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What are static and dynamic line rating?

• The sag of an overhead line depends on the temperature at its

core. This temperature increases with current.

• For security purposes, the sag is limited in order to maintain a

minimum clearance from objects.

• This can be achieved by limiting the maximum current of the line.
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What are static and dynamic line rating?

• Static Rating (SR): This limit is fixed for each season, and is

defined with restrictive weather characteristics.

• Dynamic Line Rating (DLR): this limit is dynamically modified

depending with weather characteristics.

𝐼𝑆𝑅 = f(Low Wind Speed,  High Ambient Temperature).

𝐼𝐷𝐿𝑅 = f(Wind Speed,  Ambient Temperature).
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Introduction – interest of Dynamic Line Rating
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Evolution of Dynamic Line Rating and Static Rating for an 110 kV line, for the period

of the 23/10/2010 to the 12/11/2010

𝐈𝐒𝐑 = f(Low Wind Speed,  High Ambient Temp.)

𝐈𝐃𝐋𝐑 = f(Measured Wind Speed,  Measured Ambient Temp.)DLR

SR
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The interest of DLR for 

wind power integration
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Interest of DLR for wind power integration

• Real case study in the Orkney

islands (UK).

• Real-time DLR permits to reduce

drastically the curtailed wind

generation.

• For one year, the total curtailed

energy is reduced from 32% to 7%

of the total produced energy.
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A. Michiorri, R. Currie, P. Taylor, F. Watson, D. Macleman, “Dynamic Line Rating deployment on the Orkney Smart Grid," CIRED, 2011
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• Study made on a simple Canadian network:
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Consumption ++

1815 k$/GWh

M. Khaki, P. Muslilek, J. Heckenbergerova, and D. Koval, "Electric Power System Cost/Loss Optimization Using Dynamic Thermal Rating 

and Linear programming," in EPEC, Halifax, NS, 2010. 

Interest of DLR – Economic benefits
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• Implementation of the DLR on the curtailed line:
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M. Khaki, P. Muslilek, J. Heckenbergerova, and D. Koval, "Electric Power System Cost/Loss Optimization Using Dynamic

Thermal Rating and Linear programming," in EPEC, Halifax, NS, 2010. 

Consumption ++

1693 k$/GWh

1815 k$/GWh

Interest of DLR – Economic benefits
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• DLR forecasts are needed because many operations for

grid management require day-ahead decisions.

• DLR forecasts can be useful for :

– Network operators: Network reliability increase.

– Market operators: Electricity market transmission capacity allocation

improved.

– Electricity producers: More possibility for bidding on the electricity

market.
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Interest of DLR forecasting

C. J. Wallnerström, Y. Huang, and L. Söder, "Impact From Dynamic Line Rating on Wind Power Integration," vol. 6, 2015.
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• Most studies focus on real-time DLR, and only few (≈5 studies) focus on

DLR forecasting.
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State of the Art – DLR forecasting

T. Ringelband, P. Schäfer, A. Moser, “probabilistic ampacity forecasting for overhead lines using weather forecast ensembles" Electrical 

Engineering, Volume 95, June 2013
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• For day-ahead forecasts, the main

one uses weather forecast

ensembles to get the density

function of the DLR.

– The reliability is correct for low

quantile forecasts.

– However, the model has been

evaluated with reanalysis data

and not with terrain data. 24 hours-ahead DLR forecasts
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• Develop a probabilistic model for day-ahead DLR

forecasting taking into account:

– Observations made at weather stations linked to the

line rather than reanalysis data.

– Numerical Weather Predictions (NWP).

• Evaluate the performance of the model through:

– Its ability to increase the exploitable rating of the line

(i.e. sharpness).

– Its ability to make safe forecasts (i.e. reliability).

T. Ringelband, P. Schäfer, A. Moser, “Probabilistic ampacity forecasting for overhead lines using weather forecast ensemble" ,Electrical 

Engineering, Volume 95, Issue 2, 2012
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• In general, we want the DLR forecast to be above

the observed DLR for the 99% to 95% of time

(depending on the case).

• For this, probabilistic forecasts are needed, the 1%

to 5%-quantile being here taken as the DLR

forecast.
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Objective - Why a probabilistic forecast?
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Case study
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Case study

• The studied case is an 110kV line located in the UK.

• Data has been collected through several weather stations located on

the line, for the period of December 2008 to January 2011:

• The wind speed (m/s).

• The direction of the wind (°).

• The temperature (°C).

• The solar radiation (W/m²).

• Historic NWPs provided by ECMWF for the same weather parameters.
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Results
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Model used for DLR prediction

 𝐷𝐿𝑅𝑡+𝑘,α = f(  𝑊𝑠,  𝑆,  𝑇,  𝑊𝑑, Ws, S, T, Wd)

• Four different probabilistic models were

developped for DLR prediction:

– A Quantile Linear Regression. (QLR)

– A Quantile Random Forest. (QRF)

– A Kernel Density Estimator. (KDE)

– A Mixture Density Neural Network. (MDNN)
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NWP Weather station observations
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• For each quantile, a linear function is fitted. For 99 quantiles, 99 linear

functions are then fitted.

• For each function, the following function is minimized:

𝑧 = 1 − 𝜏  

𝑦𝑖<𝑞

𝑦𝑖 − 𝑞 + 𝜏  

𝑦𝑖≥𝑞

𝑦𝑖 − 𝑞

• 𝜏 is the studied quantile, q is the 𝜏 – quantile forecast and 𝑦𝑖 is the

observation.

Quantile Linear Regression (QLR)
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Quantile Random Forest (QRF)

• The Random Forest generates n

decisional trees, with nodes

randomly generated.

• Each tree gives for an input X, a set

of outputs 𝑦𝑘 .

• The α-quantile forecast is the value

𝑦α such as the number of outputs

inferior to this value is equal to α%

of the total amount of outputs.
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Kernel Density Estimation (KDE)

• The method gives an estimate of the

probability density function of the

predicted DLR depending on the

input X.

• The Kernel function is a normal one.

• The smoothing parameter h is

selected through bandwith cross-

validation.

• The features are selected with a

greedy selection using the Mutual

information criterion.
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Mixture Density Neural Network (MDNN)

• The Mixture Density gives for the forecast a Probability Density Function

(PDF) equal to the sum of a limited number of PDF, here some gaussian

curves:

 𝑓ℎ(𝑥) =  

𝑖=1

𝑝

 𝛼𝑖 𝑥 ∗ 𝑓𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛( µ𝑖(𝑥), 𝜎𝑖(𝑥), 𝑥)

• µ𝑖 are the expected values, 𝜎𝑖 are the variances, 𝛼𝑖 are weights defined

with the constraint their sum is equal to 1.

• The parameters depend on the input X, and are defined through a

Neural network.

• The number of layers and terminal nodes is arbitrary selected, both

equal to 6.
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Models evaluation

• The four models are compared through:

– Deterministic indices (RMSE).

– Probabilistic indices (i.e. reliability, sharpness,

Continous Ranked Probability Score).
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RMSE indexes for 24 hours-ahead forecasts made with the four different

models.

Models evaluation
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Reliability of the different models for a 24-hour horizon, for the studied weather

station. Difference between the nominal coverage and the observed one.

Models evaluation
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Models evaluation
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Sharpness of the predictive intervals of the different models for a 24-hour 

horizon, for the studied weather station. 



Choice of model

• The Continuous Ranked Probabilistic Score (CRPS) is

used to evaluate the models:

𝐶𝑅𝑃𝑆 𝑦𝑖 =  
−∞

+∞

𝐹 𝑦 − 1{𝑦 ≥ 𝑥} ²𝑑𝑦

• 𝑥 is the observation, and F is the cumulative distribution of

the PdF.
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QLR QRF KDE MDNN

CRPS 329 206 233 176
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Models evaluation
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Day-ahead DLR forecasts made at the studied weather station, from the 

28/10/2010 to the 03/11/2010. The Model is a QRF.

Models evaluation
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Day-ahead DLR forecasts made at the studied weather station, from the 

28/10/2010 to the 03/11/2010. The Model is a QRF.
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Day-ahead DLR forecasts made at the studied weather station, from the 

28/10/2010 to the 03/11/2010. The Model is a MDNN.
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Day-ahead DLR forecasts made at the studied weather station, from the 

04/04/2010 to the 06/04/2010. The Model is a MDNN.
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For the different models, distribution of the values of errors between the 1%-DLR 

forecast and the observation, if the forecast is superior to the observed DLR.

ε= 𝑦𝑘 −  𝑦𝑘,α
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Conclusions and 

perspectives
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Conclusions and perspectives

• DLR forecasts can improve greatly the ampacity of lines. This

may help to avoid congestions in cases of high wind penetration.

• Four models were tested. The QRF appears to be the most

suitable among them for DLR forecasts, due to security

purposes.

• Future work will focus on the optimization of the models and the

demonstration of the value of DLR forecasts for power systems.
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Predicted Quantile QRF MDNN

1% 18,6% 37,4%

3% 34,7% 48,8%

5% 43,5% 55,6%

Amount of time where the 1%-

DLR forecasts are superior to 

120% of the SR
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