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Model for an indoor disturbed magnetic field
Nicolas Petit

Centre Automatique et Systèmes
MINES ParisTech

The following document proposes a model for the magnetic field that can be measured
indoor. The derivation of the parameters and of the model (along with necessary experiment
conducted by ourselves) is detailed.

1 The Stationary Indoor Magnetic Field
One can define the time-independent magnetic field Bstat(X) which is supposed to be

the stationary part of an indoor magnetic field. Mainly, this is nothing more than the local
geomagnetic field disturbed and distorted by rebar steel, metal parts with ferromagnetic
properties and permanent magnets [3],[1]. It is assumed that it can be described by :

BX,stat(X) = fBX ,X(X) + fBX ,Y (Y ) + fBX ,Z(Z)
BY,stat(X) = fBY ,X(X) + fBY ,Y (Y ) + fBY ,Z(Z)
BZ,stat(X) = fBZ ,X(X) + fBZ ,Y (Y ) + fBZ

(X,Y, Z)

where fBX ,X , fBX ,Y et cetera are analytical functions 1.

1.1 Measurement of an Indoor Stationary Magnetic Field
An estimation of the spatial course of the three components of an indoor magnetic field

is difficult to substantiate wherefore it is determined by measurements. One obtains :

fBX ,X(X) + fBX ,Y (Y ), fBY ,X(X) + fBY ,Y (Y ) and fBZ ,X(X) + fBZ ,Y (Y )

in an area of 2 m by 0.5 m . Due to the lack of test facilities fBZ ,X(Z) and fBZ ,Y (Z) had
to be estimated. fBZ

(X,Y, Z) is then given by the Gauss’s law for magnetism, that is

∇ ·B = 0

1.1.1 Experimental Setup and Execution

For the measuring series a magnetometer sensor (see [2]) was fixed on a slide, which can
be manually moved on a rail of 0.51 m in effective length. This (auxiliary) rail in turn is
bolted onto another slide, whose position, velocity and acceleration can be controlled by
computer. The corresponding (main) rail has a usable length of 2 m. Both rails are parallel

1. This assumption allows the calculation of the magnetic as an analytic function ; for this reason the
counter variable j is omitted
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Figure 1 – Sketch of the experimental setup

to the ground and, more importantly, perpendicular to each other. For this reason, the X-
axis and the Y -axis used below are chosen as such that they are parallel to the rails, see
figure 1.
The velocity profile of the automatically moved slide, that was used for the measurements is
shown in figure 2. After a waiting period of 60 s at the initial position X = 0 m the velocity
increases to 1 m/s with a prompt acceleration of 10 m/s2 and remains constant afterwards.
At the end of the main rail, videlicet at X = 2 m, the slide decelerates with −10 m/s2 and
the velocity goes back to zero. Following a delay of 90 s the velocity further decreases to
−1 m/s with −10 m/s2, meaning the slide is moving in the negative X-axis direction. When
the initial position is reached again, the slide stops, as a matter of course also with 10 m/s2.
The delay between the outward and return tour differs from the waiting time in the initial
position to facilitate the data evaluation.
The velocity was set to 1 m/s, respectively −1 m/s in order to have equidistantly distributed
measurement points. The sample frequency of the sensor is 100 Hz. In consequence, there
are 200 measurement points in X-axis direction at a distance of 0.01 m (at constant Y ).
However, the few supernumerary data emerging from the extremely fast acceleration and
deceleration processes needed to be eliminated.
Because of the shortness of the auxiliary rail and due to the fact that the second slide had to
be manually moved, there are only 17 measurement points at a distance of 3 cm in direction
of the Y -axis (for constant X). In sum, this leads to grid of 200× 17 = 3400 measurement
points.

As magnetic fields are very difficult to shield, an important point in the execution of the
measurements was to eliminate possible time-dependant components. For each Y -position
the velocity cycle described above was run 10 times at different intervals, delivering 10 × 2
measurement values for each individual point. The resulting superposition of the relevant
sections is exemplary shown in figure 3 for Y = 9 cm ; naturally the measurement graphs
were flipped for the second part of the velocity cycle. The arithmetic mean calculated over
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Figure 2 – Velocity profile used for the indoor magnetic field measurements and position
of the main slide

Figure 3 – Superposition of the repeated magnetic field measurements at changing X and
constant Y = 9 cm

these data :

B(X,Y ) =

B̄X(X,Y )
B̄Y (X,Y )
B̄Z(X,Y )

 = 1
20 ·

20∑
j=1

BX,j(X,Y )
BY,j(X,Y )
Bz,j(X,Y )


is assumed to describe the stationary indoor magnetic field in the examined area.

1.1.2 Results and Evaluation

Figure 4, figure 5 and figure 6 show in their top subfigure the measured spacial course of
the stationary X-, Y - and Z-component of the examined indoor magnetic field. The bottom
subfigure illustrates the corresponding simulation calculated by :

B̄X(X,Y ) =35 µT · sin
(

2π · 0.8 ·X
m

− π

10

)
+ 150 µT · sin

(
2π · 0.8 · Y

m
+ 7π

9

)
+ 185 µT

(1)
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B̄Y (X,Y ) =45 µT · sin
(

2π · Xm −
6π
10

)
+ 60 µT · sin

(
2π · 1.2 · Y

m + 5π
9

)
− 30 µT

(2)

B̄Z(X,Y ) =50 µT · sin
(

2π · Xm + 7π
9

)
+ 50 µT · sin

(
2π · 1.4 · Y

m + π

10

)
+ 455 µT

(3)

The X-dependent parts of the identified formulas (1), (2) and (3) were determined by Fou-
rier transform ; the Y -dependant part had to be approximated due to an insufficient number
of measurement points. The sinusoidal form of the functions was obvious from the measu-
rements, see figure 3.

1.2 Simulation of a Stationary Indoor Magnetic Field
The equations (1) to (3) are determined on the basis of an area of 2 by 0.5 m. Nevertheless,

it is assumed that they are true for the whole magnetic field the later introduced trajectory
lies in. Defining that the measurements were conducted at Z = 0, we obtain for the analytical
functions describing BX,stat(X), BY,stat(X) and BZ,stat(X) :

fBX ,X(X) = 35 µT · sin
(

2π · 0.8 ·X
m + ∆ϕBX ,X

)
fBX ,Y (Y ) = 150 µT · sin

(
2π · 0.8 · Y

m + ∆ϕBX ,Y

)
fBY ,X(X) = 45 µT · sin

(
2π · X

m
+ ∆ϕBY ,X

)
fBY ,Y (Y ) = 60 µT · sin

(
2π · 1.2 · Y

m + ∆ϕBY ,Y

)
fBZ ,X(X) = 50 µT · sin

(
2π · Xm + ∆ϕBZ ,X

)
fBZ ,Y (Y ) = 50 µT · sin

(
2π · 1.4 · Y

m + ∆ϕBZ ,Y

)
However, as already mentioned, fBX ,Z(Z), fBY ,Z(Z) and fBZ

(X,Y, Z) could not be deter-
mined by the experiment. With the help of the following two non-verifiable presumptions :

1. The ”frequency” of the Z-dependent sinus function is the arithmetic mean of the
frequencies of the X- and Y -dependent functions.

2. The constant summands of equation (1) and equation (2) are presumed to be the
effective value of the Z-dependent sinus function. The ”amplitude” thus results from
the multiplication with

√
2.

we find :

fBX ,Z(Z) = 254 µT · sin
(

2π · 0.8 · Z
m + ∆ϕBX ,Z

)
fBY ,Z(Z) = −42 µT · sin

(
2π · 1.1 · Y

m + ∆ϕBY ,Z

)
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(a) Measurement results

(b) Simulation

Figure 4 – Spatial course of the X-component of a stationary indoor magnetic field
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(a) Measurement results

(b) Simulation

Figure 5 – Spatial course of the Y -component of a stationary indoor magnetic field
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(a) Measurement results

(b) Simulation

Figure 6 – Spatial course of the Z-component of a stationary indoor magnetic field
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Table 1 – Phase shifts for the sinus functions describing the stationary indoor magnetic
field

∆ϕBX ,X 4.9 ∆ϕBY ,X 2.4 ∆ϕBZ ,X 1.5

∆ϕBX ,Y 2.5 ∆ϕBY ,Y 0.6 ∆ϕBZ ,Y 0.8

∆ϕBX ,Z 5.9 ∆ϕBY ,Z 6.0

Ultimately, fBZ
(X,Y, Z) is defined by Gauss’s law for magnetism :

0 != ∇ ·B = ∂BX

∂X
+ ∂BY

∂Y
+ ∂BZ

∂Z

⇒ 0 != ∂fBX ,X(X)
∂X

+ ∂fBY ,Y (Y )
∂Y

+ ∂fBZ ,Z(Z)
∂Z

This yields :

fBZ
(X,Y, Z) =−

∫
35 µT · cos

(
2π · 0.8 ·X

m + ∆ϕBX ,X

)
· 2π · 0.7 · dZ

−
∫

60 µT · cos
(

2π · 1.2 · Y
m + ∆ϕBY ,Y

)
· 2π · 1.2dZ

=−
[
35 µT · cos

(
2π · 0.8 ·X

m + ∆ϕBX ,X

)
· 2π · 0.7

]
· Z

−
[
60 µT · cos

(
2π · 1.2 · Y

m + ∆ϕBY ,Y

)
· 2π · 1.2

]
· Z

The phase-shifts of equation (1) to equation (3) were selected in such a way that the magnetic
field in the relevant section is equal to the measurements. In reality, the phase-shifts, denoted
with ∆ϕBX ,X etc., depend completely on the start position within the magnetic field. For
this reason, they are randomly chosen between 0 and 2π, taking the values shown in table
1.

2 Presence of Magnetic Disturbances

In the presence of transient magnetic disturbances, their time-dependent equations have
to be added to the stationary magnetic field of chapter 1. This yields :

B(X, t) = Bstat(X) +Btrans(X, t)

There are two main models describing transient magnetic fields : the oscillating magnetic
dipole and the straight wire carrying a time-dependent current. They are given below.
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2.1 The Oscillating Magnetic Dipole
The magnetic field of the oscillating magnetic dipole can be described through the follo-

wing set of equations :

Bdip (X, t) = Re

(
µ0µr ·

eik·|r|

4π · |r|3 ·
[
3 · er · {er ·m(θ, ψ, t)} −m(θ, ψ, t)

])

m(θ, ψ, t) = R(θ, φ) ·

M · cos(2π · f · t+ ∆ϕ)
0
0


r = X −Xdip

er = r

|r|

k = 2π · f
c

Apart from the variable inputs X, Y , Z and t the following parameters need to be set :
1. the position of the dipole Xdip,
2. the two angles describing the rotational state of the dipole θ, ψ,
3. the absolute value of the magnetic dipole moment M ,
4. the frequency f and the phase shift ∆ϕ.

2.2 The Straight Current-Carrying Wire
The magnetic field of a straight current-carrying wire (of infinite length) can be calculated

with :

Bwire(X, t) = µ0µr ·
i(t)

2π · |r| · [eI × er]

i(t) = î(t) · cos
(

2π · f ·
[
t+ |r|

c

]
+ ∆ϕ

)
r = X −

[
Xwire + eI ·

{
eI · (X −Xwire)

e2
I

}]
er = r

|r|

Here again, some parameters need to be set aside from the variable inputs X, Y , Z and t :
1. the position and the direction vector defining the straight line, namely Xwire and eI ,
2. the current amplitude î(t),
3. the frequency f and the phase shift ∆ϕ.

2.3 The Magnetic Field B
Assuming that there are n oscillating dipoles and m wires carrying a time-dependent

current, the transient part Btrans(x, y, z, t) is represented by :

Btrans(X, t) =
n∑

k=1
Bdip,k(X, t) +

m∑
k=1

Bwire,k(X, t)
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Consequently, the total magnetic field B(X, t) can be written as :

B(X, t) = Bstat(X, t) +
n∑

k=1
Bdip,k(X, t) +

m∑
k=1

Bwire,k(X, t)(4)
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A Nomenclature

A.1 Vectors and Matrices

A state matrix (state space)
B magnetic field vector in Ri

∇B = ∂B
∂X Jacobian matrix of the magnetic field B

b magnetic field vector in Rb

b̂ estimation of the magnetic field vector b
∇b = ∂b

∂x Jacobian matrix of the magnetic field b
C output matrix (state space)
D electric flux density
E electric field (strenth)
e unit vector
eX , eY , eZ basis vectors of the inertial frame of reference
ex, ey, ez basis vectors of the body frame of reference
FE external forces
H magnetic field strength
J current density
L gain matrix
m magnetic dipole moment
p, q coordinate vectors
QB observability matrix
R rotation matrix
Rb matrix containing the basis vectors of the body reference frame
Ri matrix containing the basis vectors of the inertial reference frame
Rx, Ry, Rz rotation matrices about the x-,y- and z-axis
r distance vector
Ti�b transformation matrix between Ri and Rb

V velocity vector in Ri

V̂ estimation-based calculation of the velocity vector V
v velocity vector in Rb
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v̂ estimation of the velocity vector v
W rate of turn vector in Ri

w rate of turn vector in Rb

X position vector in Ri

X̂ estimation-based calculation of the position vector X
x position vector in Rb

y output vector (state space)
β magnetic field vector
ν velocity vector
ξ position vector
Υ linear transposition matrix (arbitrary)
χ state vector
χ̃ alternative state vector
ΩW rotation matrix corresponding to the rate of turn vector W
Ωw rotation matrix corresponding to the rate of turn vector W
ω rate of turn vector

A.2 Scalars, Functions and Sets

Bx, By, Bz coordinates of B, the magnetic field vector in Ri

bx, by, bz coordinates of b, the magnetic field vector in Rb

b̂x, b̂y, b̂z coordinates of b̂, the estimated magnetic field vector
C substation charge
f frequency
f analytic function
h auxiliary function
I current
k wave number
L motor load
l length
l1, l2 constant gains of the gain matrix L
M magnetic dipole moment (absolute value)
n, m quantities
P, Q, R coordinates of W , the rate of turn vector in Ri

p, q, r coordinates of w, the rate of turn vector in Rb

r distance
<b body reference frame
Rb basis of the body reference frame
<i inertial reference frame
Ri basis of the inertial reference frame
t time
t0 start time
∆t discrete time step, reciprocal of the sample frequency
U, V, W coordinates of V , the velocity vector in Ri

Û , V̂ , Ŵ coordinates of V̂ , the estimation-based calculation of the velocity vector in Ri

u, v, w coordinates of v, the velocity vector in Rb

û, v̂, ŵ coordinates of v̂, the estimated velocity vector in Rb

V Lyapunov candidate function
X, Y, Z coordinates of X, the position vector in Ri
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X̂, Ŷ , Ẑ coordinates of X̂, the estimation-based calculation of the position vector in Ri

x, y, z coordinates of x, the position vector in Rb

x, y, z Cartesian coordinates
α auxiliary angle
ε0 electric constant
εr relative electric permittivity
µ0 magnetic constant
µr relative magnetic permeability
ρ volume charge density
ϕ angle of the right triangle defined by the Cartesian coordinates

x (opposite leg) and z (adjacent leg)
∆ϕ phase shift
φ, θ, ψ set of angles describing a rotational state
ω angular velocity

A.3 Indices

avg average
b body
cat catenary
dip dipole
dir direction
e estimation
eff effective
f final
gyro gyrometer
I current
i inertial
j, k counter variable
m measured
magneto magnetometer
max maximum
min minimum
MV mean value
p prediction
r distance
s sensor
sp sample
stat stationary
t trains
trans transient
w wire
X, Y , Z component in X-, Y - and Z-axis direction
x, y, z component in x-, y- and z-axis direction

A.4 List of Abbreviations

AC Alternating Current

12



AWGN Additive White Gaussian Noise
CAS Centre Automatique et Systèmes
DC Direct Current
IRT Institut für Regelungstechnik
PSU Power Supply Unit
RATP Régie Autonome des Transports Parisiens
RER Réseau Express Régionale
RMS Root Mean Square
SNCF Société Nationale des Chemins de Fer Français
TGV Train à Grance Vistesse
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