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Introduction  

Why forecast PV power production ? 

 

• Management of power system with high PV penetration 
– Network security 

– Balance between production and consumption  

– Reserve management  

 

• Optimise maintenance scheduling of PV plants 

 

• Trading PV generation in the electricity markets  

• … 
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Overview of state of the art (1/2) 

• “Physical” approach: 

– Based on analytical equations with weather variables and PV system 

characteristics as inputs 

 

• “Statistical” Approach: 

– Linear regression, regression trees 

– Box and Jenkins methods (ARMA, ARIMA, SARIMA…) 

– Boosting, bagging, random forests 

– SVM, non and semi-parametric models  

– Neural Networks  

– Bayesian inference 
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Overview of state of the art (2/2) 
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Objectives 
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• Propose a short-term forecasting model that exploits 

spatio-temporal dependencies between distributed 

PV plants to provide improved forecasts for a specific 

PV plant 

 

 

• Compare the spatio-temporal model with a reference 

approach that does not use off-site information 
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The considered reference models 

• 2 options considered: Random forests and AR models.  

 

• The AR model was found to outperform and is selected as 

reference model for the power production forecast of each 

plant 𝑥.  

 

 

 

• Necessity to stationarize the input variables  
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The proposed stationarization technique 

• We simulate the irradiation at the top atmosphere level, with 

inputs: 

– Longitude and latitude 

– Inclination (𝛽) and  

orientation (𝛼) 

– Solar angle (𝜃) 

 

• Compute the  

corresponding  

production (𝑇𝑂𝐴𝑡) 
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The proposed stationarization technique 
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Post validation with Dickey-Fuller Test 
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The proposed spatio-temporal model  

– A linear auto-regressive model chosen 

 

 

 

 

– Input: power production of all neighbour PV plants 

as explanatory variables 

– The appropriate maximum lag  is estimated by AIC 

criterion 

– The model coefficients are estimated by least mean 

squares regression 

– A model is tuned for each prediction horizon 
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𝑋, the set of all the 𝑦 power plants 

𝐿𝑠, the appropriate maximum lag 
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The evaluation criteria  

• Root Mean Square Error    𝑅𝑀𝑆𝐸ℎ = 
1

𝑛
 𝑒𝑡+ℎ|𝑡

2𝑛
𝑡=1  

 

•  Mean Absolute Error  𝑀𝐴𝐸ℎ = 
1

𝑛
𝑒𝑡+ℎ|𝑡  

 

• Bias   𝐵𝐼𝐴𝑆ℎ = 
1

𝑛
 𝑒𝑡+ℎ|𝑡

𝑛
𝑡=1  

 

   where Error :       𝑒𝑡+ℎ|𝑡 = 𝑃𝑥
𝑡+ℎ|𝑡  −  𝑃 𝑡+ℎ|𝑡

𝑥  
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The case study 
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• 8 PV power plants 

in South France 

 

• Peak power 

ranging from   

     45 kW to 5 MW 

 

• 20 months 

measurements 

starting 7/2013 

 

• 15 min time 

resolution 

 

• 6 hours horizon 

with 15 min update 

resolution 
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Correlation of off-site measurements 

• The correlation between PV plants with series 𝑆𝑡
2  

– The cross-correlation decreases with the distance 

– The cross-correlation values indicate that information from multiple sites can be 

exploited for prediction 
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Evaluation results (1/4) 
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Visualisation of forecasts accuracy 

t+15min t+6h 
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Evaluation results (2/4) 
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Forecasts comparison 
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Evaluation results (3/4) 
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Bias and MAE performance evaluation (for all time horizons)  

Bias (% of max power meas.) MAE (% of max power meas.) 

Introduction – State of the art 

The proposed models 

Case study 

Evaluation results  

Conclusions & perspectives 

 

~55% 



Evaluation results (4/4)  

• Improvement in terms of RMSE (𝐼𝑚𝑝𝑟 =
𝑅𝑀𝑆𝐸𝑟𝑒𝑓−𝑅𝑀𝑆𝐸𝑠𝑝𝑎𝑡

𝑅𝑀𝑆𝐸𝑟𝑒𝑓
∗ 100%) 

• One line per power plant 
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Conclusions and perspectives  

• Up to 10% improvement in terms of RMSE 

• Significant reduction of Bias and MAE (55%) 

• Very short computation time 

• Low cost: use of existing data 

• No need for weather forecasts (NWP) 

 

Potential improvements and perspectives: 

• Polynomial or splines functions 

• Forecasting model parameters as a function of 

meteorological conditions  

• Satellite images or sky cameras 

• Probabilistic spatio-temporal forecasting 
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Correlation of off-site measurements 

• The correlation between plants with series 𝑆𝑡
2  

– The crossed correlation decreases with the distance 

– The crossed correlation values indicates presence of relations between the multi-

sites production 
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