for 1.5 year, highlights the
superiority of tree-based models over state-of-the-art
techniques that use support vector machines.

1. Introduction

Recent development of smart meter technologies
have enabled energy providers to collect fine-grained
(e.g., hourly) customer usage records. Analyzing large
amounts of consumption data helps energy utilities
to build user profiles, which opens opportunities to
develop new customer oriented services. The liber-
alization of energy markets and added transparency
of energy data motivates providers to offer energy
tariff schemes better suited to customers’ personal
preferences: several energy providers have already put
in place dynamic billing strategies and provide energy-
saving services based on consumption data analytics
[1], [2]. From the perspective of grid management
systems, collecting and processing large amount of
consumption records allow utilities to leverage energy
production flexibly, to cope with peak usage, and
monitor the health of the distribution grid at fine
temporal granularities.

In this context, load forecast is a critical operation
that involves the prediction of electricity consumption

characteristics, e.g., demanded power level of grid
substations or house-holds, over a variety of time
horizons (minutely, hourly, daily or even yearly) [3],
[4], [5], [6], [7]. Utilities greatly benefit from load
forecasts for the managament of the energy supply-
demand balance and the interaction of flexible load
switching schemes [8]. In energy science, many stud-
ies focus on how to improve forecast accuracy us-
ing statistical time series processing algorithms [3],
[6], [9], [10], [11], [17]. In contrast, little attention
has been devoted to studying the impact of socio-
economic factors in building customer usage profiles.
Like any other private consumption records, e.g., on-
line shopping histories, electricity usage is also a
consumer oriented process, which can be inferred
from customers’ behavioral habits and householding
characteristics [2], [12], [13]. As opposed to histor-
ical consumption associated with proprietary meters
linked to a specific house, socio-economic factors are
bound to customers and are expressed independently
of a specific provider. The association between such
factors and energy consumption patterns allows new
incumbents to estimate energy demand profiles, even if
few and incomplete historical consumption records are
available. Moreover, although smart meter technology
is emerging in the landscape of energy-related industry,
energy providers still stand at the very early stage of
deploying new generation meters. For most end-users,
energy providers are unable to collect fine-grained his-
torical consumption records.Therefore socio-economic
customer profiles turn out to be a quintessential asset
that should be exploited.

The aim of our work is two-fold: i) we propose
a heuristic forecast model of customers’ daily en-
ergy usage patterns based on their socio-economic
factors and, ii) we identify the most important factors
for forecasting purposes. As such, the results of our
work can help utilities to investigate characteristics
of energy usage of each end-user, avoiding verbose
questionnaires and reducing the intrusiveness of private
information collection. Our empirical study uses a



large-scale public dataset of electricity usage patterns
of residential consumers. We proceed by defining two
behavioral indicators, namely peak load and total
electric consumption as the forecasting targets. Then,
we design a forecasting model based on random forests
[14], [15] to model the association between customers’
socio-economic factors and the two indicators. Es-
sentially, our ultimate goal is to estimate energy us-
age profiles based on their socio-economic attributes.
Applications of the methods we study in this work
are numerous. Based on the two selected indicators,
energy providers can set a proper power limit for each
customer and protect the grid from risk of overloading
during daily peak hours [3], [10], [11]. Utilities can
use the forecasting results to tune billing prices and
energy production dynamically, according to variation
of energy usage [4], [5]. For individual customers, the
forecasting model can help them adjust their energy
usage and reduce their bills [16].

The remainder of the paper is organized as follows.
A review of the related research progress in load fore-
casting and a description of the necessary background
on random forests is given in Section 2. In Section 3, a
brief overview the statistical properties of the dataset
used is performed along with a quantification of the
information conveyed by the socio-economic factors
extracted from the dataset. In addition, the feasibility
of using data-driven models to estimate energy usage
patterns through socio-economic factors is discussed.
Section 4 describes the experimental configuration in
detail. Moreover,the forecasting performance of this
approach is compared to the current state-of-the-art. In
doing so,the stability of our approach is investigated
and a quantified ranking of the importance of the
socio-economic features is defined for the forecast
task.Section 5 concludes the paper.

2. Background and Related Work

In this Section, current efforts toward the design
and operation of load forecast mechanisms is examined
andthe necessary background on the techniques used
in this paper is provided, namely decision trees and
random forests.

Current Approaches to Load Forecasting. Load
forecasting has received a lot of attention lately: most
research work in this domain can be categorized into
three categories.

Firstly, time-series based methods are used to
model temporal causality of energy demand between

the past and future [5], [6], [7], [9], [17], [18], [19],
[20]. Popular machine learning algorithms, such as
ARIMA [20], SVM [5], [19] and neural networks [17],
[18], build black-box models of temporal dynamics.
Thus, prediction is achieved following the learned
functional mapping between past and future energy
usage patterns. Accurate as they are, they offer no
insights on the underlying phenomenon behind the
time evolution of energy demand, and the predicitive
models cannot be easily generalized.End user models
are commonly userd as an alternative to black-box
methods [1], [3], [4], [6], [8], [11], [16].This model
requires information about housing conditions, electri-
cal appliance usage and environmental factors. The key
idea of the this model is to disaggregate daily energy
consumption into elementary components – including
heating/cooling, water usage, cooking and other behav-
iors – which are used to interpret the temporal variation
of clients’ energy demand. Thus, forecasting models
use relations between the collected information and
energy consumption profiles. The shortcoming of end-
use models is that forecasting performance depends
heavily on the quality of available information, which
makes them sensitive to noise.

Econometric methods [3], [4], [6], [12], [13], [16]
combine the above two techniques. Such models es-
timate the relationship between energy consumption
profiles and the factors influencing consumption be-
havior, using the least fitting error criterion as in time-
series based methods. Econometric models are built
by learning the mapping from pairs of input factors
and output energy consumption profiles automatically,
which is appealing for realistic application deploy-
ments. Hence, this category has gained popularity
recently.

Although energy demand-supply does not closely
obey typical market laws, the purchase-consumption
relation between utilities and end-users indicates en-
ergy usage is intrinsically a type of consumption
behavior similar to on-line purchasing in e-commerce.
The basic motivations driving clients to purchase
more electricity is to satisfy their living requirements.
Therefore, clients’ comfort preferences, income levels,
family structure, residential status, electrical appliances
and environmental features, or, in short, their socio-
economic status, can therefore change electricity us-
age behavior dramatically, which in turn determines
consumption profiles.

As discussed above, end-use model explicitly inte-
grate such factors in the forecasting model. However,
they require human experts’ interference to tail the



input factor set. To the best of our knowledge, the
integration and ranking of socio-economic features for
load forecasting through automatic learning from en-
ergy usage data has remained elusive in the literature.
Using the methodology described in this work, we
study how to appropriately, and automatically select
socio-economic factors to build an energy forecast
model. In doing so, we unveil which are the most
relevant features that contribute to accurate predictions,
and which can be safely dismissed as they contribute
little to the predictive power of our model.

Random Forest Models.

The forecasting model in this work is based on
random forests. Its concept dates back from the inden-
pendent work of Tin Kam Ho and Amit and Geman
[14], [21] as a an ensemble variant of decision tree
[14], [15]. The central idea is to construct a set of
decision trees independently by bootstrapping training
data. The output of a random forest is obtained, e.g.,
through majority voting or with a simple average of
the output of each individual tree model. Each decision
tree in a random forest is a tree-like rule chain based
on input variables for classification or regression. Each
rule is a branch-split operation comparing one input
variable with a predefined threshold. An input sample
is then forwarded to different decision branches for
finer analysis. The hierarchical split-branch operations
form a coarse-to-fine white box model, which can
explain explicitly how input factors are combined to
achieve a complete decision making procedure.

The main motivation of random forests stems from
the fact that a single tree model is sensitive to noise
and produces predictions with large variance. Random
forests mitigate the issue by injecting randomness into
the tree structures and finally aggregating the output of
the decision trees built independently. First, bootstrap
sampling helps produce different randomly sampled
training data subsets. Then, a decision tree is trained
using each subset. In addition, input attributes are also
bootstrapped, and the selected attribute subsets are
used to learn the tree structure: as such, individual
decision trees are largely independent one from each
other. Averaging the outputs over several learned trees
can substantially reduce the variance and improve sta-
bility in the final decision output. Despite a seemingly
complex procedure, random forests can be used to
assess the importance for each input attribute.

The properties of random forest makes itself a
perfect fit for the goal of our work. One further
aspect that has not been addressed so far, pertain
to the scalable implementation of a random forest

algorithm. Although out of the scope of this paper –
and thus excluded from our contributions – significant
development was dedicated to parallel design of a
random forest algorithm. We did so by relying on the
functional paradigm offered by data-intensive scalable
computing systems such as Apache Spark [22]. Essen-
tially, the proposed algorithm follows the MapReduce
programming model, and the forecasting models are
built by executing on a parallel platform, particular at-
tention was given to the iterative nature of the random
forest process: intermediate data materialization was
avoided (which contributed to a large extent to poor
runtime performance) using in-memory, reliable data
structures. We omit further details of our algorithm to
avoid distracting readers from the goal of this work.

3. Load Forecasting using Socio-
economic Factors

A detailed description of the dataset used in this
work is provided, which identifies the features used
to learn the proposed model. The statistical properties
of such features are analyzed with emphasis on socio-
economic indicators. As a general remark, the large
volume of the available training samples offers a large
coverage of energy and socio-economic factors, which
in turns improve model generability.

3.1.The dataset

The CER ISSDA dataset is a publicly available
energy consumption trace, collected by the Irish Com-
mission for Energy Regulation (CER) in a smart
meter study [23]: it contains electricity consumption
data of 4,225 private households and 485 small /
medium enterprises; the trace covers 1.5 years (from
July 2009 to December 2010). For each customer,
the daily load curve is sampled every 30 minutes:
energy data can be thought of as a series of timestamps
and energy readings. In addition to energy data, the
dataset includes a series of survey sheets and answers
for each consumer, describing their housing condition,
occupancy, employment status, income level, social
class, appliance usage information and other socio-
economic factors. 41 survey questions belonging to
five categories were carefully selected, that allowed to
build consumer profiles based on heating and lighting
behavior, hot water and other electrical appliances
usage: a complete list of features is shown in Tab. 1.
For this work, users with less than 10% of survey



Category Features

Household Profiles
Total number of occupants
Number of occupants > 15 years old
Number of occupants < 15 years old

Chief Income Owner

Gender
Age
Employment status
Social class of the chief income
Education level

Behavior Related

Interests in reducing bills by installing smart
meters
Interests in helping protect environments
Interests in helping others who live with you
to reduce bills
Having succeeded in reducing the energy cost
Having made changes in the energy consump-
tion
Willing to reduce energy consumption to pro-
tect the environment
Having the knowledge to reduce the energy cost

House Characteristics

Type of the house
The year when the house is built
Number of bedrooms
The proportion of double gazed windows in the
house

Main Electrical Appliances

Type of the heating appliances in the house
Type of the appliances to heat water in the
house
Type of the cooking appliances
Type of the heating energy control system
Type of the heating water control system
Whether the house is always kept with adequate
temperature

Other Electrical Appliances

Whether there is a washing machine
Whether there is a tumble dryer
Whether there is a dishwasher
Whether there is an instant electric shower
facility
Whether there is an electric shower which
pumps from hot water tank
Whether there is an electric cooker
Whether there is an electric heater
Whether there is a stand alone freezer
Whether there is a water pump or electric well
pump or pressurized water system
Whether there is an immersion

Weather
Heating Degree Days
Cooling Degree Days
Daily Average Humidity

Temporal Features
Is Holiday
Month of the Year
Day of the Week

Table 1: Breakdown of features extracted from surveys
in the dataset and additional environmental factors.

coverage are eliminated, which results in a dataset of
3,822 households.

3.2.Predictors used in the forecasting task

In addition to the socio-economic factors outlined
in Sec. 3.1, we complement the predictors we use in
the forecasting task with environmental features, which
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Figure 1: Probability density function of the two fore-
casting targets.

are significant for energy consumption profiling [18].
The first two are heating degree days and cooling
degree days, evaluating quantitatively the needs to start
heating or air conditioning appliances to keep an ade-
quate environmental temperature. We also consider the
daily average humidity, which represents the average
air humidity level during a one-day interval: indeed,
days with the same temperature but higher humidity
level generally needs more energy to keep warm in
winter or cool in summer. Finally, we include month of
year, day of week and holiday index: the first feature
represents the seasonal weather change, directly and
strongly affecting energy usage profiles of all involved
customers; the others features differentiate occupancy
patterns of residential customers.

The input of our data-driven forecasting model
includes a total of 41 factors, that are summarized in
Tab. 1. Note that our predictors are of mixed formats,
including both numeric and categorical types. As a
consequence, a random forest model – which treats
predictors uniformly in the splitting operation – is a
more appropriate choice as compared to previously
used statistical regressors, such as Support Vector
Machine (SVM) [24], for which categorical predictors
are problematic.

3.3.Statistical profile of the load forecast task

The statistical profile of the dataset can be con-
structed using well-known feature ranking statistics to
provide formal grounding to the key idea of this work:
the goal is to show that socio-economic factors play an
important role as predictors for a forecasting model.

As we observe in Fig. 1, the distributions of daily
peak loads and daily total consumption are light-tailed:
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Figure 2: Mutual information of each feature in the
prediction of peak load consumption and daily con-
sumption.

the majority of the measurements locate around the
mean, and there are no outliers.1

mutual information criterion [15], [25] was then
used to illustrate the correlation between each input
factor and the forecasting target: the larger the mutual
information, the higher the correlation between the two
random variables. Specifically, Kullbeck-Leiber diver-
gence of the product of marginal distributions of two
random variables x and y from the joint distribution
of them was used, as illustrated in Eq. 1:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x) p(y)

)
(1)

Fig. 2a and 2b report the mutual information for
all the 41 socio-economic factors extracted from our
dataset. More specifically, Tab. 2 reports the top-15
factors (sorted in descending order of mutual informa-
tion), that are mostly related to daily peak loads and
daily total energy usage respectively. We emphasize
that here, the mutual information is not used to rank
predictors for the purpose of feature selection.

From Tab. 2, occupancy attributes, the number
of bedrooms, age of the clients, employment status
of the clients, usage of tumble dryer and usage of
dishwashers, are the common key elements influencing
both peak loads and total amount of energy consump-
tion, which are related to clients consuming capacities,
potential electricity needs to keep proper temperatures
and daily housework.

1. In general, outliers are often caused by either mistakes in
measurement or faulty meters, and they usually increase the bias
of data-driven models, leading to performance degradation.

Prediction of daily peak loads Prediction of daily total en-
ergy usage

Total number of occupants Total number of occupants
Number of occupants > 15
years old

Number of occupants > 15
years old

Whether there is a dishwasher Whether there is a dishwasher
Whether there is a tumble dryer Number of bedrooms
Number of occupants < 15
years old

Whether there is a tumble dryer

Whether there is an electric
cooker

Number of occupants < 15
years old

Number of bedrooms Whether there is a stand-by
freezer

Type of the cooking appliances Age
Age Type of the house
Employment status Employment status
Whether there is an instant elec-
tric shower facility

Whether there is an electric
cooker

Willing to reduce energy con-
sumption to protect the environ-
ment

Month of year

Social class of the chief income Type of the heating appliances
in the house

Type of the heating appliances
in the house

Type of the appliances to heat
water in the house

Type of the appliances to heat
water in the house

Social class of the chief income

Table 2: Top 15 factors in prediction tasks using mutual
information criterion

For the purpose of the forecasting task, the analysis
indicates that cooking appliances – because they con-
sume a lot of energy – largely contribute to the mag-
nitude of the daily peak energy consumption. Instead,
such appliances only marginally affect the the daily
total energy consumption, as their usage is restricted
to a small interval of time. In contrast, our analysis
indicates that house category and usage of a stand-
alone freezer device are key factors for the daily total
energy consumption, but are weakly related to the daily
peak load. Such results follow common sense: the type
of the house is related to the thermal performance and
inertia of the house, which crucially affects the total
amount of energy – required to maintain a desirable
temperature in the house. It has been shown that a data-
driven model based on socio-economic factors may
indeed find associations between user profiles and their
consumption behavior. This method will be compared
with the state of the art for validation.

4. Experimental Evaluation

The performance of the proposed random forest
model is evaluated for forecasting daily peak loads and
total electricity consumption of each residential user. In
addition, the proposed method is compared to a state-



of-the-art approach of time series forecasting, Support
Vector Machine (SVM), for validation purposes. We
conclude with an analysis of the importance ranking
of input socio-economic and environmental factors.

4.1.Comparison of Forecasting Models

The experimental methodology is as follows. For
each of the 3,822 users and for the 1.5 year dura-
tion of our dataset, daily peak load measurement (in
KiloWatt) and daily total electricity consumption (in
KiloWattHour) are extracted to build the prediction
targets. Input predictors are the 41 features described
in Sec. 3. Therefore, we obtain 1,615,541 training
samples, containing the input-output pairs for each of
the forecasting tasks.

Metrics. For all models involved in our comparative
analysis, we measure the forecasting performance –
precisely, the accuracy of model fiiting – using coeffi-
cient of determination R2 [15], [25]: it is defined by
the ratio between the sum of square regression residual
error and total sum of squares of the forecasting target.
Large values of R2 indicate an agreement between the
model and the underlying real output, which translates
in higher accuracy. Note that for really biased predic-
tions, the coefficient can be zero or negative, while it
is upper bounded by 1.

In this work, the relative ratio coefficient is used
instead of the sum of square error, such that the
variance of underlying forecasting target is taken into
consideration to define an accuracy indicator. Higher
variance implies that it is more difficult to construct
a model to explain the overall data distribution. Thus,
the R2 coefficient is a more fair evaluation criterion of
the model forecasting power than the sum of square
errors. Eq.2 formalizes the performance metric, where
yi and fi are the ground truth and the corresponding
predicted value and ȳ is the empirical expectation of
the ground truth.

R2 = 1−
∑

i (fi − yi)
2∑

i (yi − ȳ)
(2)

Forecasting models. The main parameter of ran-
dom forests is the number of trees constructed in
the ensemble model to perform a final vote. In the
experiment, this parameter is varied in the range
{50, 100, 200, 300, 400}, and the stability of forecast-
ing performance is investigated. Once the random for-
est model is constructed, the out-of-bag error [15], [25]

Model Peak Load: R2 Total Load: R2

RF(50) 0.5214 0.7151
RF(100) 0.5240 0.7261
RF(200) 0.5127 0.7236
RF(300) 0.5208 0.7100
RF(400) 0.5157 0.7070
SVM 0.4816 0.6572

Table 3: Generalization error of peak load and total
electricity consumption prediction, with the Random
Forest Model (RF) and SVM. Results for the RF model
include values for the tree parameter (in parenthesis)
we used.

of the random forest is used directly as the estimation
of the model generalization error. Note that the split-
branch operation in the random forest constructs a
piecewise linear regression model, which can handle
non-linearly distributed data without introducing addi-
tional algorithmic components.

Since the training set consists in more than 1.8
million records, a standard approach such as SVM can
not afford the construction of a huge kernel matrix to
enforce a non-linear regression in memory: hence, we
use a linear kernel SVM. The training configuration
of SVM is carefully selected through a 5-fold cross-
validation. After fixing the configuration parameter, the
SVM training ends by providing a linear regressor:
5-fold cross-validation is employed again to estimate
its generalization error. Overall, the computational
complexity of building the random forest model is
O(mn log(n)), where m is the number of trees, n
is the number of bootstrapped training samples to
construct each tree in the model. Considering that m
is usually much smaller than n, the complexity of
random forest is comparable to or smaller than the
quadratic programming cost of SVM [15], [24], which
is between O(n2) and O(n3). It is noted that the im-
plementation of the random forest uses the MapReduce
programming model, which is compiled to be executed
on the Apache Spark platform. In the interest of space,
the algorithmic details of the approach is not provided.
However its capability goes beyond the embarassingly
parallel nature of the random forest model, by also
using parallel algorithms to build individual trees. As
such, the method can scale to large datasets.

Results. Tab. 3 summarizes the generalization error for
the propsed method and SVM. In general, this method
outperforms SVM: precisely, the highest accuracy is
achieved with an ensemble of 100 trees, for both
forecasting tasks. Indeed, although more trees can
reduce variance, they might increase the model bias.
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Figure 3: Prediction of peak load level of one user
during one month.

There are two main reasons for the superiority
of the approach. First, SVM treats categorical inputs
as numerical variables, which hinders the task of
defining an appropriate similarity measure: therefore,
categorical information is essentially lost during the
construction of the SVM model. Furthermore, due to
the computational complexity and memory require-
ments, the SVM model is linear: thus, it cannot model
the non-linear relation between socio-economic fea-
tures and energy consumption profiles. In contrast,
the random forest method does not suffer from such
limitations. For illustrative purposes, Fig. 3 and 4 show
two instances of the forecasting task for daily peak
load and daily total consumption respectively: the solid
line corresponds to the ground truth of daily peak
load or daily total consumption measurements, while
the dashed line represents the estimated values using
the random forest model. These figures reveal that
our method achieves higher predictive power for the
total daily consumption than for the daily peak load,
which confirms our findings in Tab. 3. The random
forest model obtains distinctively higher R2 in daily
total consumption prediction. The results are explained
as follows. Peak loads, as an instant power level
measurement, are easily affected by householders’
occupancy duration, appliances’ working status, and
in general, time-of-day related behavior. Such effects
inject randomness into daily peak load patterns, which
in turn are hardly represented comprehensively by
the questionnaire used to derive input features of our
model. In contrast, the daily total consumption, as a
cumulated sum of energy consumption measurements,
is less prone to random fluctuations due to time-of-
day behavior. As a consequence, the model built with
the approach contains a strong association to the static
socio-economic features available in the dataset.
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Figure 4: Prediction of total consumption usage of one
user during one month.

Prediction of daily peak loads Prediction of daily total en-
ergy usage

Total number of occupants Total number of occupants
Number of occupants > 15
years old

Number of occupants > 15
years old

Type of the cooking appliances Average daily heating degree
days

Whether there is an electric
cooker

Number of bedrooms

Average daily heating degree
days

Whether there is a dishwasher

Whether there is a tumble dryer Month of year
Whether there is a dishwasher Whether there is a tumble dryer
Type of the appliances to heat
water in the house

Whether there is an electric
heater

Whether there is an instant elec-
tric shower facility

Whether there is a stand-by
freezer

Whether there is an electric
heater

Type of the appliances to heat
water in the house

Age Whether there is an electric
cooker

Whether there is a stand-by
freezer

The year when the house is built

Education level Whether there is an electric
shower which pumps from hot
water tank

Having made changes in the en-
ergy consumption

Employment status

Number of bedrooms Age

Table 4: Top 15 factors in prediction tasks.

4.2.Importance Ranking of the Socio-economic
and Environmental Factors

An important by-product of the proposed random
forest model is the inherent ranking of each input
factor toward the forecasting task. The quantitative
scores produced by our method are used to evaluate the
importance of association between the socio-economic
factors and daily energy usage profiles.

The ordering rank of input factors were recorded,
which were derived through bootstrap sampling the
training data during the construction of the random for-



est model. Therefore, the mean and standard deviation
of the feature importance score of each input factor can
be estimated. Note the standard deviations are at least
three times smaller than the mean values for all top 15
factors. It indicates the ranking result is statistically
stable with respect to the random forest parameter,
i.e., the number of trees used to build the model
and training data sampling bias. Hence the factor
importance ranking is beyond only data-driven output,
but represents underlying association rules contained
in the data. Thus the model built with 400 trees was
used as a reference in the following discussion.

The experimental results are summarized in Tab. 4,
which reports the top-15 input factors for predicting
peak loads and total energy consumption. The rank-
ing obtained is consistent to that obtained using the
mutual information criterion in Sec. 3. The number
of occupants is ranked as the most important feature,
affecting both daily peak load level and the total
amount of energy consumption, which follows the
intuition of a direct relation between household size
and energy consumption. General appliances and age
are common features for the two forecasting tasks, but
they are ranked higher for the daily peak load than for
total consumption prediction task. Indeed, appliances
contribute to a large extent to instantaneous peaks
in energy consumption, and are generally responsible
for aggregate energy consumption as well. Appliances
that have a daily cycle (e.g. freezers) and average
daily heating degree days are also shared features in
two forecasting tasks. However, they are ranked much
higher for predicting the total daily energy consump-
tion, as they contribute to a steady energy consumption,
rather than representative of peak demand. Some im-
portant distinctive traits between the ranking obtained
by the proposed method and that based on mutual
information are examined. For peak load forecasting,
the random forest method boosts the importance of
the water heating appliances, while it downgrades
indirect factors, such as the number of bedrooms, and
completely neglect some economic factors, like social
class of the chief income and employment status. For
total daily energy consumption, the random forests
method assigns higher importance scores to factors
related to heating usage – including environmental
heating degree index, month of year, the year when
the house is built, the number of bedrooms – while
it decreases the importance of social class, age and
employment status of the owner. Overall, the ranking
produced by the random forest method is in line to that
obtained through a manual inspection of the data by
domain experts. It should be noted that environmental

temperature factor does not play an important role in
both forecasting tasks. The possible reason is high
heating loads at all times due to Irish weather status,
which limits the capability to trend the consumption
data with varying temperatures. Furthermore, the col-
lected temperature data is lack of precision for specific
region, coupled with lack of exact knowledge of the
geographic location of each household.

5. Conclusion

In this paper, the issue of forecasting daily elec-
tricity usage patterns and evaluating the influence of
clients’ socio-economic factors on energy consumption
has been addressed.

A forecasting method based on random forest that
seamlessly incorporates both clients’ socio-economic
factors and environmental factors has been proposed,
resulting in an ensemble of split-branch decision rule
chains, whereby a voting mechanism is used to achieve
a stable prediction. The rule-chain based structure
enabled the explaination of how each input features
contributes to energy consumption forecasting, thus
unveiling the underlying physical association between
predictors and the daily energy usage pattern. These
learned associations can either be used to discover
unknown factors of energy consumption behaviors,
or they can be applied as a complementary decision
support to human experts.

Experimental results based on large-scale energy
consumption records showed that the proposed random
forest method dramatically outperforms a state-of-the-
art SVM-based method, both in terms of prediction
accuracy and in terms of scalability. Additionally, our
work evaluated automatically importance of socio-
economic factors in the forecasting tasks. The result
can guide the construction of socio-economic surveys
without requiring human intervention, leading to a
decreased intrusiveness of measurement campaigns.

As shown in these experiments, daily peak load
forecasting is a difficult task, compared to aggregate
energy consumption. Future work intends to build
detailed usage patterns of large power appliances that
play a key role in determining peak loads and integrate
historical peak load information to extend the input set
of the forecasting model. In addition, we will provide
details on our parallel algorithm design of the random
forest model, and focus on its scalability properties by
conducting a large-scale experimental campaign.
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