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Abstract8

With the increasing development of remote sensing platforms and the evo-
lution of sampling facilities in mining and oil industry, spatial datasets are
becoming increasingly large, inform a growing number of variables and cover
wider and wider areas. Therefore, it is often necessary to split the domain of
study to account for radically different behaviors of the natural phenomenon
over the domain and to simplify the subsequent modeling step. The defini-
tion of these areas can be seen as a problem of unsupervised classification,
or clustering, where we try to divide the domain into homogeneous domains
with respect to the values taken by the variables in hand. The application
of classical clustering methods, designed for independent observations, does
not ensure the spatial coherence of the resulting classes. Image segmentation
methods, based e.g. on Markov random fields, are not adapted to irregularly
sampled data. Other existing approaches, based on mixtures of Gaussian
random functions estimated via the Expectation-Maximization algorithm,
are limited to reasonable sample sizes and a small number of variables. In
this work, we propose two algorithms based on adaptations of classical al-
gorithms to multivariate geostatistical data. Both algorithms are model
free and can handle large volumes of multivariate, irregularly spaced data.
The first one proceeds by agglomerative hierarchical clustering. The spatial
coherence is ensured by a proximity condition imposed for two clusters to
merge. This proximity condition relies on a graph organizing the data in
the coordinates space. The hierarchical algorithm can then be seen as a
graph-partitioning algorithm. Following this interpretation, a spatial ver-
sion of the spectral clustering algorithm is also proposed. The performances
of both algorithms are assessed on toy examples and a mining dataset.
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1. Introduction10

In mining assessment, a partitioning of the data is often to be conducted11

prior to evaluate the reserves. This is necessary to design the mineralization12

enveloppes corresponding to several lithofacies where the grades of the ore13

to be mined may have different spatial behavior, in terms of mean, variabil-14

ity and spatial structure. In remote sensing of environmental variables, a15

similar problem may be encountered when the characteristics of the variable16

of interest is governed by a hidden variable, e.g. the component of a mix-17

ture model, accounting for a particular local behaviour. A typical example18

in soil sciences consists in the the retrieval of soil classes over a region from19

the observation of continuous variables.20

A natural solution to this problem is to cluster the data. Clustering a21

dataset consists in partitioning the observations into subsets (called clus-22

ters) so that observations in the same cluster are similar in some sense.23

Clustering is used in many fields, including machine learning, data mining,24

pattern recognition, image analysis, information retrieval and bioinformatics25

(Hastie et al., 2009). It is an unsupervised classification problem where the26

goal is to determine a structure among the data, with no response variable27

to lead the process.28

While a wide range of methods exist for independent (Hastie et al., 2009) or29

gridded spatial observations (in the image processing litterature), not much30

attention has been paid to the case of irregularly spaced data. Indeed, in31

a geostatistical context, one expects to obtain a classification of the data32

that presents some spatial continuity. This is especially the case with min-33

ing data, where the geologist wishes to delineate homogeneous areas in a34

deposit to facilitate its evaluation and exploitation.35

Clustering in a spatial framework has been mainly studied in the image36

analysis context where the data is organized on a grid. The model is usu-37

ally a hidden Markov random field. In this model, label properties and38

pixel values need only to be conditioned on nearest neighbors instead of on39

all pixels of the map, see e.g. Guyon (1995) for a review and Celeux et al.40

(2003) for more recent developments. In Ambroise et al. (1995), the authors41

proposed to use this approach directly to irregularly sampled data using a42

neighborhood defined by the Delaunay graph of the data. As the length of43

the edges of the graph are not accounted for in the approach, this neighbor-44

hood structure does not reflect a structure in the data, rather a structure in45
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the sampling scheme. This disqualifies this approach especially for mining46

data, where the samples are located along drillholes: two neighbors on a47

same drillhole are distant a few centimeters while two neighbors from two48

different drillholes may be distant several decimeters.49

Oliver and Webster (Oliver and Webster, 1989) were the first to propose a50

method for the clustering of multivariate non-lattice data. They proposed51

to modify the dissimilarity matrix of the data, used e.g. in a hierarchical52

algorithm, by multiplying it by a variogram matrix. This terms to smooth53

the dissimilarity matrix for close pairs of points. However, this will not en-54

force the connexity of the resulting clusters, it will rather blur the borders55

between geologically different areas, making them difficult to differentiate,56

as our practice showed.57

In Allard and Guillot (2000), the authors proposed a clustering method58

based on a mixture of random functions models where an approximation59

of the expectation-maximization (EM, see Dempster et al., 1977) algorithm60

is used to estimate the parameters and the labels. It has been later extended61

to multivariate data in Guillot et al. (2006). However this method relies on62

strong assumptions that are not likely to be encountered in practice: the63

data are assumed to be Gaussian and data belonging to different clusters64

are assumed independent. Moreover, the estimation algorithm requires the65

computation of the maximum likelihood estimator of the random function66

model at each iteration of the EM algorithm, which involves the inversion of67

the covariance matrix and is not computationally tractable for large, mul-68

tivariate datasets. Indeed, a single iteration requires several inversions of a69

(n×p)×(n×p) matrix, where n is the number of data and p is the number of70

variables. Using composite likelihood techniques (Varin et al., 2011) could71

be useful to alleviate the computational burden but it will add a degree of72

approximation while still not allowing to deal with categorical data.73

The approaches developped in this paper are model free and do not involve74

complex computations. Therefore, they are able to process large, multi-75

variate datasets. The first one, already outlined in Romary et al. (2012),76

is based on an agglomerative hierarchical algorithm with complete linkage77

(see e.g. Hastie et al., 2009), where the connexity of the resulting clusters is78

enforced through the use of a graph structuring the data. It only involves79

the computation of distances along the edges of the graph which has a sparse80

structure. Its sequential nature makes it practical for reasonable volumes of81

data. An alternative for large datasets consists however in running first the82

algorithm on a subsample, then training a supervised classifier and finally83

applying it to the rest of the data. The second proposed algorithm provides84

a non-hierarchical alternative to partition the same graph. It is an adap-85
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tation of the spectral clustering algorithm (Ng et al., 2002; von Luxburg,86

2007) to geostatistical data. The computations involve only sparse matri-87

ces, therefore this second algorithm is adapted to large volumes of data.88

The paper is organized as follows: in section 2, we describe both algorithms89

as well as a method to classify newly available data based on the results90

of a preceding clustering. In section 3, we show the performance of each91

algorithm on a synthetic dataset as well as on a mining dataset.92

2. Algorithms93

Both algorithms proposed rely on the same basic idea. The latter con-94

sists in structuring the available data in a graph in the geographical space95

made of a unique connex component. This graph is then partitioned into96

clusters either hierarchically or directly by decomposition. The structure97

thus imposed ensures the spatial coherency of the resulting clusters.98

We consider a sample of georeferenced data (x1, . . . , xn) ∈ Rn×p, where p99

is the number of variables, coordinates included. We also consider that the100

data have been standardized preliminary to the application of the cluster-101

ing algorithms. It may also be useful to gaussianize the variables, e.g. by102

anamorphosis (Chilès and Delfiner, 2012), for skewed data. This prelimi-103

nary processing allows to make the variables comparable. We describe in104

this section the different ingredients required to implement both algorithms105

as well as their core.106

2.1. Structuring the data107

Being either regular or not, the spatial sampling of a geostatistical dataset
defines a geometric set, namely a set of points in the geographical space.
From this set, a neighborhood system can be built. This can be repre-
sented by an undirected graph where each vertex represents an observation
and each edge shows the relation of neighborhood shared by close points
(Geman and Geman, 1984). We call this graph the sampling graph. Several
methods can be applied to build it such as Delaunay triangulation, Gabriel
graph or a graph based on the neighborhood structure defined by mov-
ing neighborhood algorithms used in kriging, for instance based on octants
(see e.g. Chilès and Delfiner, 2012). Particular shapes can also be obtained
by using non-isotropic distances or coordinates transformation. The graph
should be parsimonious whilst containing enough edges to support a variety
of configurations for the clusters. In our experience, the Delaunay graph
and a graph based on a neighborhood selection algorithm give good results.
Once the graph G has been built, two observations xi and xj , i 6= j, are said
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to be connected if their exists an edge in G linking xi and xj . This is de-
noted by xi ↔ xj . G can also be represented by its adjacency matrix with
general term (Gij)i,j∈{1,...,n}:

Gij =

{

1 if xi ↔ xj ,

0 otherwise.

Note that an individual is not considered to be connected with itself.108

2.2. Choice of a distance109

The second basic ingredient of both algorithms is a distance or metric
measuring the dissimilarity between two observations. The aim of clustering
algorithms is to group similar observations, hence the need to define similar.
We define the distance d between two observations xi and xj by:

d(xi, xj) =

p
∑

k=1

p
∑

l=1

ωk,ld
(k,l)(x

(k)
i , x

(l)
j ), (1)

where (ωk,l)(k,l)=(1,...,p)2 are the entries of a positive definite matrix Ω and110

(d(k,l))k=1,...,p is a set of coupled distances, each one chosen according to111

the corresponding couple of variables. d is therefore a weighted sum of112

distances. The weights are to be chosen by the user, depending on the113

relative importance the variables should have and their possible correlation.114

As noted above, the variables have been preliminary standardized so as to115

avoid any scale effect between the variables. In practice, Ω is generally116

chosen to be diagonal and only individual distances are thus involved. The117

use of the squared Mahalanobis distance, where Ω is the inverse of the118

empirical covariance matrix could be considered so as to account for possible119

correlations between variables, but has not proven useful in our experiments.120

The individual distances are chosen according to the associated variable: if121

the latter is quantitative, the squared euclidean distance is advocated from122

its strong relation with the variogram as a measure of the local continuity; if123

it is a categorical variable, an ad-hoc distance is used. Such a distance may124

take the value 0 when both observations have an equal value for this variable125

and 1 otherwise. Other options are also available, see e.g. Hastie et al.126

(2009) for a comprehensive view.127

It is worth noting that the coordinates are also included in (1). Indeed,128

although the spatial location of the data is already accounted for by the129

graph structure, this allows to account for the length of the edges. By doing130

this, we promote short connections.131
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Concerning the setting up of the weights, we generally recommend to put132

5% to 30% of the total on the coordinates and to set the other variables133

to 1 at a first guess, then to progressively tune the weights of the variables134

according to the outcome of the algorithm.135

2.3. Geostatistical Hierarchical Clustering136

The distance defined above is only valid between pairs of observations.137

Agglomerative hierarchical clustering algorithms require a linkage criterion138

which specifies the dissimilarity of sets as a function of the pairwise distances139

of observations in the sets. Lance andWilliams formula (Lance and Williams,140

1966) enables the use of a unique recurrence formula to update the distances141

when merging two clusters for a large family of criteria, including the maxi-142

mum, minimum or average distance, respectively named complete, single or143

average linkage criteria or Ward’s criterion which computes the intra-cluster144

variance, see e.g. Milligan (1979).145

In our context, the spatial continuity needs to be taken into account during146

the linkage process. In the proposed algorithm, two clusters can merge if147

and only if they are connected in the graph structure G. When two clusters148

merge, the resulting cluster inherits all connections of its components. This149

point is the only departure from the original hierarchical clustering algo-150

rithm.151

The geostatistical hierarchical clustering algorithm (GHC) is described in152

pseudo code in algorithm 1 under the complete linkage criterion.153

Algorithm 1 Geostatistical Hierarchical Clustering algorithm (GHC)

1: Compute the distance matrix D ∈ Rn×n, such that Dij = d(xi, xj), j <
i, if i ↔ j, 0 otherwise

2: repeat

3: Find k and l, k < l, such that Dlk = min{i,j,i↔j}Dij

4: Merge k and l in {kl}, and update D such that

Dki = max(Dki, Dli) if i ↔ {kl} and i < k

Dik = max(Dik, Dli) if i ↔ {kl} and k < i < l

Dik = max(Dik, Dil) if i ↔ {kl} and i > l

discard line and column l from D

5: until D is a scalar

In algorithm 1, the value Dlk can be interpreted as the inner distance154

or dissimilarity of the cluster obtained when merging clusters k and l. The155
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notation i ↔ {kl} means i is connected with the cluster {kl}, that is i ↔ k156

or i ↔ l.157

Since two clusters are merged when they realize the minimum distance158

among the connected pairs of clusters, they may not realize the minimum159

distance in absolute, depending on the chosen linkage criterion. In partic-160

ular, more dissimilar points may merge into clusters before having merged161

points which are actually more similar but not directly connected. That162

is why we advocate the use of the complete linkage criterion which is, to163

our knowledge, the only way to preserve the ultrametric property in our164

algorithm. The ultrametric property means a monotonic increase of the dis-165

similarity value of the clusters, see Milligan (1979) for further details. In166

particular, the ultrametric property allows to build a dendrogram.167

The dendrogram is a very practical tool to select the final number of clusters,168

see an example in figure 1. It represents the evolution of the intra-cluster169

dissimilarity along the agglomeration process. A long branch means that the170

merge between two clusters leads to a much less homogeneous one. There-171

fore the tree should be pruned at the level where the branches are long. The172

number of pruned branches gives the number of clusters to consider, 2 in173

the example of figure 1.174

The computational efficiency of this algorithm relies on the graph struc-175

ture employed and especially on the number of connections. Indeed, only176

the distances between connected points are required at the beginning of the177
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algorithm, which makes the matrix D sparse and allows fast computations.178

Then, the computation of the distances between connected points required179

at step 4 can be performed on the fly.180

2.4. Geostatistical Spectral Clustering181

The Geostatistical Spectral Clustering (GSC) is an adaptation of the182

spectral clustering algorithm where the graph used is the sampling graph183

defined above instead of a graph based on the similarity. Contrarily to GHC,184

it requires a preselection of the number K of desired clusters and does not185

rely on an iterative procedure. This is not a major drawback however. Once186

computed the quantities required for a given maximum number of classes, it187

is straightforward to compute the outcome for a smaller number of classes.188

The different steps of the algorithm are described in algorithm 2.189

Algorithm 2 Geostatistical Spectral Clustering algorithm (GSC)

1: Compute the similarity or weighted adjacency matrix W :

Wij =

{

exp
(

−
d(xi,xj)

σ2

)

if i ↔ j

0 otherwise
(2)

2: Compute the degree matrix D:

Dii =
n
∑

j=1

Wij

3: Compute the graph Laplacian matrix

L = D−1/2WD−1/2

4: Compute the K largest eigenvalues of L and form the matrix V ∈ Rn×K

whose columns are the associated K first eigenvectors of L
5: Apply the K-means algorithm to the lines of V
6: Assign observation xi to the same class the line i of V has been assigned

This algorithm consists in representing the data into an infinite dimen-190

sional space (the reproducing kernel Hilbert space associated to the kernel191

used in (2), here the Gaussian (or radial basis function kernel) where they192

are easily clustered through K-means.193
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The parameter σ2 is chosen as the empirical variance of the variable, fol-194

lowing von Luxburg (2007). Note that a local adaptive approach could be195

considered for the setting of σ2, as proposed in Zelnik-Manor and Perona196

(2004). However, this refinement has not proven useful in our practice.197

Also, the lines of V can be optionally normalized prior to step 5, as pro-198

posed in Ng et al. (2002). The differences when using the normalization or199

not did not appear sensible in our experimentations.200

The number of clusters to consider can be chosen by studying the eigen-201

values of L. A small eigenvalue signifies that the associated eigenvector is202

not relevant to discriminates the data. In practice, we advocate to compute203

a given maximum number of eigenvalues (10 to 20), which corresponds to204

the maximum number of clusters we want, and then to plot them. A large205

difference between two eigenvalues means that the smaller one is not so rel-206

evant.207

As the graph structure is sparse, all the computations required in algorithm208

2 can be carried out using sparse linear matrix algebra, which makes GSC209

computationally efficient and adapted to large multivariate datasets.210

2.5. Classifying new data211

Sometimes, the sampling of the variables of interest on a domain can be212

performed in several steps. For instance, new drilholes can be added to an213

initial sampling campaign. In the case where a clustering has already been214

performed, we may want to classify the new data into the classes resulting215

from that previous run. An other occurrence when we want to classify data216

upon the results of a previous clustering is when dealing with very large217

datasets with the GHC. In that case, we propose to run first the algorithm218

on a subsample, then train a supervised classifier and finally apply the latter219

to the remaining data.220

It is particularly difficult to incorporate new data into the clustering results221

with simple rules. Indeed, when new data are added, the sampling graph222

gets modified and the outcome of GHC and GSC may change dramatically.223

Therefore, the idea developed here is to learn a classification rule based224

on the initial clustering results. This can be achieved for instance through225

support vector machines (SVM, see Hastie et al. (2009)). In the case of two226

classes, the basic principle is to find f(x) = α0+
∑N

i=1 αiΦ(x, xi), where the227

(αi)i=0,...,N are scalars and Φ a given kernel function, that minimizes228

N
∑

i=1

(1− yif(xi))+ + λαtΦα, (3)
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Figure 2: One realization of the random function a. and sampling performed b.

as a function of (αi)i=0,...,N and where the underscript + means the maxi-229

mum between 0 and the quantity between parenthesis, and λ is a penalty230

parameter. For multi-class classification, several options are available among231

which we retain the standard “one versus all” implemented in LIBSVM232

(Chang and Lin, 2011). The penalty parameter λ is set through cross-233

validation. Applying the rule to a new observation allows to assign it to234

an existing class.235

3. Results236

3.1. Toy dataset237

Here, we describe a 2D example on which we have evaluated the perfor-238

mances of several methods including GHC and GSC. We consider a random239

function on the unit square which is made of a Gaussian random function240

with mean 2 and a cubic covariance with range 0.3 and sill 1 on the disk of241

radius 0.3 and center (0.5,0.5) and a Gaussian random function with mean242

0 and an exponential covariance with range 0.1 and sill 1 elsewhere. This243

model is made to mimick a mineralization area in a mining deposit, where244

high grades are more likely to be found within the disk. A realization is245

shown in figure 2 a. while figure 2 b. corresponds to the sampling performed246

by picking 650 points out of the 2601 points of the complete realization.247

10



We can clearly see a smooth surface with high values in the central disk248

in figure 2 a. and this is the area we would like to retrieve from the 650 ob-249

servations plotted in figure 2 b.. We test the performances of five different250

methods for this task: K-means, complete linkage hierarchical clustering251

(HC), Oliver and Webster’s method (O&W), GHC and GSC.252

For every method, the three variables are scaled such that the coordinates253

are given a weight of 10% in the computation of the distance. This prelim-254

inary treatment makes the different methods comparable. In HC, O&W,255

GHC and GSC, we use the squared euclidean distance. K-means does not256

need any parameterization. For O&W, several variogram models and sets257

of parameters have been considered, without much success. The results pre-258

sented here are obtained with an exponential variogram with range 0.5. The259

Delaunay graph has been used for both GHC and GSC. Concerning GSC,260

normalizing the rows of V (see algorithm 2) gave similar results as without261

normalization. Consequently, only the results without normalization are262

presented.263

Figures 3 and 4 show the results obtained by each five methods on the264

realization depicted in figure 2. Each subpicture represents the dataset on265

scatterplots with respect to the coordinates (x and y) and the sampled value266

(Z). K-means (a.) identifies well the central area. The result lacks of con-267

nexity however. In particular, large values outside of the disk are classified268

as belonging to the disk and low values within the disk are missclassified as269

well. It can be seen that the method only discriminates between low and270

high values of Z: the limiting value between the two clusters can be read271

as more or less 0.5. HC (b.) also discriminates between low and high value272

but the limiting value is higher, around 2. To sum up, those two classical273

methods in an independent observations context fail to produce spatially274

connected clusters. O & W’s approach has been tested with various vari-275

ograms and variogram parameter values but it never showed any structured276

result (c.). Our interpretation is that multiplying the dissimilarity matrix277

by a variogram may erase some dissimilarities, inducing a loss in the struc-278

ture of the data. The GHC algorithm succeeds in providing a clustering279

with spatial connexity (d.) though non perfect. A part of the area sur-280

rounding the disk is misclassified however. If we turn back to the complete281

realization in figure 2 a, we can see that the misclassified area corresponds282

to high values of the realization around the border of the disk that are very283

close to the values taken inside the disk and are thus difficult to classify284

correctly. Finally, the GSC algorithm performed a geometrical classification285

by making a cut along the axis of the first coordinate, see figure 4. However,286

when looking at the result obtained when asking for five classes, it provided287
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Figure 3: Results of K-means a., hierarchical clustering b., Oliver and Webster’s method

c. and geostatistical hierarchical clustering d.
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Figure 4: Results of GSC for two a. and five classes b.

a class delineating the disk fairly well. It seems that this algorithm tends to288

generate more compact subsets of the sampling graph.289

Each of the five algorithms are applied to 100 realizations of the same ran-290

dom function model, each with a different uniform random sampling. Then291

we compute the mean, median and 90% percentile of the rate of correctly292

classified points. Results are summarized in table 1.293

GHC exhibits the best performances overall with 85% correctly classified294

points in average while K-means providing similar results in average, GSC295

performing the worst with HC and O & W in between. If we look at the296

median however, GHC has the greatest one with a larger margin. The 90%297

percentile indicates that in the 10% most favorables cases, GHC misclassi-298

fied only 0.02% of the points, while all the other algorithms perform worse.299

It can also be seen that the 90% percentile are similar for the K-means and300

the HC. This means that the HC, and GHC (its worse result in this task301

was a misclassification of almost 50%, seemingly due to a high sensitivity302

to large values), can sometimes perform really bad, whereas the K-means303

algorithm gives more stable results, being less sensitive to extreme values.304

Indeed, in the presence of very large or very low value, it occurs that the305

algorithm comes out with a class made of a single point while the other306

contains all the other observations. In the favorable cases however, HC al-307

gorithm works as well as the K-means, while GHC outperforms clearly all308

other algorithms. Concerning GSC, the results obtained are extremely poor309
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K-means HC O & W GHC GSC

Mean 0.86 0.70 0.65 0.85 0.52

Median 0.86 0.64 0.67 0.90 0.52

90% percentile 0.90 0.91 0.72 0.98 0.54

Table 1: Rates of correctly classified points for the 5 algorithms

but do not account for the interesting results obtained when considering310

more classes.311

It is worth noting that the drawbacks exhibited by GHC and GSC are far312

from being prohibitive in practice. Indeed, when applying clustering al-313

gorithms to real data the user generally observes the outcome for several314

numbers of classes. This can be performed easily with both algorithms with315

a negligible computational cost.316

3.2. Mining data example317

In this section, we present an application of both geostatistical clustering318

algorithms to an ore deposit. We describe the different steps and exhibit319

some results.320

The first step is to select the data that will be used for the clustering. The321

following variables are chosen:322

• coordinates, X, Y and Z,323

• ore grades,324

• a geological factor describing the basement vs. a sandy part on top of325

it,326

• the hematization degree.327

This choice is made upon an exploratory analysis of the data and discus-328

sions with geologists. Some transformations of the data are preliminary329

performed:330

• coordinates are standardized,331

• ore grades are log-transformed and standardized,332

• the degree of hematization is transformed into a continuous variable,333

then standardized.334
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The next step consists of building the sampling graph connections between335

geographically close samples. The graph is here built from the neighbour-336

ing structure induced by the moving neighbourhood kriging algorithm of337

Isatis R© 2013 (Geovariances, 2013). At each point, the space is split into 16338

hexadecants: 8 above and 8 below the horizon. One neighbor per hexade-339

cant is authorized at most for each point with no more than 2 from the same340

drillhole. The search ellipse is of infinite size so as to connect even possibly341

distant points. The angles of the search ellipse are chosen so that to take342

into account the horizontal shape of the mineralization of the deposit.343

Then the dissimilarity matrix is built. All variables listed above are used.344

A particular distance for the geological factor is considered: it is chosen to345

be 1 when the samples have different factor values and 0 otherwise. This346

distance is scaled to maintain the coherency with the other individual dis-347

tances. Weights are set step by step, as advocated in section 2.2: we begin348

by giving an equal weight to all variables with a 30% contribution to the349

coordinates. Finally, the contribution of the coordinates is lowered to 10%350

while the other variables are assigned equal weights. The same set of weights351

is used for both algorithms. Practice shows indeed that setting low weights352

to the coordinates leads to better results, as the spatial aspect is already353

somehow taken into account by the sampling graph. However, the coor-354

dinates needs to be included in the distance so as to account for different355

length of the edges in the graph. This is especially important for drillholes356

data where two neighbors along a drillhole are generally much closer than357

two neighbors belonging to two different drillholes.358

Finally, we can run both GHC and GSC algorithms described in section 2.359

We choose to represent 6 clusters as the intra cluster dissimilarity at that360

step of the GHC shows a great increase. The results are depicted in figure361

5 for GHC and 6 for GSC.362

GHC separates the basement into two classes, the black one being richer363

than the red one. Note that the black cluster is mainly present in the mid-364

dle of the deposit. The sandy part on top of the basement is splitted into365

3 separate classes plus one single observation (in cyan), see figure 5. The366

discrimination between the three sandy classes seems to rely on geographical367

considerations.368

As for GSC, it splits the basement into 5 classes and puts every observation369

on top of it into one single class. Some similarities can be observed between370

the clustering results obtained with the two algorithms however. In particu-371

lar, both make a clear distinction between the basement and the sand on top372

of it, emphasizing the variable ’geology’. They also both exhibit the desired373

connexity properties. Both also reveal a high grades area in the center of374
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Figure 5: Resulting clusters for the GHC algorithm from the variables point of view a.

and in 3D b.
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Figure 6: Resulting clusters for the GSC algorithm from the variables point of view a.

and in 3D b.
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the deposit (the black cluster in both figures), whose retrieval was the goal375

of the experimentation. As already noticed in the previous paragraph, GSC376

tends to produce more compact clusters than GHC who can follow awkward377

routes along the graph.378

4. Conclusion379

In this paper, we presented two clustering procedures adapted to irreg-380

ularly sampled spatial data. Both algorithms allow to process large multi-381

variate datasets. They rely on a partition of a graph structuring the data in382

the geopraphical space, thus ensuring the spatial coherency of the resulting383

clusters. Two applications have been provided, the first one on a toy exam-384

ple and the second on mining data.385

The results shown on the toy example validate both algorithms as they are386

able to produce compact, connected clusters. The results obtained for the387

mining application are also satisfactory as they highlight a homogeneous388

area with high grades. Thanks to the sequential nature of GHC, it gen-389

erates a whole ensemble of coherent clusterings that can be useful to the390

user: he can visualize the results at different hierarchical levels which helps391

the interpretation and the choice of the final number of clusters for the end392

user. Note that GSC does not enjoy this property as the results may change393

dramatically from one desired number of clusters to another. The main394

drawback of GHC is its limitation to datasets of reasonable size. It becomes395

slow when the number of observations goes beyond 10000. In the case of396

large datasets, a two step approach based on subsampling and supervised397

classification is proposed.398

Finally, setting the distance used to compute the graph and the weights as-399

sociated to each variable allows the practitioner to get different clusterings,400

according to its knowledge of the geology and the variables he wants to be401

emphasized in the results. The main difficulty in handling these algorithms402

is their sensitivity to the different parameters used. Moreover the results are403

difficult to validate except from the computation of indices of compactness404

of the clusters or of heterogeneity between them. They are mostly to be405

validated by the eye of the practitioner whose knowledge of the data should406

guide in the step by step parameterization of the approach.407
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