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Minimum time control of heterodirectional linear coupled hyperbolic

PDEs

Jean Auriol1 and Florent Di Meglio2

Abstract— We solve the problem of stabilization of a class
of linear first-order hyperbolic systems featuring n rightward
convecting transport PDEs and m leftward convecting trans-
port PDEs. Using the backstepping approach yields solutions
to stabilization in minimal time and observer based output
feedback.

I. INTRODUCTION

This article solves the problem of boundary stabilization of

a general class of coupled heterodirectional linear first-order

hyperbolic systems of Partial Differential Equations (PDEs),

with arbitrary numbers m and n of PDEs in each direction

and with actuation applied on only one boundary.

First-order hyperbolic PDEs are predominant in modeling

of traffic flow [1], heat exchanger [25], open channel flow

[5], [7] or multiphase flow [8], [10], [11]. Research on

controllability and stability of hyperbolic systems have first

focused on explicit computation of the solution along the

characteristic curves in the framework of the C1 norm [12],

[16], [20]. Later, the Control Lyapunov Functions methods

emerged, enabling the design of dissipative boundary condi-

tions for nonlinear hyperbolic systems [3], [4]. In [6] control

laws for a system of two coupled nonlinear PDEs are derived,

whereas in [2], [4], [18], [19], [21] sufficient conditions

for exponential stability are given for various classes of

quasilinear first-order hyperbolic system. Those conditions

typically impose restriction on the magnitude of the coupling

coefficients.

In [23] a backstepping transformation is used to design

a single boundary output-feedback controller. This control

law yields H2 exponential stability of closed loop 2-state

heterodirectional linear and quasilinear hyperbolic system for

arbitrary large coupling coefficients. A similar approach is

used in [9] to design output feedback laws for a system

of coupled first-order hyperbolic linear PDEs with m =
1 controlled negative velocity and n positive ones. The

generalization of this result to an arbitrary number m of

controlled negative velocities is presented in [14]. There, the

proposed control law yields finite-time convergence to zero,

but the convergence time is larger than the minimum control

time, derived in [17]. This is due to the presence of non-local

coupling termes in the targeted closed-loop behavior.

The main contribution of this paper is a minimum time

stabilizing controller. More precisely a proposed boundary
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- Centre automatique et systèmes, 60 bd St Michel 75006 Paris, France.
jean.auriol@mines-paristech.fr

2Florent Di Meglio is with MINES ParisTech, PSL Research University,
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feedback law ensures finite-time convergence of all states

to zero in minimum-time. This minimum-time, defined in

[17] is the sum of the two largest time of transport in each

direction.

Our approach is the following. Using a backstepping

approach (with a Volterra transformation) the system is

mapped to a target system with desirable stability properties.

This target system is a copy of the original dynamics with

a modified in-domain coupling structure. More precisely the

target system is designed as an exponential stable cascade.

A full-state feedback law guaranteeing exponential stability

of the zero equilibrium in the L2-norm is then designed.

This full-state feedback law requires full distributed mea-

surements. For this reason we derive a boundary observer

relying on measurements of the states at a single boundary

(the anti-collocated one). Similarly to the control design, the

observer error dynamics are mapped to a target system using

a Volterra transformation. Along with the full-state feedback

law, this yields an output feedback controller amenable to

implementation.

The main difficulty of this paper is to prove well-posedness

of the Volterra transformation. Interestingly the transforma-

tion kernels satisfy a system of equations with a cascade

structure akin to the target system one. The approach classi-

cally yields a stability full-state feedback law.

The paper is organized as follows. In Section II we

introduce the model equations and the notations. In Section

III we present the stabilization result: the target system and

its properties are presented in Section III-A. In Section III-

B we derive the backstopping transformation. Section IV

contains the main technical difficulty of this paper which

is the proof of well-posedness of the kernel equations. In

Section IV-A we transform the kernel equations into an

integral equation using the method of characteristics. In Sec-

tion IV-B we solve the integral equations using the method

of successive approximations. In Section V we present the

control feedback law and its properties. In Section VI we

present the uncollocated observer design. Finally in Section

VII we give some concluding remarks

II. PROBLEM DESCRIPTION

A. System under consideration

We consider the following general linear hyperbolic sys-

tem

ut(t, x) + Λ+ux(t, x) = Σ++u(t, x) + Σ+−v(t, x) (1)

vt(t, x)− Λ−vx(t, x) = Σ−+u(t, x) + Σ−−v(t, x) (2)



with the following linear boundary conditions

u(t, 0) = Q0v(t, 0), v(t, 1) = R1u(t, 1) + U(t) (3)

where

u = (u1 . . . un)
T , v = (v1 . . . vm)T (4)

Λ+ =







λ1 0
. . .

0 λn






, Λ− =







µ1 0
. . .

0 µm






(5)

with constant speeds :

−µm < · · · < −µ1 < 0 < λ1 ≤ · · · ≤ λn (6)

and constant coupling matrices as well as the feedback

control input

Σ++ = {σ++
ij }1≤i≤n,1≤j≤n Σ+− = {σ+−

ij }1≤i≤n,1≤j≤m

(7)

Σ−+ = {σ−+
ij }1≤i≤m,1≤j≤n Σ−− = {σ−−

ij }1≤i≤m,1≤j≤m

(8)

Q0 = {qij}1≤i≤n,1≤j≤m R1 = {ρij}1≤i≤m,1≤j≤n (9)

(10)

B. Control problem

The goal is to design feedback control inputs U(t) =
(U1(t), . . . , Um(t))T such that the zero equilibrium is

reached in minimum time t = tF , where

tF =
1

µ1
+

1

λ1
(11)

III. CONTROL DESIGN

The control design is based on the backstepping approach:

using a Volterra transformation, we map the system (1)-(3)

to a target system with desirable properties of stability.

A. Target system

1) Target system design: We map the system (1)-(3) to

the following system

αt(t, x) + Λ+αx(t, x) = Σ++α(t, x) + Σ+−β(t, x)

+

∫ x

0

C+(x, ξ)α(t, ξ)dξ +

∫ x

0

C−(x, ξ)β(t, ξ)dξ (12)

βt(t, x)− Λ−βx(t, x) = Ω(x)β(t, x) (13)

with the following boundary conditions

α(t, 0) = Q0β(t, 0) β(t, 1) = 0 (14)

where C+ and C− are L∞ matrix functions on the domain

T = {0 ≤ ξ ≤ x ≤ 1} (15)

while Ω ∈ L∞(0, 1) is an upper triangular matrix with the

following structure

Ω(x) =













ω1,1(x) ω1,2(x) . . . ω1,m(x)

0
. . .

. . .
...

...
. . . ωm−1,m−1(x) ωm−1,m(x)

0 . . . 0 ωm,m(x)













(16)

This system is designed as a copy of the original dynamics,

from which the coupling terms of (2) are removed. The

integral coupling appearing in (12) are added for the control

design but don’t have any incidence on the stability of the

target system.

Lemma 1: The zero equilibrium of (12),(13) with bound-

ary conditions (14) and initial conditions (α0, β0) ∈
L2([0, 1]) is exponentially stable in the L2 sense

Proof: Consider the following candidate Lyapunov

functional :

V (t) =

∫ 1

0

(

pe−δx

n
∑

i=1

αi(t, x)
2

λi

+ leγx
n
∑

i=1

βi(t, x)
2

µi

)

dx

(17)

where p > 0, l > 0, δ > 0 and γ > 0 are parameters to be

determined. One should notice that
√
V is equivalent to the

L2 norm. After differentiating V with respect to time and

integrating by part we get :

V̇ (t) = [−pe−δxα(t, x)Tα(t, x) + leγxβ(t, x)Tβ(t, x)]10

−
∫ 1

0

pδe−δxα(t, x)Tα(t, x)dx−
∫ 1

0

lγeγxβ(t, x)T β(t, x)dx

+ 2p

∫ 1

0

e−δxα(t, x)T (Λ+)−1Σ++α(x, t)dx

+ 2p

∫ 1

0

e−δxα(t, x)T (Λ+)−1Σ+−β(t, x)dx

+ 2p

∫ 1

0

∫ x

0

e−δxα(t, x)T (Λ+)−1C+(x, ξ)α(t, ξ)dξdx

+ 2p

∫ 1

0

∫ x

0

e−δxα(t, x)T (Λ+)−1C−(x, ξ)β(t, ξ)dξdx

+ 2l

∫ 1

0

eγxβ(t, x)T (Λ−)−1Ω(x)β(t, x)dx (18)

Let M > 0, ||q|| and ǫ > 0 be such that

∀i = 1, . . . , n ∀j = 1, . . . , n ∀k = 1, . . . ,m

∀l = 1, . . . ,m ∀x ∈ [0, 1] Σ++
ij ,Σ+−

ik , C+
ij ,

C−
ik,Ωkl(x) < M

∀i = 1, . . . , n λi > ǫ and µi > ǫ

||q|| = max
i=1,...,m,j=1,...,m

qij



Using Young’s and Cauchy-Schwarz inequalities and the

boundary conditions yields

V̇ (t) ≤ β(t, 0)T (pQT
0 Q0 − lIm×m)β(t, 0)

−
∫ 1

0

pe−δxα(t, x)TPα(t, x)dx

−
∫ 1

0

leγxβ(t, x)TQ(x)β(t, x)dx (19)

with P =

(

(δ − 2mM

ǫ
− nM

ǫ
− Mn

δǫ
)In×n − 2(Λ+)−1Σ++

)

and Q(x) =

(

γ − pnM

lǫ
e−γx − pMn

lδǫ
e−γx

)

Im×m −
2(Λ−)−1Ω(x).
Taking γ and δ large enough ensures that Q(x) and P are

positive definite for all x ∈ [0, 1].
Moreover choosing l and p such that l > pm||q|| ensures

that β(t, 0)T (pQT
0 Q0 − lIm×m)β(t, 0) ≤ sβ(t, 0)Tβ(t, 0)

with s strictly negative.

This concludes the proof

Besides, the following lemma assesses the finite-time stabil-

ity of the target system.

Lemma 2: The system (12), (13) reaches its zero equilib-

rium in finite-time tF =
1

µ1
+

1

λ1

Proof: The proof of this lemma is straightforward using

the proof of [14, Lemma 3.1]

2) Volterra Transformation: In order to map the original

system (1)-(3) to the target system (12)-(14), we use the

following Volterra transformation

α(t, x) = u(t, x) (20)

β(t, x) = v(t, x)

−
∫ x

0

(K(x, ξ)u(ξ) + L(x, ξ)v(ξ))dξ (21)

where the kernels K and L, defined on T = {(x, ξ) ∈
[0, 1]2|ξ ≤ x} have yet to be defined. Differentiating (21)

with respect to space and using the Leibniz rule yields

βx(t, x) = vx(t, x) −K(x, x)u(t, x)− L(x, x)v(t, x)

−
∫ x

0

Kx(x, ξ)u(t, ξ) + Lx(x, ξ)v(t, ξ)dξ (22)

Differentiating with respect to time, using (1), (2) and

integrating by parts yields

βt(t, x) = Λ−vx(t, x) + Σ−+u(t, x) + Σ−−v(t, x)

−
∫ x

0

[

K(x, ξ)Σ++u(t, ξ) +K(x, ξ)Σ+−v(t, ξ)

+ L(x, ξ)Σ−+u(t, ξ) + L(x, ξ)Σ−−v(t, ξ)

]

dξ

+K(x, x)Λ+u(t, x)−K(x, 0)Λ+u(t, 0)

− L(x, x)Λ−v(t, x) + L(x, 0)Λ−v(t, 0)

+

∫ x

0

[

Kξ(x, ξ)Λ
+u(t, ξ)− Lξ(x, ξ)Λ

−v(t, ξ)
]

dξ (23)

Plugging those expressions into the target system (20)-(21),

noticing that β(t, 0) = v(t, 0) and using the corresponding

boundary conditions (3) yields the following system of kernel

equations

0 =Σ−+ +K(x, x)Λ+ + Λ−K(x, x) (24)

0 =Σ−− + Λ−L(x, x) − L(x, x)Λ− − Ω(x) (25)

0 =K(x, 0)Λ+Q0 − L(x, 0)Λ− (26)

0 =Λ−Kx(x, ξ) −Kξ(x, ξ)Λ
+ −K(x, ξ)Σ++

− L(x, ξ)Σ−+ +Ω(x)K(x, ξ) (27)

0 =Λ−Lx(x, ξ) + Lξ(x, ξ)Λ
− − L(x, ξ)Σ−−

−K(x, ξ)Σ+− +Ω(x)L(x, ξ) (28)

We get the following equations for C−(x, ξ) and C+(x, ξ)

C−(x, ξ) = Σ+−L(x, ξ) +

∫ x

ξ

C−(x, s)L(s, ξ)ds (29)

C+(x, ξ) = Σ+−K(x, ξ) +

∫ x

ξ

C−(x, s)K(s, ξ)ds (30)

Remark 1: One can notice that for each x ∈ [0, 1],
equation (29) is a Volterra equation on [0, x] where C−(x, ·)
is the unknown. Assuming that K and L are well defined

and bounded, so is C−. Using (30) yields explicitly C+ as

a function of C− and K .

Developing equation (24)-(28) we get the following set of

kernel PDEs :

for 1 ≤ i ≤ m, 1 ≤ j ≤ n

µi∂xKij(x, ξ)− λj∂ξKij(x, ξ) =

n
∑

k=1

σ++
kj Kik(x, ξ)

+

m
∑

p=1

σ−+
pj Lip(x, ξ)−

∑

i≤p≤m

Kpj(x, ξ)ωip(x) (31)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂xLij(x, ξ) + µj∂ξLij(x, ξ) =

m
∑

k=1

σ−−
kj Lik(x, ξ)

+

n
∑

p=1

σ+−
pj Kip(x, ξ)−

∑

i≤p≤m

Lpj(x, ξ)ωip(x) (32)



with the following set of boundary conditions

∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n, Kij(x, x) = −
σ−+
ij

µi + λj

= kij

(33)

∀1 ≤ i, j ≤ m, j < i Lij(x, x) =
−σ−−

ij

µi − µj

(34)

∀1 ≤ i, j ≤ m, µjLij(x, 0) =

n
∑

k=1

λkKik(x, 0)qkj (35)

Besides, (25) imposes

∀i ≤ j ωij(x) = (µi − µj)Lij(x, x) + σ−−
ij (36)

This induces a coupling between the kernels through equa-

tions (31) and (32) that could appear as non linear at first

sight. However, as it will appear in the proof of the following

theorem, the coupling has a linear cascade structure. More

precisely, the well-posedness of the target system is assessed

in the following theorem.

Theorem 1: Consider system (31)-(35). There exists a

unique solution K and L in L∞(T ).
The proof of this theorem is described in the following

section and uses the cascade structure of the kernel equations

(which is due to the particular shape of the matrix Ω).

IV. WELL-POSEDNESS OF THE KERNEL EQUATION

To prove the well-posedness of the kernel equations we

classically (see [15] and [24]) transform the kernel equations

into integral equations and use the method of successive

approximations.

By induction, let us consider the following property

P (s) defined for all 1 ≤ s ≤ m :

∀ m + 1 − s ≤ i ≤ m the problem (31)-(35) where Ω is

defined by (36) has a unique solution K,L ∈ L∞(T ).

Initialization : For s = 1, system (31)-(35) rewrites as

follow

for 1 ≤ j ≤ n

µm∂xKmj − λj∂ξKmj =

n
∑

k=1

σ++
kj Kmk(x, ξ)

+

m
∑

p=1

σ−+
pj Lmp(x, ξ) −Kmj(x, ξ)σ

−−
mm (37)

for 1 ≤ j ≤ m

µm∂xLmj + µj∂ξLmj =
m
∑

k=1

σ−−
kj Lmk(x, ξ)

+

n
∑

p=1

σ+−
pj Kmp(x, ξ) − Lmj(x, ξ)σ

−−
mm (38)

with the following set of boundary conditions

∀1 ≤ j ≤ n, Kmj(x, x) = −
σ−+
mj

µm + λj

= k1j (39)

∀1 ≤ j < m, Lmj(x, x) = −
σ−−
mj

µm − µj

(40)

∀1 ≤ j ≤ m, µjL1j(x, 0) =
n
∑

k=1

λkK1k(x, 0)qkj (41)

The well-posedness of such system has been proved in [9].

Induction : Let us assume that the property P (s − 1)
(1 < s ≤ m − 1) is true. We consequently have that

∀ m + 2 − s ≤ p ≤ m, ∀ 1 ≤ j ≤ n, ∀ 1 ≤ l ≤ m

Kpj(·, ·) and Lpl(·, ·) are bounded. In the following we take

i = m + 1 − s. We now show that (31)-(35) is well-posed

and that Kij(·, ·) and Lil(·, ·) ∈ L∞(T )

A. Method of characteristics

1) Characteristics of the K kernels: For each 1 ≤ j ≤ n

and (x, ξ) ∈ T , we define the following characteristic lines

(xij(x, ξ, ·), ξij(x, ξ, ·)) corresponding to equation (31)

{

dxij

ds
(x, ξ, s) = −µi s ∈ [0, sFij(x, ξ)]

xij(x, ξ, 0) = x, xij(x, ξ, s
F
ij(x, ξ)) = xF

ij(x, ξ)
(42)

{

dξij

ds
(x, ξ, s) = λj s ∈ [0, sFij(x, ξ)]

ξij(x, ξ, 0) = ξ, ξij(x, ξ, s
F
ij(x, ξ)) = xF

ij(x, ξ)
(43)

These lines originate at the point (x, ξ) and terminate on

the hypothenuse at the point (xF
ij(x, ξ), x

F
ij(x, ξ)). Integrating

(31) along these characteristics and using the boundary

conditions (33) we get

Kij(x, ξ) = kij

+

∫ sFij(x,ξ)

0

[

n
∑

k=1

σ++
kj Kik(xij(x, ξ, s), ξij(x, ξ, s))

+

m
∑

k=1

σ−+
kj Lik(xij(x, ξ, s), ξij(x, ξ, s))

−
∑

i≤p≤m

Kpj(xij(x, ξ, s), ξij(x, ξ, s))

((µi − µj)Lip(xij(x, ξ, s), xij(x, ξ, s)) + σ−−
ip )

]

ds (44)

We can notice that the last sum uses the expression of Li,p

for i ≤ p ≤ m. This term is known and bounded for p > i

(hypothesis of induction). For p = i, µi = µj and the term

cancels.



2) Characterisitcs of the L kernels: For each 1 ≤ j ≤ n

and (x, ξ) ∈ T , we define the following characteristic lines

(χij(x, ξ, ·), ζij(x, ξ, ·)) corresponding to equation (32)

{

dχij

dν
(x, ξ, s) = −µi ν ∈ [0, νFij(x, ξ)]

χij(x, ξ, 0) = x, χij(x, ξ, ν
F
ij (x, ξ)) = χF

ij(x, ξ)
(45)

{

dζij

dν
(x, ξ, s) = −µj ν ∈ [0, νFij(x, ξ)]

ζij(x, ξ, 0) = ξ, ζij(x, ξ, ν
F
ij (x, ξ)) = ζFij (x, ξ)

(46)

These lines all originates from (x, ξ) and terminate at the

point (χF
ij(x, ξ), ζ

F
ij (x, ξ)), i.e either at (χF

ij(x, ξ), χ
F
ij(x, ξ))

or at (χF
ij(x, ξ), 0). Integrating (32) along these characteristic

and using the boundary conditions (34), (35) yields

Lij(x, ξ) = −δij(x, ξ)
σ−−
ij

µi − µj

+ (1− δij)
1

µj

n
∑

k=1

λkqkjKik(χ
F
ij(x, ξ), 0)

+

∫ νF
ij(x,ξ)

0

[

m
∑

p=1

σ−−
pj Lip(χij(x, ξ, ν), ζij(x, ξ, ν))

+

n
∑

k=1

σ+−
kj Kik(χij(x, ξ, ν), ζij(x, ξ, ν))

−
∑

i≤p≤m

Lpj(χij(x, ξ, ν), ζij(x, ξ, ν))

((µi − µj)Lip(χij(x, ξ, ν), χij(x, ξ, ν)) + σ−−
ip )

]

dν (47)

where the coefficient δij(x, ξ) is defined by

δi,j(x, ξ) =

{

1 if j < i and µiξ − µjx ≥ 0
0 else

(48)

This coefficient reflects the facts that, as mentioned above,

some characteristics terminate on the hypothenuse and others

on the axis ξ = 0. We can now plug (44) evaluated at

(χF
ij(x, ξ), 0) into (47) which yields

Lij(x, ξ) = −δij(x, ξ)
σ−−
ij

µi − µj

+(1−δij)
1

µj

n
∑

k=1

λkqkjkik+(1−δij)
1

µj

n
∑

r=1

λrqrj

∫ sFir(χ
F
ij(x,ξ),0)

0

[

n
∑

k=1

σ++
kr Kik(xir(χ

F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

+

m
∑

k=1

σ−+
kr Lik(xir(χ

F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

−
∑

i≤p≤m

Kpr(xir(χ
F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

((µi−µj)Lip(xij((χ
F
ij(x, ξ), 0, s), xij((χ

F
ij(x, ξ), 0, s))+σ−−

ip )
]

ds

+

∫ νF
ij(x,ξ)

0

[

m
∑

p=1

σ−−
pj Lip(χij(x, ξ, ν), ζij(x, ξ, ν))

+

n
∑

k=1

σ+−
kj Kik(χij(x, ξ, ν), ζij(x, ξ, ν))

((µi − µj)Lip(χij(x, ξ, ν), χij(x, ξ, ν)) + σ−−
ip )

]

dν (49)

B. Method of successive approximations

In order to solve the integral equations (44), (49) we use

the method of successive approximations. We define

∀1 ≤ j ≤ n φ1
j (x, ξ) = kij (50)

∀1 ≤ j ≤ m φ2
j (x, ξ) = −δij(x, ξ)

σ−−
ij

µi − µj

+ (1− δij)
1

µj

n
∑

k=1

λkqkjkik (51)

Besides we denote H as the vector containing the kernels

H =
(

Ki1 . . . Kin Li1 · · · Lim

)⊤
(52)

Ψ =
(

φ1
1 . . . φ1

n φ2
1 . . . φ2

m

)⊤
(53)

We now consider the following operators : ∀1 ≤ j ≤ n

Φ1
j(H)(x, ξ) =
∫ sFij(x,ξ)

0

[

n
∑

k=1

σ++
kj Kik(xij(x, ξ, s), ξij(x, ξ, s))

+

m
∑

k=1

σ−+
kj Lik(xij(x, ξ, s), ξij(x, ξ, s))

−
∑

i≤p≤m

Kpj(xij(x, ξ, s), ξij(x, ξ, s))

((µi − µj)Lip(xij(x, ξ, s), xij(x, ξ, s)) + σ−−
ip )

]

ds (54)



∀1 ≤ j ≤ m

Φ2
j(H)(x, ξ) =

(1− δij)
1

µj

n
∑

r=1

λrqrj

∫ sFir(χ
F
ij(x,ξ),0)

0

[

n
∑

k=1

σ++
kr Kik(xir(χ

F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

+

m
∑

k=1

σ−+
kr Lik(xir(χ

F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

−
∑

i≤p≤m

Kpr(xir(χ
F
ij(x, ξ), 0, s), ξir(χ

F
ij(x, ξ), 0, s))

((µi−µj)Lip(xij((χ
F
ij(x, ξ), 0, s), xij((χ

F
ij(x, ξ), 0, s))+σ−−

ip )
]

ds

+

∫ νF
ij(x,ξ)

0

[

m
∑

p=1

σ−−
pj Lip(χij(x, ξ, ν), ζij(x, ξ, ν))

+

n
∑

k=1

σ+−
kj Kik(χij(x, ξ, ν), ζij(x, ξ, ν))

((µi − µj)Lip(χij(x, ξ, ν), χij(x, ξ, ν)) + σ−−
ip )

]

dν (55)

We set Φ[H ](x, ξ) = [Φ1[H ](x, ξ)T ,Φ2[H ](x, ξ)⊤]⊤ We

define the following sequence

H0(x, ξ) = 0 (56)

Hq(x, ξ) = Ψ(x, ξ) + Φ(Hq−1)(x, ξ) (57)

Consequently, if the sequence Hq has a limit, then this limit

is a solution of the integral equation and therefore of the

original system.

We define the increment ∆Hq = Hq −Hq−1 (with ∆H0 =
Ψ). Provided the limit exists one has

H(x, ξ) = lim
q→+∞

Hq(x, ξ) =

+∞
∑

q=0

∆Hq(x, ξ) (58)

We now prove the convergence of the series.

Remark 2: The proof of the convergence of the success

approximations dries is similar to the one given in [9], since

all the characteristic lines have the same direction along the

x−axis.

C. Convergence of the successive approximation series

Similarly to [9], [14] we want to find a recursive upper

bound in order to prove the convergence of the series. We

first define

Φ̄ = max
j

max
(x,ξ)∈T

{|φ1
i,j(x, ξ)|, |φ2

ij(x, ξ)|} (59)

σ̄ = max
k,j

{σ++
kj , σ+−

kj , σ−+
kj , σ−−

kj }, q̄ = max
k,j

{qkj}

µ̄ = max
p

{|µi − µp|}, λ̄ = max{λn, µn}

λ̃ = max{ 1

λ1
,
1

µ1
},

Mλ = max
j=1,...,m

{ 1

µj

}

We then define S̄ = max
p>i,1≤j≤n

{||Kpj||, ||Lpj} which is well

defined according to the hypothesis P (s− 1). Moreover we

set

M = (nλ̄λ̃q̄ + 1)[(n+m+ 1)σ̄ +mµ̄S̄]Mλ (60)

We recall the following result from [9, Lemma 5.5]

Lemma 3: For any integer q, (x, ξ) ∈ T and

sFij(x, ξ), ν
F
ij (x, ξ), xij(x, ξ, ·), ξij(x, ξ, ·), χij(x, ξ, ·), ζij(x, ξ, ·)

defined as in (42), (43), (45), (46) respectively, the following

inequalities holds

∀1 ≤ k ≤ m, ∀1 ≤ j ≤ n
∫ sFkj(x,ξ)

0

(xkj(x, ξ, s))
qds ≤ Mλ

xq+1

q
(61)

∀1 ≤ k ≤ m, ∀1 ≤ j ≤ n
∫ νF

kj(x,ξ)

0

(χij(x, ξ, s))
qds ≤ Mλ

xq+1

q
(62)

Lemma 4: Assume that for some 1 ≤ q, one has, for all

(x, ξ) ∈ T

∀j = 1, ...m+ n |∆H
q
j (x, ξ)| ≤ Φ̄

M qxq

q!
(63)

where ∆H
q
j (x, ξ) is the j-th component of ∆Hq(x, ξ).

Then, one has

∀j = 1, ...m+ n |∆H
q+1
j (x, ξ)| ≤ Φ̄

M q+1xq+1

(q + 1)!
(64)

Proof: Assume that (63) holds for some fixed 1 ≤ q.

Let us consider 1 ≤ j ≤ (m+ n).

Case j ≤ n

|∆H
q+1
j | =

|
∫ sFij(x,ξ)

0

[

n
∑

k=1

σ++
kj ∆K

q
ik(xij(x, ξ, s), ξij(x, ξ, s))

+
m
∑

k=1

σ−+
kj ∆L

q
ik(xij(x, ξ, s), ξij(x, ξ, s))

−
∑

i<p≤m

Kpj(xij(x, ξ, s), ξij(x, ξ, s))

· (µi − µj)∆L
q
ip(xij(x, ξ, s), xij(x, ξ, s))

−∆K
q
ij(xij(x, ξ, s), ξij(x, ξ, s))σ

−−
ii

]

ds| (65)

Consequently, using (63) and (61)

|∆H
q+1
j | ≤

∫ sFij(x,ξ)

0

((n+m+ 1)σ̄ + S̄µ̄) (66)

· Φ̄M q(xij(x, ξ, s))
q

q!
ds

≤ ((n+m+ 1)σ̄ +mS̄µ̄)
Φ̄M q

q!
Mλ

xq+1

q + 1

≤ Φ̄
M q+1xq+1

(q + 1)!
(67)



Case n < j ≤ n+m Using (63) we get

|∆H
q+1
j | ≤ λ̄λ̃q̄((n+m+ 1)σ̄ +mS̄µ̄)

n
∑

r=1

·
∫ sFir(χ

F
ij(x,ξ),0)

0

φ̄
M q(xir(χ

F
ij(x, ξ), 0, s))

q

q!

+ ((n+m+ 1)σ̄ +mS̄µ̄)

∫ νF
ij(x,ξ)

0

Φ̄
M q(χij)

q

q!
dν

≤ (nλ̃λ̄q̄ + 1)((n+m+ 1)σ̄ +mS̄µ̄)Φ̄Mλ

M qxq+1

(q + 1)!

≤ Φ̄
M q+1xq+1

(q + 1)!
(68)

This concludes the proof

Consequently, using similar procedures that the ones pre-

sented in [9], [22], we get that (58) converges and thus the

property P (s) is true. This concludes the proof by induction

of Theorem 1.

V. CONTROL LAW AND MAIN RESULTS

We now state the main stabilization result as follows.

Theorem 2: System (1)-(2) with boundary conditions (3)

and the following feedback control law

U(t) = −R1u(t, 1)

+

∫ 1

0

[K(1, ξ)u(t, ξ) + L(1, ξ)v(t, ξ)]dξ (69)

reaches its zero equilibrium in finite time tF = where tF is

given by (11). The zero equilibrium is exponentially stable

in the L2-sense.

Proof: Notice first that evaluating (21) at x = 1 yields

(69). Besides, rewriting (21) as follows
(

α(t, x)
β(t, x)

)

=

(

u(t, x)
v(t, x)

)

−
∫ x

0

(

0 0
K(x, ξ) L(x, ξ)

)(

u(t, ξ)
v(t, ξ)

)

dξ (70)

It is a classical Volterra equation of the second kind. One

can check from [13] that there exists a unique function S
such that
(

u(t, x)
v(t, x)

)

=

(

α(t, x)
β(t, x)

)

−
∫ x

0

S(x, ξ)
(

α(t, ξ)
β(t, ξ)

)

(71)

Applying Lemma 2 implies that (α, β) go to zero in finite

time tF , therefore (u, v) converge to zero in finite time

Remark 3: The time of convergence tF is smaller than

the one given in [14]. Nevertheless we have lost here some

degrees of freedom in the kernel equations and thus in the

controller gains.

VI. UNCOLLOCATED OBSERVER DESIGN AND OUTPUT

FEEDBACK CONTROLLER

In this section we design an observer that relies on the

measurements of v at the left boundary, i.e we measure

y(t) = v(t, 0) (72)

Then, using the estimates given by our observer and the

control law (69), we derive an output feedback controller.

A. Observer design

The observer equations read as follows

ût(t, x) + Λ+ûx(t, x) =Σ++û(t, x) + Σ+−v̂(t, x)

− P+(x)(v̂(t, 0)− v(t, 0)) (73)

v̂t(t, x) + Λ−v̂x(t, x) =Σ−+û(t, x) + Σ−−v̂(t, x)

− P−(x)(v̂(t, 0)− v(t, 0)) (74)

with the boundary conditions

û(t, 0) = Q0v(t, 0), v̂(t, 1) = R1û(t, 1) + û (75)

where P+(·) and P−(·) have yet to be designed. This yield

the following error system

ũt(t, x) + Λ+ũx(t, x) =Σ++ũ(t, x) + Σ+−ṽ(t, x)

− P+(x)ṽ(t, 0) (76)

ṽt(t, x) + Λ−ṽx(t, x) =Σ−+ũ(t, x) + Σ−−ṽ(t, x)

− P−(x)ṽ(t, 0) (77)

with the boundary conditions

ũ(t, 0) = 0, ṽ(t, 1) = R1ũ(t, 1) (78)

B. Target system

We map the system (76)-(78) to the following system

α̃t(t, x) + Λ+α̃x(t, x) = Σ++α̃(t, x)

+

∫ x

0

D+(x, ξ)α̃(t, ξ)dξ (79)

β̃t(t, x)− Λ−β̃x(t, x) = Σ−+α̃(t, x) + Ω(x)β(t, x)

+

∫ x

0

D−(x, ξ)α̃(t, ξ)dξ (80)

with the following boundary conditions

α̃(t, 0) = 0, β̃(t, 1) = R1α̃(t, 1) (81)

where D+, and D− are L∞ matrix functions of the domain

T and Ω ∈ L∞(0, 1) is an upper triangular matrix with the

following structure

Ω(x) =













ω1,1(x) ω1,2(x) . . . ω1,m(x)

0
. . .

. . .
...

...
. . . ωm−1,m−1(x) ωm−1,m(x)

0 . . . 0 ωm,m(x)













(82)

Lemma 5: The system (79), (80) reaches its zero equilib-

rium in a finite time tF where tF is defined by (11)

Proof: The system is a cascade of α̃-system (that has

zero input at the led boundary) into the β-system (that has

zero input at the right boundary once α̃ becomes null). The

rigorous proof of the lemma follows the same step of the

proof of Lemma 2 and is omitted here.



C. Volterra Transformation

In order to map the original system (76)-(78) to the target

system (79)-(81), we use the following Volterra transforma-

tion

ũ(t, x) = α̃(t, x) +

∫ x

0

M(x, ξ)β̃(t, ξ)dξ (83)

ṽ(t, x) = β̃(t, x) +

∫ x

0

N(x, ξ)β̃(t, ξ)dξ (84)

where the kernels M and N defined on T = {(x, ξ) ∈
[0, 1]2|ξ ≤ x} have yet to defined. Differentiating (83), (84)

with respect to space and time yields the following kernel

equations

for 1 ≤ i ≤ n, 1 ≤ j ≤ m

λi∂xMij(x, ξ)− µj∂ξMij(x, ξ) =

n
∑

k=1

σ++
ik Mkj(x, ξ)

+

m
∑

p=1

σ−+
ip Npj(x, ξ) −

m
∑

p=1

Mip(x, ξ)ωpj(x) (85)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂xNij(x, ξ) + µj∂ξNij(x, ξ) = −
n
∑

k=1

σ−−
ik Nkj(x, ξ)

−
n
∑

p=1

σ+−
ip Mpj(x, ξ) +

m
∑

p=1

Nip(x, ξ)ωpj(x) (86)

with the following set of boundary conditions :

∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n, Mij(x, x) = −
σ+−
ij

µj + λi

= kij

(87)

∀1 ≤ i, j ≤ m, j < i Nij(x, x) =
−σ−−

ij

µj − µi

(88)

∀i ≤ j ωij(x) = (µj − µi)Nij(x, x) + σ−−
ij (89)

Evaluating (83), (84) at x = 1 yields

∀1 ≤ i, j ≤ m, Nij(1, ξ) =
n
∑

k=1

ρikMkj(1, ξ) (90)

while d+ij , d
−
ij are given by

d+ij(x, , ξ) =−
m
∑

k=1

Mik(x, ξ)σ
−+
kj

+

∫ x

ξ

m
∑

k=1

Mik(x, s)d
−
kj(s, ξ)ds (91)

d−ij(x, , ξ) =−
m
∑

k=1

Nik(x, ξ)σ
−+
kj

+

∫ x

ξ

m
∑

k=1

Nik(x, s)d
−
kj(s, ξ)ds (92)

provided the M and N kernels are well-defined. Finally the

observer gains are given by

p+ij(x) = µjMij(x, 0) (93)

p−ij(x) = µjNij(x, 0) (94)

Considering the following alternate variables

M̄ij(χ, y) = Mij(1− y, 1− χ) = Mij(x, ξ) (95)

N̄ij(χ, y) = Nij(1− y, 1− χ) = Nij(x, ξ) (96)

ω̄ij(χ) = ωij(x) (97)

yields

for 1 ≤ i ≤ n, 1 ≤ j ≤ m

−λi∂χM̄ij(χ, y)+µj∂yM̄ij(χ, y) = −
n
∑

k=1

σ++
ik M̄kj(χ, y)

−
m
∑

p=1

σ−+
ip N̄pj(χ, y) +

m
∑

p=1

M̄ip(χ, y)ω̄pj(χ) (98)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂χN̄ij(χ, y) + µj∂yN̄ij(χ, y) =

n
∑

k=1

σ−−
ik N̄kj(χ, y)

n
∑

p=1

σ+−
ip M̄pj(χ, y)−

m
∑

p=1

N̄ip(χ, y)ω̄pj(χ) (99)

with the following set of boundary conditions

∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n, M̄ij(χ, χ) = −
σ+−
ij

µj + λi

= kij

(100)

∀1 ≤ i, j ≤ m, j < i N̄ij(χ, χ) =
−σ−−

ij

µj − µi

(101)

∀i ≤ j ω̄ij(χ) = (µj − µi)N̄ij(χ, χ) + σ−−
ij (102)

Evaluating (83), (84) at x = 1 yields

∀1 ≤ i, j ≤ m, N̄ij(χ, 0) =
n
∑

k=1

ρikMkj(χ, 0) (103)

This system has the same cascade structure as the controller

kernel system. Using a similar proof we can asses its well-

posedness.

D. Output feedback controller

The estimates can be used in a observer-controller to

derive an output feedback law yielding finite-time stability

of the zero equilibrium

Lemma 6: Consider the system composed of (1)-(3) and

target system (73)-(75) with the following control law

U(t) =

∫ 1

0

[K(1, ξ)û(t, ξ) + L(1, ξ)v̂(t, ξ)]dξ −R1û(t, 1)

(104)



where K and L are defined by (31)-(36). Its solutions

(u, v, û, v̂) converge in finite time to zero

Proof: The convergence of the observer error states

ũ, ṽ to zero for tF ≤ t is ensured by Lemma 5, along

with the existence of the backstopping transformation. Thus,

once tF ≤ t, v(t, 0) = v̂(t, 0) and one can use Theorem2.

Therefore for 2tF ≤ t, one has (ũ, ṽ, û, v̂) ≡ 0 which yields

(u, v) ≡ 0.

VII. CONCLUDING REMARKS

Using the backstepping approach we have presented a

stabilizating boundary feedback law for a general class of

linear first-order system. Moreover, contrary to [14], the zero-

equilibrium of the system is reached in minimum time tF .

The presented design raises several important questions

that will be the topic of future investigation. In [14], the pro-

posed control law does not yield minimum time convergence,

nut features several degrees of freedom that may be useable

to handle transients. A comparison of the transient responses

of both designs, as well as their comparative robustness,

should be performed.

Besides, the presented result narrows the gap with the

theoretical controllability results of [17]. These results, al-

though they do not provide explicit control law, ensure

exact minimum-time controllability with less control inputs

than what is currently achievable using backstopping.. More

generally, this raises the question of the links between

stabilizability and stabilizability by backstepping.

REFERENCES

[1] Saurabh Amin, Falk M Hante, and Alexandre M Bayen, On stability

of switched linear hyperbolic conservation laws with reflecting bound-

aries, Hybrid Systems: Computation and Control, Springer, 2008,
pp. 602–605.

[2] Felipe Castillo Buenaventura, Emmanuel Witrant, Christophe Prieur,
and Luc Dugard, Dynamic boundary stabilization of hyperbolic sys-

tems, 51st IEEE Conference on Decision and Control (CDC 2012),
2012, pp. n–c.

[3] Jean-Michel Coron, Control and nonlinearity, no. 136, American
Mathematical Soc., 2009.

[4] Jean-Michel Coron, Georges Bastin, and Brigitte d’Andréa Novel,
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