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Abstract: This paper proposes an inventory control model taking advantage of interconnected 

logistic services in the Physical Internet for fast-moving consumer goods (FMCG) sector. Unlike 

current hierarchical inventory model where the source of each is pre-assigned, the goods are stored 

and distributed in an interconnected and open network of PI-hubs which enables storage capacity 

and transportation sharing among different companies around the network. As a result, theoretically, 

the suppliers can push their goods all around the network and the retailers can be served by any hub 

in the network. A non-linear global optimization inventory model to minimize the total logistic costs 

is proposed and a heuristic using simulated annealing is applied to solve the problem. Numerical 

experiments are taken to compare the performance of the proposed PI inventory model and classic 

inventory control model for different settings of a typical supply network. Results suggest that the PI 

inventory control model can always reduce the total logistic cost while reaching a comparable or 

improved end customer service level.  
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1 Introduction 

In the past decades, numbers of papers have dealt with inventory problems based on hierarchical 

inventory systems as inventory often accounts for a large proportion of a company’s supply chain 

management costs. According to (Cachon and Terwiesch 2005), generally speaking in Fast Moving 

Consumer Goods - FMCG sector, the inventory cost represents averagely up to 40% of total logistics 

cost, in addition to the cost of shortages in retailers, i.e. around 7% of references in supermarket. 

Thus, efficiently managing inventory systems becomes quite crucial to improve a company’s business 

performance. Nevertheless the efficiency to reduce inventories, the existing inventory model 

extensions are based on hierarchical inventory structure, which have been more and more challenged 

by the new practices of today’s supply chains: the increasing uncertainty of customer demand, 

increasing service requirements reflected in the importance of narrow delivery time windows and 

pressure on lead time reduction, and also longer lead time from sourcing points to end customers due 

to the delocalization of warehouses (Angel et al. 2006). Assuming that the hypothesis of hierarchical 

inventory systems is an inherent limit for current inventory models, we are interested here to study 

innovative models that are more open, flexible and horizontally collaborative. 

In this paper, we propose an inventory control model with the recently proposed logistic concept - 

Physical Internet with interconnected logistic services and investigate its impacts compared to current 

inventory control models to different logistic network configurations. Inspired by the metaphor of 

Digital Internet, the Physical Internet (PI) aims to integrate heterogeneous and independent logistics 

mailto:eric.ballot@mines-paristech.fr


networks into an open and interconnected global system through standard containers and routing 

protocols (Ballot and Montreuil 2014). As an innovative concept in logistics, further studies about 

the concept of the network are carried out by (Montreuil 2011; Ballot, Montreuil, and Fontane 2011a; 

Montreuil, Meller, and Ballot 2013).  (Sarraj et al. 2014) study the transportation performance of PI 

network in terms of FMCG cases in France and assess the new organization can reduce up to 35% of 

actual transportation cost through the optimization of full truckload and integration of different 

transportation means. 

Concerning inventory problems in the Physical Internet, (Pan et al. 2014) is the first to describe the 

inventory problems in the Physical Internet and investigate the first perspectives of PI inventory 

models compared to classic inventory models. Instead of classical centralized and hierarchical storage 

organizations in current logistic systems, the PI network enables a distributed storage of goods in an 

open and interconnected network of hubs. The network of hubs may be managed by the Logistic 

Service Providers (LSP) and shared by companies including other suppliers and their customers 

(retailers). In other words, theoretically, each supplier is able to store their goods at any hub all around 

the network and each customer (retailers) can be served by any hub or directly by the suppliers, 

resulting in more supply options and increasing service level for retailers and potential reduced 

logistic costs by sharing of storage capacity and transportation means to supply the demand. The aim 

is to make current inventory systems more open, robust, and economic thus more sustainable. As a 

result, the sourcing points for each replenishment order are no longer pre-determined and can be 

dynamically decided according to source selection strategies and needs. Thus under this structure, the 

inventory decisions for vendors lie on: 1) how to respond to each replenishment order from retailers 

with required constraints; 2) how to push inventories in the PI-network to satisfy these orders with 

certain objectives. 

To gain insight into the question, we study a single FMCG (fast moving consumer good) product 

inventory problem in a Physical Internet network of hubs supplying a group of retailers which face 

normal distributed end-customer demands. We adopt a centralized vendor-decision framework for 

the supplier who determines the inventory control policies for the warehouses and DCs or the hubs. 

The objective is to determine optimal inventory control policies of hubs to minimize the total cost of 

the distribution system while satisfying replenishment orders from retailers. We suppose the optimal 

replenishment parameters at retailers are obtained locally to minimize its own total cost and 

considered as input information for the distribution network. To solve the problem, a global nonlinear 

optimization model is proposed and a heuristic using simulated annealing is applied. A simulation 

study is taken to validate the optimized inventory control policies. Different settings of the typical 

network are analyzed. Our results suggest that the PI-inventory model with dynamic source selection 

strategies can significantly reduce the supply chain management cost compared to classic centralized 

inventory control strategy while reaching a similar or improved end customer service level at retailers 

(defined as the percentage of customer satisfied by inventory on hand). 

The remainder of this paper is organized as follows. In Section 2, we discuss the related works in the 

literature. In Section 3, the optimization model developed to PI inventory problem will be presented. 

Then, in Section 4 the optimization model will be implemented in case studies of FMCG chains. A 

number of scenarios are proposed and studied in order to validate the model and study the pertinence 

of model in different configuration of network. Finally, Section 5 concludes this paper by giving 

some perspectives to the next works. 

2 Literature Review 

Within the literature we found the following three inventory control models based on current 

hierarchical inventory system close to the PI inventory modality: i) inventory models with lateral 

transshipments that allow inventory movements among members of the same echelon; ii) inventory 

models with multi-sourcing options which enables a replenishment order to be satisfied by multiple 

supplying points; iii) inventory routing problems which combines vehicle routing and inventory 



control problems and where a supplier decides when to visit its customers, how much to deliver to 

each of them and how to combine distribution flows into vehicle routes.  

Motivated foremost by the aim of reducing lead times, lateral transshipment refers to stock 

movements between the same echelon locations within an inventory system. Recent comprehensive 

overviews are provided by (Paterson et al., 2011). Two types of transshipments are often addressed 

according to the timing of the transshipments: 1) reactive transshipments in response to an existing 

stock-out as seen in (Krishnan and Rao, 1965; Robinson, 1990; Olsson, 2010); 2) proactive 

transshipments to prevent the future stock-out, as seen in (Gross, 1963; Diks and De Kok, 1998; 

Tagaras and Vlachos, 2002). The literature has shown that transshipment is quite profitable for 

retailers with long replenishment lead times from suppliers and who are located closer to one another 

or who have grand shortage penalty cost. In spite of the horizontal sharing of inventories in both 

transshipments and PI inventory model, the hubs in the Physical Internet are fully interconnected and 

the source selection is dynamically determined while in the lateral transshipments the source is pre-

assigned and the transshipments are used as a support to regular replenishment orders. 

The research of the multi-sourcing inventory model can be divided into two categories according to 

whether an order can be split into sub-quantities and met by several source supplying points: 1) 

without order splitting which focus on source substitution method, as seen in (Ng et al., 2001; Çapar 

et al., 2011; Veeraraghavan and Scheller-Wolf, 2008); 2) with order splitting which focus on 

inventory allocation method in addition to source substitution, as seen in (Sculli and Wu, 1981; Ryu 

and Lee, 2003; Song et al., 2014). The literature shows that the multi-sourcing can reduce the mean 

and variance of the effective lead time and a split order model always has lower stock levels than the 

equivalent non-split model. However, the multi-sourcing options in current multi-sourcing models 

are only restricted between the upper level stocking points and their successive demanding points. 

The same echelon stocking points are independent and no products flow at the same echelon stocking 

points are allowed. Therefore we conclude that our model differs from the existing multi-sourcing 

inventory models in literature. 

Similarities are also found in the inventory - routing problems (IRPs). The pioneer contributions of 

IRPs can be date back to1980s (Bell et al. 1983) and recent reviews are shown in (Bertazzi and 

Speranza 2012). The existing literature demonstrates that this strategy can improve the supply chain 

performance by savings on distribution and production cost for suppliers by coordinating shipments 

to different customers. Despite the fact there may exist vehicle routing optimization in both models, 

the PI inventory models differ from the IRPs mainly from the following two facts:1) the transportation 

sharing in the PI network is realized by modularized and standardized containers and routing 

protocols including vehicle routing optimization, interconnection of multi-modal transport, and etc.; 

2) the PI network is able to rebalance stocks in the PI network of hubs to satisfy replenishment orders 

from retailers while the balance of stocks among different retailer companies is not addressed in IRP. 

(Pan et al. 2014) describe inventory problems based on the Physical Internet and propose a rule-based 

simulation inventory control model with different source selection strategies. However, due to the 

lack of optimization model, determination of optimal solutions as well as the quantitative study of 

different settings of the logistic network is not fully addressed in this paper. Hence, there exist no 

corresponding optimization inventory control model to the principles of proposed PI inventory model. 

It is a new research issue and a new topic in inventory management. 

3 Assumptions and formulations 

3.1 Assumptions 

We consider single-product inventory problems of a typical FMCG network with a plant (a vendor) 

serving a group of Nr retailers through a network of M intermediate stocking points (hubs or DCs or 

WH). Two types of networks are taken into account: classic centralized hierarchical inventory 

network and PI inventory network. The Vendor-Managed Inventory (VMI) decision framework is 

adapted where the vendor accesses inventory information and decides inventory control decisions at 



intermediate stocking points (hubs or DCs or WH) to minimize the total logistic costs. The retailers 

face real demand data from the FMCG industrial sector and the optimal inventory control decisions 

of each retailer are computed locally based the model of (Giard 2005). The results are considered as 

the input to the optimization model for the vendor. The objective is to find optimal inventory control 

decisions of intermediate stocking points and source selection decisions to minimize the total logistic 

costs while satisfying demands from retailers with a similar end customer service level.  

The following common assumptions are adapted for all scenarios: a) Each stocking facility including 

hubs, DCs, WH and retailers applies a (R, Q) continuous review policy; b) The plant is assumed to 

always have adequate stocks to meet the demands and there is no capacity constraint for hubs; c) 

Replenishment orders from retailers unmet immediately are considered with a penalty cost; d) The 

lead times among all the interconnected facilities are given and assumed to be constant; e) The orders 

are served on a first-come-first-served basis; f) No partial delivery is allowed; g) End customer 

demands to retailers are uncertain and subject to normal distribution; h) Vendor makes all source 

selections to supply the retailers; i) The optimal replenishment policies for retailers are determined 

by the algorithm proposed by (Giard 2005); j) Localizations of all sites remain the same in all 

scenarios for comparison sake. 

Five logistic costs are considered: inventory holding cost, transportation cost, ordering cost, the 

penalty cost and handling cost. The holding cost are charged for each unit in stock per time unit at 

hubs or DCs or WH. The transportation cost for each delivery of goods are considered and includes 

three parts: upstream transportation cost from plants to hubs or WH, upstream transportation cost 

among hubs or towards DC, and downstream transportation cost to retailers. Each replenishment 

order placed incurs a fixed ordering cost. Penalty costs for retailers’ orders unmet immediately are 

charged and assumed to be proportional to product value. Finally, handling cost are considered for 

each movement of stocks enter and leave hubs or DCs or WH. 

3.2 Notations and formulations 

To introduce the optimization model, we use the following notations. And we always refer to Stock 

Keeping Unit (SKU) to the minimum unit we consider in the model. 

Notations: 

𝑀: set of intermediate stocking points (plant index by 0). 

𝑁𝑟: set of retailers. 

𝑇: configuration time of the inventory system, indexed by 𝑛 (1 year = 365 days). 

𝑑𝑖𝑠𝑖𝑗: distance between intermediate stocking point  𝑖 ∈ 𝑀 and retailer 𝑗 ∈ 𝑁𝑟. 

𝑑𝑖𝑠𝑘𝑖: distance between intermediate stocking point 𝑘 ∈ 𝑀 and 𝑖 ∈ 𝑀. 

𝑑𝑖𝑠0𝑖 : distance between intermediate stocking point   𝑖 ∈ 𝑀 and the plant 0. 

(𝑢𝑗 , 𝜎𝑗): average and standard deviation of end customer demand at retailer 𝑗. 

(𝑞𝑗, 𝑠𝑗): replenishment policy of retailer j -  𝑞𝑗 for batch size and 𝑠𝑗 for reorder point. 

𝐻𝑖: daily holding cost per SKU at intermediate stocking point 𝑖. 

hd: handling cost per SKU operated. 

𝑝𝑗: daily penalty cost per SKU of unmet orders from retailer 𝑗 ∈ 𝑁𝑟, proportional to product value. 

𝑐1: downstream transportation cost per kilometer per SKU from the hubs to retailer. 

𝑐2: upstream transportation cost per kilometer per SKU from the plant to hubs and among hubs. 

A : fixed ordering cost per order. 



𝐼𝐿𝑖𝑛 or 𝐼𝐿𝑗𝑛: inventory level at intermediate stocking point 𝑖 or retailer 𝑗 between 𝑛th and  (𝑛 + 1)th 

day. 

 

The decision variables are:  

𝑅𝑖: intermediate stocking point 𝑖’s reorder point. 

𝑄𝑖0: intermediate stocking point 𝑖’s batch size (order quantity) from the plant. 

𝑄𝑖: intermediate stocking point 𝑖’s batch size (order quantity) from other intermediate stocking points. 

𝑥0𝑖𝑛: binary variable of whether choose plant 0 to satisfy the demand of intermediate stocking point 

𝑖 at time 𝑛th day, if so 𝑥0𝑖𝑛 = 1, otherwise 0; 

𝑥𝑘𝑖𝑛: binary variable of whether choose intermediate stocking point 𝑘 ∈ 𝑀 to satisfy the demand of 

intermediate stocking point 𝑖 (𝑖 ≠ 𝑘) at time 𝑛th day. 

𝑥𝑘𝑗𝑛: binary variable of whether choose facility 𝑘 ∈ 𝑀 to satisfy the demand of retailer 𝑗 at time 𝑛th 

day. 

 

The objective function: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑡𝑜𝑡

= [∑ ∑ 𝐼𝐿𝑖𝑛𝐻𝑖

𝑇

𝑛=1

𝑀

𝑖=1

]

(1)

+ [∑ ∑ ∑ 𝑥𝑘𝑗𝑛[𝑐1𝑞
𝑗
𝑑𝑖𝑠𝑘𝑗 + 𝑞𝑗 ∗ ℎ𝑑]

𝑀

𝑘=1

𝑇

𝑛=1

𝑁𝑟

𝑗=1

]

(2)

+ [∑ ∑ ∑ 𝑥𝑘𝑖𝑛(𝑐2𝑄𝑖𝑑𝑖𝑠𝑘𝑖 + 𝐴 + 2𝑄𝑖 ∗ ℎ𝑑)

𝑀

𝑘=1,𝑘≠𝑖

𝑇

𝑛=1

𝑀

𝑖=1

]

(3)

+ [∑ ∑ 𝑥0𝑖𝑛(𝑐2𝑄𝑖0𝑑𝑖𝑠0𝑖 + 𝐴 + 𝑄𝑖0 ∗ ℎ𝑑)

𝑇

𝑛=1

𝑀

𝑖=1

]

(4)

+ [∑ ∑ (1 − ∑ 𝑥𝑘𝑗𝑛

𝑀

𝑘=1

) ∗ 𝑢𝑗

𝑁𝑟

𝑗=1

∗ 𝑝𝑗

𝑇

𝑛=1

]

(5)

 

Subject to: 

0 ≤ ∑ 𝑥𝑘𝑗𝑛 ≤ 1   ∀𝑗 ∈ 𝑁𝑟, ∀𝑛 = 1 … 𝑇𝑀
𝑘=1                 (6) 

𝑥𝑘𝑗𝑛 ∈ {0,1}     ∀𝑘 ∈ 𝑀, ∀𝑗 ∈ 𝑁𝑟, ∀𝑛 = 1 … 𝑇                          (7) 

0 ≤ ∑ 𝑥𝑘𝑖𝑛 ≤ 1   ∀𝑖 ∈ 𝑀, ∀𝑛 = 1 … 𝑇𝑀
𝑘=0,𝑘≠𝑖                      (8) 

𝑥𝑘𝑖𝑛 ∈ {0,1}   ∀𝑖 ∈ 𝑀, ∀𝑘 ∈ 𝑀 ∪ {0}, 𝑖 ≠ 𝑘, ∀𝑛 = 1 … 𝑇                                                        (9) 

𝑅𝑖, 𝑄𝑖0, 𝑄𝑖: Integers, ∀𝑖 ∈ 𝑀                                                                                                    (10) 

Where equation (1) represents the total annual holding cost at the hubs or DC or WH, equation (2) 

indicates the total annual transportation cost and handling cost to satisfy replenishment orders from 

retailers, equation (3) describes the total annual transportation cost, fixed ordering cost and handling 

cost to meet the replenishment orders of the hubs by other hubs or orders from DCs by WH, equation 

(4) the total annual transportation cost, fixed ordering cost and handling cost to meet the 

replenishment orders of the hubs by the sources or WH by the plant, equation (5) introduces the 

penalty cost for replenishment orders from retailers unmet immediately which is defined linear to the 

average demands and product value at retailers. Equation (6) - (9) describe the constraints that the 



replenishment orders can only be met by one facility each time. Hence, order splitting is not allowed 

in the model. Equation (10) indicates that the demanding quantity cannot be allowed fractional or 

partial. 

4 Results analysis 

4.1 Experiments Design 

With optimal replenishment parameters at retailers obtained by (Giard 2005), the dynamic source 

selection strategy Source Substitution in (Pan et al. 2014) is applied to determine the source selection 

variables 𝑥0𝑖𝑛/𝑥𝑘𝑖𝑛/ 𝑥𝑘𝑗𝑛 . Recall the Source Substitution strategy always chooses the nearest 

candidate to the ordering point among the candidates with inventory level bigger than the ordering 

quantity. A simulated annealing algorithm is constructed to optimize the replenishment parameters 

of intermediate stocking points. With the optimal replenishment parameters for each hub, we 

simulated the total system for 100 times and evaluate the average total cost of the hub system, the 

average total inventory level of all hubs, the average end customer level at retailers,  and etc.  

A single product network with a supplier company supplying two regional retailer companies is 

studied and the localization is shown in Figure 1. As seen in the picture, the three companies have 

common areas of logistic activities and geographically privileged areas. The points of sales R1 and 

R2 are geographically privileged to their own retailer company while the points of sales R3 and R4 

are in the common area of the three companies. It indicates the three companies have great 

possibilities to share their logistic activities, i.e. transportation, storage capacity, and etc. The lead-

time are assumed to be 5 days between the plant and the hubs, 1 day between hubs and 2 days between 

hubs and retailers. The route distance matrix (km) is described in the Table 1 as follows. 

 

 

Figure 1. Localization of the facilities in networks 

 

Table 1. Route Distance Matrix (km) 



               Source                   

Destination 
Plant HUB1 HUB2 HUB3 

HUB1 200 0 160 155 

HUB2 350 160 0 165 

HUB3 325 155 165 0 

R1   170 15 160 

R2   140 165 15 

R3   100 95 90 

R4   90 100 105 

The impact of the following four parameters are analyzed: fixed ordering cost A= 8/20/80 (monetary 

unit) per order (or 0 if the order is not satisfied), the average demand level at retailers (value range: 

high/low, seen in Table 2), the product value 0.5/50 (monetary unit)  leading to different penalty cost 

and holding cost, and the handling cost 0/2 (monetary unit)  for a pallet of goods enter and out of each 

stocking point. For this paper, the low standard deviation at retailers are considered and the values 

are shown in Table 2. A pallet of goods is assumed to be 1.73 𝑚3 and a unit of goods is assumed to 

be 0.003 𝑚3 (equivalent to 500ml or 750 ml bottle of beverage). A SKU is a container of 6 units of 

goods. A full truck-load is assumed to be 33 full pallets. The penalty cost for retailers’ orders unmet 

immediately is considered as 20% of the product value in intermediate stocking points and 30% at 

retailers. The transportation cost from the plant to hubs and among hubs is assumed to be 1.4 

(monetary unit) per full truckload per km and 2.0 per full truckload per km from hubs to retailers. 

This assumption is based on the fact that the long-haul transportation cost is lower than that the last 

mile transportation cost. The holding cost per SKU is considered as the sum of two parts: the stocking 

cost per unit per day for storage space that is assumed to be 0.11 per 𝑚3 /day in WH or DC or hubs 

(0.165 at retailers), and capital cost which is 8% of the product value per year. Therefore, for scenario 

of each network, there are 3*2*2*2=24 instances, as indexed in Table 3. 

Table 2. Daily demand level and standard deviation at retailers (units of goods) 

Nodes R1 R2 R3 R4 

u1 (High) 240 288 144 192 

u2 (low) 30 45 20 46 

σ (Low) 3 4 2 3 

Table 3 List of instances 

Instances Index Handling cost Fixed ordering cost Product value Demand level 

1 0 8 0.5 u1 

2 0 8 0.5 u2 

3 0 8 50 u1 

4 0 8 50 u2 

5 0 20 0.5 u1 

6 0 20 0.5 u2 

7 0 20 50 u1 

8 0 20 50 u2 

9 0 80 0.5 u1 

10 0 80 0.5 u2 

11 0 80 50 u1 

12 0 80 50 u2 

13 2 8 0.5 u1 

14 2 8 0.5 u2 

15 2 8 50 u1 

16 2 8 50 u2 

17 2 20 0.5 u1 



18 2 20 0.5 u2 

19 2 20 50 u1 

20 2 20 50 u2 

21 2 80 0.5 u1 

22 2 80 0.5 u2 

23 2 80 50 u1 

24 2 80 50 u2 

With all these setups and the methods presented in (Giard 2005), the optimal replenishment 

parameters (SKUs) for retailers are obtained to minimize its annual total cost including inventory 

holding cost, fixed ordering cost and penalty cost for lost sales with required lead time constraints. It 

is considered as the input data for the network of hubs, shown in Table 4. The optimal replenishment 

parameters for hubs are obtained by a simulated annealing heuristic method where the convergence 

ratio, the maximum temperature and the maximum iteration number are set to be 3%, 60, and 6000. 

With the optimal replenishment parameters for each hub, we simulated the total system for 100 times 

and evaluate the average total cost of the hub system, the average total inventory level of all hubs, 

the average end customer level at retailers,  and etc. All the experimental tests are developed in 

Mathematica® 10.0 on a PC with Intel (R) Core (TM) i7-3940XM CPU 3.20 GHz and 32 Go RAM. 

Table 4. Optimal replenishment parameters of retailers (SKUs) 

Instances Index 
R1              

(q, s) SKUs 

R2             

(q, s) SKUs 

R3              

(q, s) SKUs 

R4             

(q, s) SKUs 

1 13 {420, 121} {326, 74} {460, 145} {376, 97} 

2 14 {149, 16} {183, 24} {122, 11} {184, 24} 

3 15 {97, 122} {75, 75} {106, 145} {87, 98} 

4 16 {34, 17} {42, 25} {28, 11} {42, 25} 

5 17 {664, 121} {515, 73} {728, 145} {594, 97} 

6 18 {235, 16} {288, 24} {192, 10} {291, 24} 

7 19 {153, 122} {119, 75} {168, 145} {137, 98} 

8 20 {54, 17} {67, 25} {45, 11} {67, 25} 

9 21 {1329, 121} {1029, 73} {1456, 145} {1188, 97} 

10 22 {470, 15} {576, 23} {384, 7} {582, 23} 

11 23 {305, 122} {237, 74} {334, 145} {273, 98} 

12 24 {108, 17} {132, 25} {88, 11} {134, 25} 

 

4.2 Results analysis 

We adapt the performance ratio defined in (Ng et al., 2001) to compare the performance of scenarios. 

Here the classic inventory model is always used as the baseline and the performance ratio to other 

scenarios is the relative variations. Table 5 presents the average performance ratios of PI inventory 

model to classic inventory model with pre-determined sources. For example, for the instances where 

the average demand level is high as seen in Table 5, the average total cost of the distribution network 

are reduced 34% by the PI inventory model and 24% of the reduction comes from the holding cost 

while reaching a similar end customer service level at retailers. For all instances, we observe that the 

proposed PI inventory model can reduce the total logistic cost compared to classic inventory models 

while reaching a comparable or improved end customer service levels at retailers. 

Table 5. Average performance ratios: PI vs Classic 

Parameter Demand level Handling cost Product value Fixed ordering cost 

Value Low High 0 2 0.5 50 8 20 80 

Total cost -54% -34% -43% -45% -44% -44% -39% -39% -53% 

Service level 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Holding -48% -24% -38% -34% -36% -36% -29% -30% -50% 



Total 

Transportation 1% -4% -2% -1% -2% -1% -4% -1% 1% 

Downstream 

Transportation 5% 5% 5% 4% 9% 1% 5% 6% 4% 

Upstream 

Transportation -4% -9% -7% -5% -10% -2% -9% -7% -2% 

Penalty -1% 1% 0% 0% 0% 0% 0% -1% 1% 

Ordering -5% -3% -4% -4% -2% -6% -3% -5% -3% 

Handling -2% -4% 0% -5% -4% -2% -3% -3% -2% 

In these instances compared to classic inventory model, the PI network has averagely 18% percent 

transportation cost profit perspective by direct shipping when the objective is to minimize the travel 

distance. However, as the objective is to minimize the annual total cost, the results shows direct 

shipping is not always the optimal solutions. And the transportation cost is not always reduced by 

18%. We observe that in these scenarios the profits mainly come from the reduction of inventory 

holding cost and the average saving of the total cost reaches to 44% while reaching a similar end 

customer service level at retailers. Besides, the percentage of reduction of total cost increases with 

low demand level and high fixed ordering cost. Because with low level demand retailers at the 

network and high fixed ordering cost, the PI inventory model will compromise the downstream 

transportation cost from hubs to retailers to reduce the total inventory holding cost by grouping the 

distribution flows into one stocking point such as in Figure 2.(a). However, in the classic inventory 

model like in Figure 2.(b), the flow directions are always pre-determined and can’t adapt to the 

changes of the economic environment changes.  

Figure 2. Distribution flow compare PI vs Classic 

 

Concerning physical effects of the PI inventory model, we can see that different configurations of the 

four parameters restrict logistic activities of the PI network, resulting in different configurations of 

distribution flows. When the fixed ordering cost is low and the product value is high, the distribution 

flows are partially centralized and partially decentralized to minimize the total cost as seen in Figure 

3. As the fixed ordering cost increases and the average demand level is low, the PI inventory model 

tends to group the distribution flows, an example as depicted in Figure 2.(a). Table 6 gives a 

quantitative description of interactions among hubs. The percentage of transshipment is defined as 

the percentage of replenishment orders of hubs satisfied by other hubs and the percentage of multi-



sourcing refers to the percentage of retailer’s orders satisfied by other hubs except the most regular 

hub. Results show that generally as the transportation cost set is linear to the quantity and distance 

travelled, the distribution flows of the network tend to be decentralized as to reduce the travel 

distances. However, the possibility of interactions among hubs increases when the product value and 

demand level at retailers increases as to reduce the total inventory holding cost and penalty cost for 

demands unmet immediately by pooling of the inventories among hubs. Besides, the augmenting 

fixed ordering cost and handling cost restrict the stock movements among hubs as expenses are 

charged for additional movements. 

Figure 3. Distribution flow PI network 

 

Table 6 Interactions among hubs in PI network 

Parameter u hd c A 

Value Low High 0 2 0.5 50 8 20 80 

Percentage 

transshipment 

0% 2% 2% 0% 0% 2% 0% 3% 0% 

Percentage 

multi-sourcing 

0% 10% 6% 4% 4% 6% 8% 4% 3% 

 

 

5 Conclusions  

We have developed and evaluated a PI-inventory model in FMCG sector with a plant supplying a 

network of hubs and retailers. The optimal replenishment policies for hubs are determined to 

minimize the annual total cost of the distribution system including holding cost, fixed ordering cost, 

transportation cost and penalty cost for orders from retailers unmet immediately. A heuristic using 



simulated annealing is proposed to solve the optimization problem and then a simulation study is 

taken to evaluate the optimal policies under each sourcing strategy. The results show the PI inventory 

model can significantly reduce the average total cost compared to the current pre-determined 

inventory model while reaching a similar end customer service levels as the open and interconnected 

network enables more options. The profits are mainly come from the interactions among hubs to 

reduce the inventory levels around the network. Besides, as the source selection decisions are 

dynamically determined in PI network, a change in flexibility, i.e. fixed ordering cost, customer 

demand level, is immediately valued in the structure of the distribution flows, which improves the 

robustness of the inventory system to the perturbations of the economic environment. In a word, there 

is little doubt, this scheme proposes a drastic change compare to nowadays FMCG supply chain 

management that needs thus to be further investigated. 

In this paper, the interactions among hubs are limited by the limited geography cover as well the 

small numbers of consignees in common logistic area. Great numbers of facilities in large common 

logistic area will lead to a significant change of the distribution scheme with more frequent 

transshipment among hubs and also more use of multi-sourcing in the downstream distribution flows. 

Further research is also required to investigate performance of  different source selection methods as 

discussed in our previous paper (Pan et al. 2014) for different configurations of the network. Finally, 

another important factor to study is the robustness of PI network to some disruptive effect, for 

example the effects when a hub becomes suddenly unserviceable. 
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