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Abstract

In this paper, we are interested in the prediction of the breccia pipe elevation named
”Braden” of the El Teniente mine in Chile. The problem is tackled by developing a new
geostatistical approach based on non-stationary covariances. The proposed method offers
an integrated treatment of all aspects of non-stationarity: mean, variance and spatial con-
tinuity. The estimation of non-stationary parameters is free distribution and carried out
under the local stationarity assumption. The resulting estimated non-stationary parameters
are naturally integrated into a kriging procedure or conditional simulations. The proposed
approach has revealed an increased prediction accuracy when compared to the stationary
one and demonstrated the ability to extract the underlying non-stationarity.

1 Introduction

A canonical problem in the geosciences is the prediction of a physical quantity over the whole
region of interest from a finite set of irregular spaced data. This problem involves modeling
and estimating the underlying spatial dependence structure of the observed data. Commonly,
this is accomplished through statistical tools such as the variogram or covariogram computed
on the whole domain of interest, under the stationarity assumption. However, in practice the
stationarity assumption can be doubtful due to many factors, including specific landscape and
topographic features of the region of interest or other localized effects. These local influences
can be reflected computing local variograms, whose characteristics may vary across the domain
of study. In such cases, carry out predictions based on a stationary approach could produce less
accurate predictions, including an incorrect assessment of the estimation error (Stein, 1999).

Several approaches have been proposed for modeling and estimating non-stationary de-
pendence structure (see Guttorp and Schmidt (2013), for a brief review ). One of the most
interesting is the explicit non-stationary covariances class proposed by Paciorek and Schervish
(2006). However, the parameter estimation of these latter remains a crucial problem. In this
work, we develop a procedure of estimating parameters that govern this class of closed-form
non-stationary covariances under a single realization and local stationarity framework, through
a step by step approach. First, we compute local variograms by a non-parametric kernel estima-
tor. Then, it is used in a weighted local least squares procedure for estimating the parameters at
a reduced set of representative points referred to as anchor points. Finally, a kernel smoothing
method is used to interpolate the parameters at any location of interest. Then, the estimated
non-stationary parameters are integrated naturally into a kriging procedure or conditional sim-
ulations.

As a motivating example in this work we consider the prediction of the breccia pipe elevation
named ”Braden” of the El Teniente mine in Chile. This latter is one of the largest known
porphyry-copper ore bodies. The pipe is poorly mineralized and surrounded by different kinds
of mineralized geological units. Knowing the exact location of the pipe surface is important, as
it constitutes the internal limit of the deposit. Previous approaches have been applied on this
dataset by Séguret and Celhay (2013).



The paper is structured as follows: the model formulation is described in Section 2. In
Section 3, the statistical inference is detailed. Spatial predictions and conditional simulations
are presented in Section 4. In Section 5 the proposed approach is applied on the breccia pipe
datasets. Section 6 is a concluding remarks.

2 Model Formulation

Let Y = {Y (x) : x ∈ G ⊆ Rp, p ≥ 1} be a random field defined on a fixed continuous domain
of interest G of the Euclidean space Rp and reflecting the underlying studied phenomenon. We
consider that Y is governed by the following model:

Y (x) = m(x) + σ(x)Z(x), ∀x ∈ G, (1)

where: m : Rp → R is an unknown fixed function; σ : Rp → R+ is an unknown positive fixed
function; Z is a zero-expectation, unit variance random field with correlation function defined
by:
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h, ∀h ∈ Rp;

Σ : Rp → PDp(R),x 7→ Σx is a mapping from Rp to PDp(R) the set of real-valued positive
definite p-dimensional square matrices; RS(.) is a continuous isotropic stationary correlation
function, positive definite on Rp, for all p ∈ N?.

The expression (2) represents the closed form non-stationary covariances class proposed by
Paciorek and Schervish (2006). The construction of this class is based on a convolution of an
orthogonal random measure with a spatially varying random weighting function (see Fouedjio
et al. (2014) for more details). We can notice that this class gives non-stationary versions of
some well known stationary correlation functions (Gaussian, exponential, Matérn and Cauchy)
for a specific choice of RS(.). The intuition behind this class is that to each location x is
assigned a local Gaussian kernel matrix Σx and the correlation between two locations x and
y is calculated by averaging between the two local kernels at x and y. In this way, the local
characteristics at both locations influence the correlation of the corresponding target values.
Thus, it is possible to account for non-stationarity. It is done by specifying the mapping Σ(.)
which models the anisotropy of the correlation function. The resulting kernel matrix Σx at
each point x is interpreted as a locally varying geometric anisotropy matrix. It controls the
anisotropic behavior of the random field in a small neighborhood around x.

From model defined in (1), the two first moments of the random field Y is given by:

E(Y (x)) = m(x), (3)

Cov(Y (x), Y (y)) = σ(x)σ(y)RNS(x,y) ≡ CNS(x,y). (4)

Then, the non-stationarity of the random field Y is characterized by the non-stationary
parameters m(.), σ(.) and Σ(.) defined at any location of the region of interest.

3 Statistical Inference

Let Y = (Y (s1), . . . , Y (sn))T be a (n × 1) vector of observations from a unique realization of
the random field Y , associated to known locations {s1, . . . , sn} ⊂ G ⊆ Rp. The objective is to
use the data Y to estimate the mean function m(.), the standard deviation function σ(.) and
the correlation function determined by Σ(.). The estimation of these parameters relies on the
slightly local stationarity assumption which allows certain simplifications.



3.1 Local Stationarity

The local stationarity assumption Matheron (1971) implies that at any location x0 ∈ G there
exists a neighborhood Vx0 = {x ∈ G, ‖x − x0‖ ≤ b} where the random field Y can be
approximated by a stationary randon field. Thus, ∀(x,y) ∈ Vx0 × Vx0 , m(x) ≈ m(y) ≈
m(x0) and CNS(x,y) ≈ CS(x − y; x0) = CS(h; x0), ‖h‖ ≤ b; where CS(.) is a stationary
covariance and the limit b represents the radius of the local stationarity neighborhood Vx0 . In
this way, the parameters are assumed to be very smooth functions which vary slowly over the
domain. The expectation of the random field Y being approximately equal to a constant inside
the local stationarity neighborhood, the resulting local covariance structure at any location x0

is written as follows:

CS(h; x0) = σ2(x0)RS
(√

hTΣ−1
x0 h

)
, ‖h‖ ≤ b. (5)

Locally, the non-stationary covariance CNS(., .) (4) is thus reduced to an anisotropic sta-
tionary one CS(.) (5). The anisotropy function Σ(.) is parametrized through the spectral de-
composition and then the positive definiteness is guaranteed. Precisely, at any location x0 ∈ G,
Σx0 = Ψx0Λx0Ψ

T
x0

, where Λx0 is the diagonal matrix of eigenvalues and Ψx0 is the eigenvector
matrix. We assume working in 2D (p = 2) from now and we have:

Λx0 =

(
λ2

1(x0) 0
0 λ2

2(x0)

)
, Ψx0 =

(
cosψ(x0) sinψ(x0)
− sinψ(x0) cosψ(x0)

)
, λ1(x0), λ2(x0) > 0 and

ψ(x0) ∈ [0, π).
At each point, the square roots of the eigenvalues control the local ranges and the eigenvector

matrix specify the local orientations. Thus, the anisotropy function Σ(.) is characterized by the
functions λ1(.), λ2(.) and ψ(.).

3.2 Local Variogram Kernel Estimator

Under the local stationarity assumption, we define a non-parametric kernel moment estimator
of the stationary local variogram at a fixed location x0 ∈ G and lag h ∈ Rp, γ(h; x0) =
σ2(x0)− CS(h; x0), ‖h‖ ≤ b as follows:

γ̂ε(h; x0) =

∑
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, ‖h‖ ≤ b, (6)

where the average (6) is taken over V (h) = {(si, sj) : si − sj = h}, the set of all pairs of loca-
tions separated by vector h; K?

ε (x0, si) = Kε(x0, si)/
∑n

l=1Kε(x0, sl) are standardized weights;
Kε(., .) is a non-negative, symmetric kernel on Rp ×Rp with bandwidth parameter ε > 0.

This moment estimator of the local variogram at any location x0 ∈ G is a kernel weighted
local average of squared differences of the regionalized variable. The kernel function is used to
smoothly down-weight the squared differences (for each lag interval) according to the distance
of these paired values from a target location. We assign to each data pair a weight proportional
to the product of the individual weights. Observation pairs near to the target location x0 have
more influence on the local variogram estimator than those which are distant.

To calculate the non-parametric kernel estimator (6), we choose an isotropic stationary
Gaussian kernel: Kε(x,y) ∝ exp(− 1

2ε2
‖x− y‖2), ∀(x,y) ∈ G × G. The latter has a non-

compact support and therefore considers all observations. Thus, the local variogram estimator
is not limited only to the local information, distant points are also considered. This avoids
artefacts caused by the only use of observations close to the target location. It also reduces
instability of the obtained local variogram at regions with low sampling density. Furthermore,
it provides a smooth parameter estimate and then is compatible with the quasi-stationarity
assumption. The size of the quasi-stationarity neighborhood b, it is set with respect to the
bandwidth ε. We take b =

√
3ε such that the standard deviation of the isotropic stationary

Gaussian kernel matches the isotropic stationary uniform kernel (with compact support).



3.3 Parameter Estimation

The estimation of the parameters vector θ(x0) = (σ(x0), λ1(x0), λ2(x0), ψ(x0)) which charac-
terizes the stationary local variogram γ(.; x0) ≡ γ(.;θ(x0)) at a fixed location x0 are found via
the following minimization problem:

θ̂(x0) = arg min
θ(x0)∈Θ

‖wε(x0)� (γ(θ(x0))− γ̂ε(x0))‖, (7)

where � is the product term by term ; γT (θ(x0)) = [γ(hj)]j=1...J ; γ̂Tε (x0) = [γ̂ε(hj ; x0)]j=1...J ;
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;

{hj ∈ Rp, j = 1, . . . , J} are given lag vectors; θ(x0) ∈ Θ is the vector of unknown parameters
and Θ is an open parameter space.

Using the estimate of the vector of structural parameters θ̂(x0) obtained in (7), the mean
parameter m(x0) is estimated explicitly by a local stationary kriging of the mean (Matheron,
1971).

For the prediction purpose, one needs to compute the non-stationary parameters m(.), σ(.)
and Σ(.) at prediction and observation locations. In practice, it is unnecessary to solve the
minization problem (7) at each target location. Indeed, doing so is computationally intensive
and redundant for close locations, since these estimates are highly correlated. To reduce the
computational burden, the proposed idea consists in obtaining the parameter estimates only at
some reduced set of m � n representative points referred to as anchor points defined over the
domain of interest. Then, using the estimates obtained at anchor points, a kernel smoothing
method is used to make available estimates at any location of interest. We works with the
Nadaraya-Watson kernel smoother which is appropriate and relatively simple. However, other
smoothers can be used as well (local polynomials, splines, etc.). The choice of the smoothing
bandwidth associated to Nadaraya-Watson kernel smoother is done through the generalized
cross-validation criteria (Wand and Jones, 1995).

The estimation of the non-stationary parameters depends on the bandwidth parameter ε
used in the computation of the local variogram non-parametric kernel estimator defined in (6).
Indeed, the size of the local stationarity neighborhood is expressed in terms of this bandwidth
parameter. The data-driven method used to select the bandwidth ε consists of leaving out
one data location and using a form of cross-validation. Because the estimation of the spatial
dependence structure is rarely a goal per se but an intermediate step before kriging, we want
to choose the bandwidth that gives the best cross-validation mean square error.

4 Prediction

The main purposes of modelling and estimating the spatial dependence structure is to spatially
interpolate data and perform conditional simulations. The expected benefit using the closed-
form non-stationary covariances class (4) is to obtain spatial predictions and variance estimation
errors more realistic than those based on a inadequate stationary covariances.

4.1 Kriging

Let CNS(., .) the non-stationary covariance of the random field Y and m(.) its mean. Given the
vector of observations Y = (Y (s1), . . . , Y (sn))T at n fixed locations s1, . . . , sn ∈ G, the point
predictor for the unknown value of Y at unsampled location s0 ∈ G is given by the optimal
linear predictor:

Ŷ (s0) = m(s0) +

n∑
i=1

ηi(s0)(Y (si)−m(si)). (8)



The kriging weight vector η = [ηi(s0)] and the corresponding kriging variance Q(s0) are
given by:

η = C−1C0 et Q(s0) = σ2(s0)−CT
0 C−1C0. (9)

where C0 = [CNS(si, s0)]; C = [CNS(si, sj)].

4.2 Conditional Simulations

Here we assume that the random field Y is Gaussian with mean m(.) and non-stationary covari-
ance structure CNS(., .). We want to simulate at a large number of locations a Gaussian random
field with same mean and covariance, and ensure that the realization honors the observed values
Y (s1), . . . , Y (sn). This can be achieved from an unconditional simulation of the random field
Y as follows (Lantuejoul, 2002):

1. realize a unconditional simulation {X(s), s ∈ G} of the random field Y ;

2. carried out a simple kriging of {X(s) − Y (s), s ∈ G} from its values taken at the data
points {si, i = 1, . . . , n}, using m(.) and CNS(., .) ;

3. add the unconditional simulation and the result of kriging.

We have Y (x) = m(x) + σ(x)Z(x),∀x ∈ G, where Z is a Gaussian random field with
zero expectation, unit variance and non-stationary correlation function RNS(., .). Thus, to
simulate the Gaussian random field Y (step 1 of the previous algorithm), we need to known
how we can simulate Z. Simulation of the Gaussian random field Z can be carried out using
a propagative version of the Gibbs sampler proposed by Lantuejoul and Desassis (2012). This
algorithm allows to simulate a Gaussian vector at a large number of locations (comparatively
to the existing classical algorithms such as Cholesky method or Gibbs sampler) without relying
on a Markov assumption (it does not need to have a sparse precision matrix). The algorithm
proposed in (Lantuejoul and Desassis, 2012) requires neither the inversion nor the factorization
of a covariance matrix. Note that simulation methods such as spectral method or turning bands
method are not adapted to the non-stationary case (Lantuejoul, 2002). The representation that
underlies these methods relies on the stationarity assumption.

5 Application

The methodology presented in Section 4 has been applied to the elevation data of the breccia
pipe called ”braden” of the El Teniente mine in Chile. We have a training data (616 observa-
tions) which serves to calibrate the model and a validation data (200 observations) which serves
only to assess the prediction performances. A comparison scheme of kriging under stationary
and non-stationary models is carried out through a validation sample.

Raw estimates of non-stationarity parameters m(.), σ2(.) and Σ(.) at anchor points are
shown respectively on Figures 1b, 1c and 1d. They are based on the non-stationary exponential
covariance function. Concerning the estimated anisotropy function Σ̂(.) at anchor points, it is
represented by ellipses as shown in Figure 1d. Based on these estimates, non-stationarity in the
data is quite visible. Especially, from Figure 1d where we can clearly see the spatially varying
azimuth. Such directional effects are also quite apparent on data (Figure 1a). Note that the
stationary approach has not detected a global geometric anisotropy.



(a) (b)

(c) (d)

Figure 1: (a) Training data; (b) Estimated mean function m̂(.) at anchor points; (c) Estimated variance function

σ̂2(.) at anchor points; (d) Estimated anisotropy function Σ̂(.) at anchor points where the ellipses were
scaled to ease vizualisation.

Figure 2 shows the maps of smoothed parameters over the whole domain of observations:
mean, variance, anisotropy ratio and azimuth. A visualization of the covariance at certain
points (with all other points) via the level contours for estimated stationary and non-stationary
models is presented in Figure 3. We can see how the non-stationary spatial dependence structure
changes the shape from one place to another as compared to the stationary one. The stationary
model is a nested isotropic model (nugget effect, exponential and spherical) while the non-
stationary model corresponds to the non-stationary exponential covariance function.



(a) (b)

(c)
(d)

Figure 2: Smoothed parameters over the domain of observations: (a) mean, (b) variance, (c) anisotropy ratio,
(d) azimuth.

(a) (b)

Figure 3: Covariance level contours at few points for the estimated stationary and non-stationary models (a, b).
Level contours correspond to the values: 30000 (black), 20000 (red) et 10000 (green).

Table 1 presents the summary statistics for the external validation (200 hold-out sample)
results using the classical stationary approach and the non-stationary proposed one. Some
well-known discrepancy measures are used (Chilès (2012)), namely the Mean Absolute Error
(MAE), the Root Mean Square Error (RMSE), the Normalized Mean Square Error (NMSE),
the Logarithmic Score (LogS) and the Continued Rank Probability Score (CRPS). For RMSE,
LogS and CRPS, the smaller the better; for MAE, the nearer to zero the better; for NMSE the
nearer to one the better. Table 1 shows that the proposed approach outperforms the stationary
one with respect to all the measures. The cost of non-using the non-stationary approach in this



case is substantial: in average the prediction at validation locations is about 23% better for the
non-stationary approach than for the stationary one, in terms of RMSE.

Stationary Non-stationary

MAE 79.74 61.39
RMSE 154.41 117.99
NMSE 0.98 0.74
LogS 2439 2315
CRPS 123.59 121.11

Table 1: External validation on a set of 200 observations.

The kriged values and the kriging standard deviations for the estimated stationary and non-
stationary models are shown in Figure 4. The overall look of the predicted values and predic-
tion standard deviations associated with each model differ notably. In particular, the proposed
method takes into account certain local characteristics (such as locally varying anisotropy) of
the regionalization that the stationary approach is unable to retrieve. Figure 5 shows some con-
ditional simulations in the Gaussian framework, based on the estimated non-stationary model.

(a) (b)

(c) (d)

Figure 4: (a,b) Predictions and prediction standard deviations for the estimated stationary model. (c,d) Predic-
tions and prediction standard deviations for the estimated non-stationary model.



(a) Simulation #1 (b) Simulation #2

(c) Simulation #3 (d) Simulation #4

Figure 5: Conditional simulations based on the estimated non-stationary model.

6 Conclusion

In this paper we are proposed a statistical methodology based on a non-stationary covari-
ances class to predict the elevation of the breccia pipe elevation named ”Braden” of the El
Teniente mine in Chile. The estimation method offers an integrated treatment of all aspects
of non-stationarity (mean, variance, covariance) in the modeling process and relies on the mild
hypothesis of quasi-stationarity. The proposed method has revealed an increased prediction
accuracy when compared to the standard stationary method, and demonstrated the ability
to extract the underlying non-stationarity from a single realization. It also provides an ex-
ploratory analysis tool for the non-stationarity. Beyond the spatial predictions, we also show
how conditional simulations can be carried out in this non-stationary framework.
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