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The mammalian auditory system extracts features from the acoustic environment

based on the responses of spatially distributed sets of neurons in the subcortical

and cortical auditory structures. The characteristic responses of these neurons (linearly

approximated by their spectro-temporal receptive fields, or STRFs) suggest that auditory

representations are formed, as early as in the inferior colliculi, on the basis of a time,

frequency, rate (temporal modulations) and scale (spectral modulations) analysis of

sound. However, how these four dimensions are integrated and processed in subsequent

neural networks remains unclear. In this work, we present a newmethodology to generate

computational insights into the functional organization of such processes. We first

propose a systematic framework to explore more than a hundred different computational

strategies proposed in the literature to process the output of a generic STRF model. We

then evaluate these strategies on their ability to compute perceptual distances between

pairs of environmental sounds. Finally, we conduct a meta-analysis of the dataset of all

these algorithms’ accuracies to examine whether certain combinations of dimensions

and certain ways to treat such dimensions are, on the whole, more computationally

effective than others. We present an application of this methodology to a dataset of ten

environmental sound categories, in which the analysis reveals that (1) models are most

effective when they organize STRF data into frequency groupings—which is consistent

with the known tonotopic organization of receptive fields in auditory structures -, and

that (2) models that treat STRF data as time series are no more effective than models

that rely only on summary statistics along time—which corroborates recent experimental

evidence on texture discrimination by summary statistics.

Keywords: spectro-temporal receptive fields, auditory pathway, audio pattern recognition

1. Introduction

The mammalian auditory system extracts features from the acoustic environment based on the
responses of spatially distributed sets of neurons in the inferior colliculi (IC), auditory thalami
and primary auditory cortices (A1). These neurons operate on the preprocessing done by earlier
subcortical nuclei such as the superior olive and cochlear nuclei, as well as the auditory periphery.
The behavior of auditory neurons in IC, thalamus and, to some extent, in A1, can be modeled as a
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spectro-temporal filterbank, in which the transformation
between the sound input and the firing-rate output of each
neuron is approximated linearly by its spectro-temporal
receptive field (STRF) (Chi et al., 2005). An auditory neuron’s
STRF can be described as a 2-dimensional filter in the space
of spectro-temporal modulations, with a bandwidth in the two
dimensions of rate (temporal modulation, in Hz) and scale
(spectral modulation, in cycles/octave). In addition, because
auditory neurons are tonotopically organized and respond to
frequency-specific afferents, a given neuron’s STRF only operates
on a specific frequency band. The convolution between the
rate-scale STRF and the time-frequency spectrogram of the
sound gives an estimate of the time-varying firing rate of the
neuron (Figure 1).

Although the experimental measurement of STRFs in live
biological systems is plagued with methodological difficulties
(Christianson et al., 2008), and their approximation of the non-
linear dynamics and context-dependency of auditory (especially
cortical) neurons is only partial (Gourévitch et al., 2009),
computational simulations of even simple STRFs appear to
provide a robust model of the representational space embodied
by the central auditory system. Patil et al. (2012) have recently
demonstrated a system which uses a Gabor-filter implementation
of STRFs to compute perceptual similarities between short
musical tones. In their implementation, sound signals were
represented as the mean output energy in time of a bank
of more than 30,000 neurons, evenly spaced according to
their characteristic frequencies, rates and scales. This high-
dimensional representation was then reduced using principal
component analysis, and used to train a gaussian-kernel distance
function between pairs of sounds. The authors found that their
model approximates psychoacoustical dissimilarity judgements
made by humans between pairs of sounds to near-perfect
accuracy, and better so than alternative models based on simpler
spectrogram representation.

Such computational studies (see also Fishbach et al., 2003)
provide proofs that a given combination of dimensions (e.g.,
frequency/rate/scale for Patil et al., 2012; frequency/rate for
Fishbach et al., 2003), and a given processing applied on it, is
sufficient to give good performance; they do not, however, answer
the more general questions of what combination of dimensions
is optimal for a task, in what order these dimensions are to be
integrated, or whether certain dimensions are best summarized
rather than treated as an orderly sequence. In other words, while
it seems plausible that cognitive representations are formed on
the basis of a time, frequency, rate and scale analysis of auditory
stimuli, and while much is known about how IC, thalamus and
A1 neurons encode such instantaneous sound characteristics,
how these four dimensions are integrated and processed in
subsequent neural networks remains unclear.

Human psychophysics and animal neurophysiology have
recently cast new light on some of these subsequent processes.
First, psychoacoustical studies of temporal integration have
revealed that at least part of the human processing of sound
textures relies only on temporal statistics, which do not retain
the temporal details of the feature sequences (McDermott et al.,
2013; Nelken and de Cheveigné, 2013). But the extent to which

this type of timeless processing generalizes to any type of
auditory stimuli remains unclear; similarly, the computational
purpose of this type of representation is unresolved: does it e.g.,
provide a higher-level representational basis for recognition, or
a more compact code for memory? Second, a number of studies
have explored contextual effects on activity in auditory neurons
(e.g., Ulanovsky et al., 2003, David and Shamma, 2013). These
effects are evidence for how sounds are integrated over time,
and constrain their neural encoding (Asari and Zador, 2009).
Finally, the neurophysiology of the topological organization
of auditory neuronal responses also provides indirect insights
into the computational characteristics of the auditory system.
For instance, it is well-established that tonotopy (the orderly
mapping of characteristic frequency (CF) in space) pervades
all levels of the central auditory system including subcortical
nuclei such as IC (Ress and Chandrasekaran, 2013) and auditory
cortex (Eggermont, 2010). This organization plausibly reflects a
computational need to process several areas of the frequency axis
separately, as shown e.g., with frequency-categorized responses
to natural meows in cat cortices (Gehr et al., 2000). However, the
topology of characteristic responses in the dimensions of rate and
scale remains intriguing: while STRFs are orderly mapped in the
auditory areas of the bird forebrain, with clear layer organization
of rate tuning (Kim and Doupe, 2011), no systematic rate or
scale gradients have been observed to date in the mammalian
auditory cortex (Atencio and Schreiner, 2010, but see Baumann
et al., 2011 for IC). Conversely, if, in birds, scale gradients
seem to be mapped independently of tonotopy, in A1 they vary
systematically within each isofrequency lamina (Schreiner et al.,
2000). It is therefore plausible that the mammalian auditory
system has evolved networks able to jointly process the time,
frequency, rate and scale dimensions of auditory stimuli into a
combined representations optimized for perceptive tasks such as
recognition, categorization and similarity. But there are many
ways to form such representations, and insights are lacking as to
which are most effective or efficient.

This work presents a new computational approach to derive
insights on what conjunct processing of the 4 dimensions of time,
frequency, rate and scale makes sense in the central auditory
system at the level of IC onwards. To do so, we propose a
systematic pattern-recognition framework to, first, design more
than a hundred different computational strategies to process the
output of a generic STRFmodel; second, we evaluate each of these
algorithms on their ability to compute acoustic dissimilarities
between pairs of sounds; third, we conduct a meta-analysis of the
dataset of these many algorithms’ accuracies to examine whether
certain combinations of dimensions and certain ways to treat
such dimensions are more computationally effective than others.

2. Methods

2.1. Overview
Starting with the same STRF implementation as Patil et al. (2012),
we propose a systematic framework to design a large number
of computational strategies (precisely: 108) to integrate the four
dimensions of time, frequency, rate and scale in order to compute
perceptual dissimilarities between pairs of audio signals.
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FIGURE 1 | Signal processing workflow of the STRF model, as

implemented by Patil et al. (2012). The STRF model simulates processing

occurring in the IC, auditory thalami and A1. It processes the output of the

cochlea—represented here by an auditory spectrogram in log frequency

(SR = 24 channels per octave) vs. time (SR = 125Hz), using a multitude of

cortical neuron each tuned on a frequency (in Hz), a modulation w.r.t time (a

rate, in Hz) and w.r.t. frequency (a scale, in cycles/octave). We take here the

example of a 12-s series of 12 Shepards tones, i.e., a periodicity of 1Hz in

time and 1 harmonic partial/octave in frequency, processed by a STRF

centered on rate = 1 Hz and scale = 1 c/o (1). In the input representation (2),

each frequency slice (orange) corresponds to the output time series of a

single cochlear sensory cell, centered on a given frequency channel. In the

output representation (8), each frequency slice (orange) corresponds to the

output of a single auditory neuron, centered on a given frequency on the

tonotopic axis, and having a given STRF. The full model (not shown here) has

hundreds of STRFs (e.g., 22 rates * 11 scales = 242), thus thousands of

neurons (e.g., 128 freqs * 242 STRFs = 30,976). Figure adapted from http://

dx.doi.org/10.6084/m9.figshare.695010, with permission.

As seen below (Section 2.2), the STRF model used in this
work operates on 128 characteristic frequencies, 22 rates and
11 scales. It therefore transforms a single auditory spectrogram

(dimension: 128 × time, sampled at SR = 125 Hz) into 22 ×
11= 242 spectrograms corresponding to each of the 242 STRFs in
the model. Alternatively, its output can be considered as a series
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of values taken in a frequency-rate-scale space of dimension
128 × 22 × 11 = 30,976, measured at each successive time
window.

The typical approach to handling such data in the field
of audio pattern recognition, and in the Music Information
Retrieval (MIR) community in particular (Orio, 2006), is to
represent audio data as a temporal series of features, which
are computed on successive temporal windows. Features are
typically seen as points in a corresponding vector space; the
series of such feature points in time represents the signal. Feature
series can then be modeled and compared to one another with
e.g., first-order statistical distributions (the so-called bag-of-
frame approach of Aucouturier and Pachet, 2007a), dynamical
models (Lagrange, 2010), Markov models (Flexer et al., 2005),
or alignment distances (Aucouturier and Pachet, 2007b). Taking
inspiration from this approach, we construct here twenty-six
models that treat the dimension of time as a series that takes its
values in various combinations of frequency, rate and scale: for
instance, one can compute a single scale vector (averaged over
all frequencies and rates) at each time window, then model the
corresponding temporal series with a Gaussian mixture model
(GMM), and compare GMMs to one another to derive a measure
of distance.

However, we propose here to generalize this approach to
devise models that also take series in other dimensions than
time (see Sections 2.3 and 2.4). For instance, one can consider
values in rate/scale space as successive steps in a frequency series
(or, equivalently, successive “observations” along the frequency
axis). Such series can then be processed like a traditional time
series, e.g., modeled with a gaussian mixture model or compared
with alignment distances. Using this logics, we can create twelve
frequency-series models, twelve rate-series models and twelve
scale-series models. Many of these models have never been
considered before in the pattern recognition literature. Finally,
we add to the list fourty four models that do not treat any
particular dimension as a series, but rather apply dimension
reduction (namely, PCA) on various combinations of time,
frequency, rate and scale. For instance, one can average out
the time dimension, apply PCA on the frequency-rate-scale
space, yielding a single high-dimensional vector representation
for each signal; vectors can then be compared with e.g., euclidean
distance. One of these ‘vector” models happens to be the
approach of Patil et al. (2012); we compare it here with fourty-
three alternative models of the same kind.

The main methodological contribution of this work does not
reside in algorithmic development: while they may be applied
for the first time on STRF data, none of the pattern recognition
techniques used here are entirely novel. Our contribution is
rather to introduce new methodology at the meta-analysis level,
in particular in using inferential statistics on the performance
measures of such a large set of algorithms in order to gain insights
into what higher auditory stages are doing.

To do so, we propose to test each of these 108 models for
its ability to match reference judgements on any given dataset
of sound stimuli. For instance, given a dataset of sound files
organized in categories, each of the models can be tested for
its individual ability to retrieve, for any file, nearest neighbors

that belong to the same category (i.e., its precision). The better
precision is achieved by a given model, the better approximation
to the actual biological processing it is taken to represent, at least
for the specific dataset it is being tested on.

Finally we conduct a meta-analysis of the set of 108 precision
values achieved by the models. By comparing precisions between
very many models, each embedding a specific sub-representation
based on the STRF space, we can generate quantitative evidence
of whether certain combinations of dimensions and certain ways
to treat such dimensions are, on the whole, more computationally
effective than others for that dataset of sounds. For instance,
among the 106 models considered here, 16 operate only on
frequency, 16 on frequency and rate, and 16 on frequency and
scale; if compared with inferential statistics, these 48 models
provide data to examine whether there is a systematic, rather than
incidental, advantage to one or the other combination.

2.2. STRF Implementation
We use the STRF implementation of Patil et al. (2012),
with the same parameters. The STRF model simulates the
neuronal processing occurring in IC, auditory thalami and, to
some extent, in A1. It processes the output of the cochlea—
represented by an auditory spectrogram in log frequency
(SR = 24 channels per octave) vs. time (SR = 125 Hz,
8 ms time windows) using a multitude of STRFs centered
on specific frequencies (128 channels, 5.3 octaves), rates (22
filters: +/−4.0, +/−5.8,+/−8.0,+/−11.3,+/−16.0, +/−22.6,
+/−32.0,+/−45.3,+/−64.0,+/−90.5,+/−128.0 Hz) and scales
(11 filters: 0.25, 0.35, 0.50, 0.71, 1.0, 1.41, 2.00, 2.83, 4.00, 5.66,
8.00 c/o). (Figure 1-1).

Each time slice in the auditory spectrogram is Fourier-
transformed with respect to the frequency axis (SR = 24
channels/octave), resulting in a cepstrum in scales (cycles per
octave) (Figure 1-3). Each scale slice is then Fourier-transformed
with respect to the time axis (SR= 125 Hz), to obtain a frequency
spectrum in rate (Hz) (Figure 1-4). These two operations result
in a spectrogram in scale (cycles/octave) vs. rate (Hz). Note that
we keep all output frequencies of the second FFT, i.e., both
negative rates from -SR/2 to 0 and positive rates from 0 to SR/2.
Each STRF is a bandpass filter in the scale-rate space. First, we
filter in rate: each scale slice is multiplied by the rate-projection
of the STRF, a bandpass-filter transfer function Hr centered on
a given cut-off rate (Figure 1-5). This operation is done for each
STRF in the model. Each band-passed scale slice is then inverse
Fourier-transformed w.r.t. rate axis, resulting in a scale (c/o) vs.
time (frames) representation (Figure 1-6). We then apply the
second part of the STRF by filtering in scale: each time slice
is multiplied by the scale-projection of the STRF, a bandpass-
filter transfer function Hs centered on a given cut-off scale
(Figure 1-7). This operation is done for each STRF in the model.
Each band-passed time slice is then inverse Fourier-transformed
w.rt. scale axis, returning back to the original frequency (Hz) vs.
time (frames) representation (Figure 1-8). In this representation,
each frequency slice therefore corresponds to the output of a
single cortical neuron, centered on a given frequency on the
tonotopic axis, and having a given STRF. The process is repeated
for each STRF in the model (22× 11= 242).
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2.3. Dimensionality Reduction
The STRF model provides a high-dimensional representation:
(128 × 22 × 11 = 30,976) × time sampled at SR =
125Hz. Upon this representation, we construct more than a
hundred algorithmic ways to compute acoustic dissimilarities
between pairs of audio signals. All these algorithms obey
to a general pattern recognition workflow consisting of a
dimensionality reduction stage, followed by a distance calculation
stage (Figure 2). The dimensionality reduction stage aims to
reduce the dimension (d = 30, 976 × time) of the above STRF
representation to make it more computationally suitable to the
algorithms operating in the distance calculation stage and/or to
discard dimensions that are not relevant to compute acoustic
dissimilarities. Algorithms for dimensionality reduction can be
either data-agnostic or data-driven.

1. Algorithms of the first type rely on reduction strategies that
are independent of the statistical/informational properties of
the specific data to which they are applied, but rather decided
based on a priori, generic intuitions. As a representative
example of this type of approach, we use

• Summary statistics, in which we collapse the original STRF
representation by averaging out data along one or several of
its 4 physical dimensions. For instance, by averaging along
time, we reduce the original time-series in a feature space of
d = 30, 976 to a single mean frame of size d:

STRFT(f , r, s) =
1

NT

t=NT
∑

t= 1

STRF(t, f , r, s),∀f , r, s (1)

where NT is the number of measured time points in the
original representation. By averaging along frequency, we
obtain a time-series of rate-scale maps of size d = 22 ×
11= 242:

STRFF(t, r, s) =
1

NF

t=NF
∑

f = 1

STRF(t, f , r, s),∀t, r, s (2)

where NF is the number of measured frequency points in
the original representation (NF = 128).

2. Data-driven approaches to dimensionality reduction select or

reorganize the dimensions of the data based on the data’s
specific properties, often in the aim of optimizing a criteria

such as its variability or compactness. As a representative
example of this approach, we use

• Principal Component Analysis (PCA), which finds optimal

linear combinations of the data’s original dimensions so

as to account for as much of the variability in the data as
possible, while having fewer dimensions than the original.

In order to compute data variability, PCA operates on the
complete dataset of audio signals used for the evaluation,

and then applies the optimal reduction rules on each
individual signal. In this work, we implemented PCA
using the fast truncated singular value decomposition
(SVD) method (Halko et al., 2011), and used it to reduce
the original number of dimensions to a variable number
of principal components accounting for a fixed variance
threshold of 99.99% of the original variance.

FIGURE 2 | Pattern recognition workflow of the distance calculation

based on the STRF model. The STRF model provides a high-dimensional

representation upon which we construct more than a hundred algorithmic

ways to compute acoustic dissimilarities between pairs of audio signals. All

these algorithms obey to a general pattern recognition workflow consisting of

a dimensionality reduction stage, followed by a distance calculation stage.

The dimensionality reduction stage aims to reduce the dimension

(d = 30,976 × time) of the STRF representation to make it more

computationally suitable to the algorithms operating in the distance

calculation stage—we use here summary statistics and/or principal

component analysis (PCA). The distance computation stage differs on

whether it treats a signal’s STRF data as a single multidimensional point in a

vector space, or as a series of points. In the former case, we use either the

euclidean distance or the gaussian kernel distance. In the latter case, we use

either Kullback-Leibler divergence between gaussian mixture models of the

series, or dynamic programming/dynamic time warping.
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As illustrated in Figure 2, the two types of approaches can be
applied jointly, and on any combination of dimensions. For
instance, one can collapse the time dimension to create a single
mean frame of size d = 30, 976 (approach 1), then consider this
collapsed data as a frequency-series (of 128 measured frequency
points) taking values in the rate-scale space (d = 242) and
apply PCA on this space to account for 99.99% of the rate-scale
variance (approach 2). The result is a frequency-series (of 128
points) taking its values in a reduced feature space of dimension
d < 242.

Table 1 lists the fifteen combinations of dimensions to which
the original STRF representation can be reduced. Some of these
reduced representations correspond to signal representations
that are well-known in the audio pattern recognition community:
for instance, by averaging over frequency, rate and scale, the
STRF representation is reduced to a time series of energy values,
i.e., a waveform; by averaging only over rate and scale, it is
reduced to a spectrogram. More sophisticated combinations
are also conceptually similar to existing, if sometimes more
obscure, proposals: by averaging over frequency and rate, STRF
can be viewed as a time series of scale values, which is
reminiscent of the Mel-frequency cepstrum coefficients that are
prevalent in speech and music recognition (Logan and Salomon,
2001); time-rate representations have been previously called
“modulation spectrum” (Peeters et al., 2002), and frequency-
rate representations “fluctuation patterns” (Pampalk, 2006). At
the other extreme, a number of reduced representations derived
here from the STRF model are probably entirely original, albeit
obeying to the same combinatorial framework as their better-
known parents.

2.4. Distance Calculation
Following dimensionality reduction, STRF representations are
compared in order to compute acoustic distances between
pairs of audio signals. Distance calculation algorithms differ
on whether they treat a signal’s STRF data as a single
multidimensional point in a vector space, or as a series of
points.

1. Algorithms treating STRF data as a single multidimensional
point rely on distance functions operating on the data’s vector
space. For the purpose of this work, we use two representative
instances of such functions:

• The simple euclidean distance, defined as

dǫ(p, q) =
√

∑

i

(pi − qi)2 (3)

where pi and qi are the i
th coordinate of points p and q, and

• The gaussian kernel distance, which generalizes the
approach of the euclidean distance by scaling each
dimension i separately with a weight σi optimized to match
the reference distance matrix we seek to obtain. It is
computed as

dK(p, q) = exp(−
∑

i

(pi − qi)
2

σ 2
i

) (4)

where the σis are learned by gradient descent to minimize
the difference between the calculated dK(p, q) and the true
d(p, q) ∀p, q, using the cost function given as:

J = −
1

n2

∑

p

∑

q

(d(p, q)− d̄)(dK(p, q)− d̄K (5)

where d(p, q) is the true distance between p and q, d̄ is the
mean distance over all (p, q) pairs, dK(p, q) is the kernel
distance between p and q and d̄K is themean kernel distance
over all (p, q) pairs. We used the Matlab gradient descent
implementation of Carl Edward Rasmussen and Olivier
Chappelle (http://olivier.chapelle.cc/ams/).

2. Algorithms treating STRF data as a series of points rely on
distance functions able to operate either on ordered data, or on
unordered collections of points. As a representative instance
of the first approach, we use:

• The dynamic time warping (DTW) algorithm, dDTW(p, q),
which is computed as the cost of the best alignment
found between the 2 series p and q, using the individual
cosine distances between all frames p[n], n < length(p)
and q[m],m < length(p). Note that, if it is traditionally
used with time-series, the DTW algorithm can be applied
regardless of whether series p and q are ordered in
time, or in any other dimension [we therefore also
refer to it here by its more generic name dynamic
programming (DP)]. We computed dDTW using Dan
Ellis’ Matlab implementation (http://www.ee.columbia.
edu/~dpwe/resources/matlab/dtw/).

As a representative instance of the second approach, we use:

• Gaussian mixture models (GMM), compared with
Kullback-Leibler divergence. A GMM is a statistical
model to estimate a probability distribution P(x) as the
weighted sum of M gaussian distributions Ni,∀i < M,
each parameterized by a meanµi and covariance matrix6i,

P(x) =
M

∑

i

πiNi(x, µi, 6i) (6)

where πi is the weight of gaussian distribution Ni. Given
a collection of points, viewed as samples from a random
variable, the parameters πi,µi,6i,∀i < M of a GMM that
maximizes the likelihood of the data can be estimated by
the E-M algorithm (Bishop and Nasrabadi, 2006). For this
work, we take M = 31. In order to compare two series
p and q, we estimate the parameters of a GMM for each
of collection of points p[n] and q[m], and then compare

1The choice for the number of components M is a tradeoff between model

flexibility (able to fit more arbitrarily complex distributions) and computational

complexity (more parameters to estimate), and is heavily constrained by the

amount of data available for model estimation. While optimal results for sound

signals of a few minutes’ duration are typically observed for M larger than 50,

earlier work with shorter signals such as the one used here have shown maximal

performance forM-values smaller than 5 (Aucouturier and Pachet, 2007a).
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TABLE 1 | All possible combinations of reduced representations derived from the STRF model.

Dimensions Summarize In state-of-art as: PCA possible on: Processing as:

T F R S V

∅ STRF (Chi et al., 2005) FRS
√

T Average STRF maps (Patil et al., 2012) FR, FS, FRS
√ √ √ √

F ? RS
√

R ? FS
√

S ? FR
√

T, F ? R, S, RS
√ √ √

T, R ? F, S, FS
√ √ √

T,S Fluctuation patterns (Pampalk, 2006) F, R, FR
√ √ √

F, R MFCCs (Logan and Salomon, 2001) S
√

F, S Modulation spectrum (Peeters et al.,

2002)

R
√

R, S Fourier spectrogram F
√

T, F, R Average Cepstrum S
√ √

T, F, S Periodicity transform (Sethares and

Staley, 1999)

R
√ √

(Continued)
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TABLE 1 | Continued

Dimensions Summarize In state-of-art as: PCA possible on: Processing as:

T F R S V

T, R, S Fourier spectrum F
√ √

F, R, S Waveform ∅
√

Some of these reduced representations are conceptually similar to signal representations that are used in the audio pattern recognition community. We name here some which we
could identify; the other unnamed constructs listed here are germane to the present study to the best of our knowledge. The choice of which distance calculation algorithm to apply on
each representation depends on whether it can be as a single vector (V) or as a series in time (T), frequency (F), rate (R), or scale (S). For instance, representations in which the time
dimension is preserved can only be considered as a time-series. Similarly, the combinations of dimensions that can be reduced with PCA depends on each representation. The table
lists which processing is possible for each representation.

the two GMMs Pp and Pq using the Kullback Leibler (KL)
divergence:

dKL(p, q) =
∫

Pp(x) log
Pq(x)

Pp(x)
(7)

computed with the Monte-Carlo estimation method of
Aucouturier and Pachet (2004). Note that, similarly to
DTW, if GMMs, and KL divergence are traditionally used
with time-series, they can be applied regardless of whether
series p and q correspond to successive positions in time, or
in any other dimension.

Note that, contrary to DTW, GMMs reduces a series of
observations to a single random variable, i.e., discard order
information: all random permutations of the series along
its ordering dimension will result in the same model,
while it won’t with DTW distances. We still consider
unordered GMMs as a “series” model, because they impose
a dimension along which vectors are sampled: they model
data as a collection of observations along time, frequency,
rate or scale, and the choice of this observation dimension
strongly constrains the geometry of information available to
subsequent processing stages.

The choice to view data either as a single point or as a series
is sometimes dictated by the physical dimensions preserved in
the STRF representation after dimensionality reduction. If the
time dimension is preserved, then data cannot be viewed as a
single point because its dimensionality would then vary with
the duration of the audio signal and we wouldn’t be able to
compare sounds to one another in the same feature space; it
can only be processed as a time-series, taking its values in a
constant-dimension feature space. For the same reason, series
sampled in frequency, rate or scale cannot take their values
in a feature space that incorporates time. The same constraint
operates on the combination of dimensions that are submitted
to PCA: PCA cannot reduce a feature space that incorporates
time, because its dimensionality would not be constant. PCA
can be applied, however, on the constant-dimension feature

space of a time-series. Table 1 describes which modeling
possibility applies to what combination of dimensions. The
complete enumeration of all algorithmic possibilities yields 108
different models.

3. Case Study: Ten Categories of
Environmental Sound Textures

We present here an application of the methodology to a
small dataset of environmental sounds. We compute precision
values for 108 different algorithmic ways to compute acoustic
dissimilarities between pairs of sounds of this dataset. We then
analyse the set of precision scores of these algorithms to examine
whether certain combinations of dimensions and certain ways
to treat such dimensions are more computationally effective
than others. We show that, even for this small dataset, this
methodology is able to identify patterns that are relevant both
to computational audio pattern recognition and to biological
auditory systems.

3.1. Corpus and Methods
One hundred 2-s audio files were extracted from field recordings
contributions on the Freesound archive (http://freesound.org).
For evaluation purpose, the dataset was organized into 10
categories of environmental sounds (birds, bubbles, city at
night, clapping door, harbor soundscape, inflight information,
pebble, pouring water, waterways, waves), with 10 sounds in
each category. File formats were standardized to mono, 44.1
kHz, 16-bit, uncompressed, and RMS normalized. The dataset
is available as an internet archive: https://archive.org/details/
OneHundredWays.

On this dataset, we compare the performance of exactly 108
different algorithmic ways to compute acoustic dissimilarities
between pairs of audio signals. All these algorithms are based
on combinaisons of the four T, F, R, S dimensions of the STRF
representation. To describe these combinations, we adopt the
notation X>A,B. . . for a computational model based on a series
in the dimension of X, taking its values in a feature space
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consisting of dimensions A,B. . .. For instance, a time series of
frequency values is written as T>F and time series of any suitable
feature space are written as T>*, where * is a wildcard character.
In the following, PCA refers to principal component analysis (a
data-driven dimensionality reduction method), GMM and KL to
gaussian mixture model and Kullback-Leibler divergence resp. (a
statistical distribution estimation method used to model series,
and a distance measure used to compare models to one another),
DP to dynamic programming (a method to compare series
by computing the optimal alignment from one to the other),
KERNEL SC. and KERNEL to kernel scaling and kernel distance
resp. (the process of estimating optimal weights in a gaussian
kernel distance with respect to a target set of dissimilarities, and
the utilization of such weights to compute a distance between
vectors) and EUCL to the euclidean distance. All these algorithms
correspond to those described in Section 2.

In order to compare the performance of the algorithms, we
used the same evaluation methodology as earlier work about
music similarity measures (Aucouturier and Pachet, 2004): each
of the models is tested for its individual ability to retrieve, for
any file, nearest neighbors that belong to the same category.
More precisely, for a given algorithm and a given sound query
in the dataset, a result is considered relevant if the retrieved
sound belongs to the same category as the query. We quantify
the precision of a query using the R-precision pR, which is the
precision at R-th position in the ranking of results for a query
that has R relevant documents (in this case, R = 10):

pR =
|{relevant documents} ∩ {first 10 retrieved}|

10
(8)

and averaged pR over all possible queries (n = 100) in the test
dataset to obtain a measure for each algorithm.

3.2. Descriptive Statistics
Figures 3, 4, 5, 6, and 7 display precision scores, color-coded
from blue (low, < 70%) to red (high, > 85%), for all
computational models based, resp., on time-series, frequency-
series, rate-series, scale-series and on the non-series, vector
approach. We give here descriptive statistics in each of these five
approaches. We then use inferential statistics on the complete
dataset to address tranversal computational and biological
questions, in the next section.

Among models that treat signals as a temporal series of
features (T>*, Figure 3), those who incorporate frequency as
one of the dimensions of the feature space tend to perform best
regardless of the algorithms (DP, GMM, PCA) used to compare
the series2. There is little advantage if any to add rates (T>F,R:

2The two dotted paths in Figure 3 correspond to applying GMMs or DTWs on

time-series of observation in the raw (non dimension-reduced) FRS space. The

dimension of this raw space being 30,976, the estimation of GMM parameters

(M = 3 × 30,976 for means, M = 3 × 30,976 for diagonal covariances; total =
185,856 parameters) made little sense for time-series of only a few hundreds of

observations (a bad case of the so-called curse of dimensionality). Similarly, DTW

distances could not be computed at such high dimensions. While we couldn’t

evaluate series in the raw FRS space, both GMMs and DTW were evaluated on

a dimension-reduced FRS space preserving 99.99% of its variance (upper 2 paths

of the same Figure 3).

precision M = 0.80, SD = 0.05, max = 0.85) or scales (T>F,S:
M = 0.83, SD = 0.07, max = 0.88) to frequency only (T>F:
M = 0.83, SD = 0.08, max = 0.89). Summarizing F out of the
feature space is largely detrimental to precision: rates and scales
alone are not effective if not linked to what frequency theyre
operating on. T>R (M = 0.73, SD = 0.07, max = 0.77), T>S
(M = 0.64, SD = 0.06, max = 0.68) and T>R,S (M = 0.76,
SD = 0.07, max = 0.80) are all suboptimal. Among temporal
series, models that compare series with GMMs (M = 0.80,
SD = 0.07) tend to perform better than those who do with
alignment distances (M = 0.74, SD = 0.09). Whether PCA
is used or not has no effect on GMM accuracy, but it has for
alignment distances: PCA: M = 0.67, SD = 0.07; no PCA:
M = 0.79, SD = 0.06.

For models treating data as a frequency series (F>*, Figure 4),
the inclusion of rates and scales in the feature vector improves
precision: frequency series taking values conjunctly in rate and
scale (F>S,R: M = 0.83, SD = 0.07, max = 0.91) are better
than independently (F>S: M = 0.73, SD = 0.11, max =
0.89; F>R: M = 0.76, SD = 0.03, max = 0.78). Interestingly,
frequency series in rate-scale space are more effective than time-
series in rate-scale (T>R,S: M = 0.76, SD = 0.07, max =
0.80). There was no effect among frequency series of comparing
with GMMs or alignement distance. As for temporal series,
PCA had no effect on GMM algorithms, but was detrimental
to alignment distances (PCA: M = 0.70, SD = 0.06; no PCA:
M = 0.86, SD = 0.06).

For models treating data as a rate series (R>*, Figure 5) the
frequency dimension is the single most effective contribution to
the feature space (R>F: M = 0.79, SD = 0.10, max = 0.86;
R>S: M = 0.71, SD = 0.14, max = 0.84). The conjunct use of
F and S improves performance even further: R>F,S: M = 0.84,
SD = 0.03, max = 0.86. The performance of R>F,S is in same
range as T>F,S (M = 0.83, SD = 0.07, max = 0.88), and T>F
(M = 0.83, SD = 0.08, max = 0.89). There was no effect among
rate series of using either GMMs or alignment distances (GMM:
M = 0.77, SD = 0.10 vs. DP: M = 0.77, SD = 0.11). As
above, there was no effect of PCA on GMM performance (PCA:
M = 0.77, SD = 0.11; no PCA:M = 0.77, SD = 0.11), but it was
detrimental to alignment distances: PCA:M = 0.71, SD = 0.14;
no PCA:M = 0.84, SD = 0.03.

Scale-series (S>*, Figure 6) in frequency space (S>F: M =
0.80, SD = 0.04, max = 0.83) are better than in rate space
(S>R, M = 0.70, SD = 0.04, max = 0.74), and only marginally
improved by combining rate and frequency (S>FR, M = 0.82,
SD = 0.03, max = 0.83). For rate series, GMMs tend to be more
effective than alignment distances (GMM:M = 0.80, SD = 0.05;
DP:M = 0.75, SD = 0.07). As above, there was no effect of PCA
on GMM accuracy, and a detrimental effect of PCA on alignment
distances (PCA: M = 0.72, SD = 0.06; no PCA: M = 0.78,
SD = 0.08).

Finally, models which did not treat data as a series, but
rather as a vector data (Figure 7) performed generally worse
(M = 0.68, SD = 0.18) than models treating data as series
(M = 0.77, SD = 0.08). There was no clear advantage to any
conjunction of dimensions for these models. Euclidean distances
were more effective (M = 0.71, SD = 0.11) than kernel distances
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FIGURE 3 | Precision values for all computational models based

on temporal series. These models treat signals as a trajectory of

features grouped by time window, taking values in a feature space

consisting of frequency, rate and scale (or any subset thereof).

Precisions are color-coded from blue (low, < 70%) to red

(high, > 85%).

(M = 0.65, SD = 0.23). PCA had no strong effect on the former
(PCA:M = 0.72, SD = 0.10; no PCA:M = 0.68, SD = 0.14) but
was crucial to the latter (PCA: M = 0.73, SD = 0.16; no PCA:
M = 0.45, SD = 0.26).

3.3. Computational and Biological Inferences
from Data
We use here inferential statistics to show how this set of
precision scores can be used to give insights into questions
related to computational and biological audio systems. In all the
following, performance differences between sets of algorithms
were tested with one-factor ANOVAs on the R-precision values,
using various algorithmic properties as a between-subject factor.

1. Are STRF representations more effective than

spectrograms?

The results of Patil et al. (2012) were taken to indicate
that the modulation features (rates and scales) extracted by
STRFs are crucial to the representation of sound textures, and
that the simpler, and more traditionally used, time-frequency
representations are insufficient both from a computational
and biological point of view. Data from the above case-
study, based on more than a hundred alternative algorithms,
provides more contrasted evidence.

In order to link performance to the conjunction of
dimensions used in the models’ feature space, we performed
a one-factor ANOVA using a 6-level dimension factor: R,
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FIGURE 4 | Precision values for all computational models based on frequency series. These models treat signals as a trajectory of values grouped by

frequency, taking values in a feature space consisting of rates and scales (or any subset thereof). Precisions are color-coded from blue (low, < 70%) to red (high,

> 85%).

S, R, F-S, F-R, and F-S-R. For series data (regardless of the
time, frequency, rate or scale basis for the series), there was
a main effect of dimension: F(6, 55) = 4.85, p = 0.0005. Post-
hoc difference (Fisher LSD) revealed that both *>R and *>S
feature spaces are significantly less effective than *>F, *>RS
and any combination of F with S, R. (Figure 8). For vector
data, there was no main effect of dimension: F(6, 37) = 0.51,
p= 0.79.

In other words, processing the rate and scale dimensions
only benefits algorithms which also process frequency, and
is detrimental otherwise. Moreover, algorithms which only
process frequency are no less effective, for the task and corpus
of the present case-study, than algorithms which also process
rate and scale.

It is still possible that, because of their sparser nature,
scale and rate representations allow faster, rather than more
effective, responses that the more redundant time-frequency
representations, as do efficient coding strategies in the visual

pathway (Serre et al., 2007). Second, such representations may
also be more learnable, e.g., requiring fewer training instances
to build generalizable sensory representations.

2. Is any model introduced here better than STRFs or

spectrograms?

In our framework, the STRF approach implemented by
Patil et al. (2012) can be described as non-series (“summarize
T”), with PCA on the 30,976-dimension F-R-S space, then
a kernel distance (the top-most path in Figure 7). On our
dataset, this approach lead to a R-precision of 70%.

Among the 105 other models tested in the present study,
somewere foundmore effective for our specific task: if keeping
with non-series models, a simple improvement is to apply
PCA only on the 22-dimension R-S space while preserving the
128 dimensions of the frequency axis (88% R-precision). More
systematically, better results were achieved when considering
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FIGURE 5 | Precision values for all computational models based on rate series. These models treat signals as a trajectory of values grouped by rate, taking

values in a feature space consisting of frequencies and scales (or any subset thereof). Precisions are color-coded from blue (low, < 70%) to red (high, > 85%).

data as a series rather than a vector. For instance, modeling the
time dimension as a GMM rather than a one-point average,
otherwise keeping the same feature space and PCA strategy
yields an improvement of 10% (79.3%, top-most path in
Figure 3).

Incidentally, the best results obtained on our dataset
were with a rather uncommon frequency-series approach,
modeling frequency-aligned observations in rate-scale space
(F>R,S) with DTW (i.e., modulation-spectrum dynamic
frequency warping). The approach lead to a R-precision
of 91%.

3. Is PCA-based dimensionality reduction a good idea with

STRFs?

PCA dimensionality reduction was tested both for series
(with GMM and alignment distances) and for non-series
models (with euclidean and kernel distances). Its effect on
precision was surprisingly algorithm-dependent. For series

models based onGMMmodeling, PCA had no statistical effect
on performance as tested by ANOVA: F(1, 14) = 0.00001, p =
0.99. However, using PCA was significantly detrimental when
series were compared with alignment distances: F(1, 14) =
46.932, p= 0.00001, with a 11% drop of R-precision (PCA:M
= 0.70, SD = 0.08; no PCA: M = 0.81, SD = 0.06). Similarly,
for non-series models, PCA had no effect on euclidean
distance: F(1, 21) = 0.49, p= 0.48 (PCA:M = 0.72, SD= 0.10;
no PCA: M = 0.68, SD = 0.14), but it was crucial to the good
performance of kernel distances: F(1, 21) = 9.63, p = 0.005,
with a 28% increase of R-precision (PCA:M= 0.73, SD= 0.16;
no PCA:M = 0.45, SD= 0.26).

From a computational point of view, such mixed evidence
does not conform to pattern-recognition intuition: data-
driven dimensionality reduction is a standard processing stage
after feature extraction (Müller et al., 2011) and efficient
coding strategies are often directly incorporated in features
themselves (e.g., discrete cosine transform in the MFCC
algorithm—Logan and Salomon, 2001). The detrimental
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FIGURE 6 | Precision values for all computational models based on scale series. These models treat signals as a trajectory of values grouped by scale, taking

values in a feature space consisting of frequencies and rates (or any subset thereof). Precisions are color-coded from blue (low, < 70%) to red (high, > 85%).

impact of PCA on alignement distances may be a consequence
of the whitening part of the algorithm, which balances
variance in all dimensions and does not not preserve the
angles/cosine distances between frame vectors; whitening has
no predicted consequence on GMMs, the covariance matrices
of which can scale to compensate.

From a biological point of view, that PCA-like processing
should be of little effect if applied to STRF suggests, first,
that the STRF representation extracted by IC neurons
onwards is already the result of efficient coding. This
confirms previous findings that codewords learned with
sparse coding strategies over speech and musical signals
loosely correspond to the STRFs elicited with laboratory
stimuli (Klein et al., 2003). Second, this suggests that
subsequent processing that operates on the STRF layers
in IC, thamali and A1 does not so much generate generic
and efficient representations based on STRF, but perhaps
rather act as an associative level that groups distributed
STRF activations into intermediate and increasingly

specific representations - eventually resulting in cortical
specializations such as the lateral distinctions between fast and
slow features of speech prosody in the superior temporal gyri
(Schirmer and Kotz, 2006).

4. Are we right to think in time (-series)?

All algorithms considered, models than treat signals as a
series of either T, F, R, or S tend to perform better (M = 0.77,
SD = 0.08) than models that are solely based on summary
statistics (M= 0.68, SD= 0.18), F(1, 108) = 13.04, p= 0.00046.
However, among series, there was strikingly no performance
advantage to any type of series: F(3, 60) = 0.02, p = 0.99 (T-
series:M = 0.77, SD= 0.08; F-series:M = 0.77, SD= 0.08; R-
series:M = 0.78, SD= 0.10; S-series:M = 0.77, SD= 0.06). In
particular, there was no intrinsic advantage to the traditional
approach of grouping features by temporal windows. Further,
the best results obtained in this study were with a frequency
series (F>R,S with DTW).
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FIGURE 7 | Precision values for all computational models based

on vector data. These models do not treat any particular dimension

as a series, but rather applied dimension reduction (namely, PCA) on

various combinations of time, frequency, rate and scale, to yield a

single high-dimensional vector representation for each signal. Vectors

are compared to one another using euclidean or kernel distances.

Precisions are color-coded from blue (low, < 70%) to red

(high, > 85%).

From a computational point of view, this pattern is in stark
contrast with the vast majority of audio pattern recognition
algorithms that model signals as temporal series. A wealth
of recent research focuses on what model best accounts for
the temporal dynamics of such data, comparing statistical
mixtures over time (Aucouturier and Pachet, 2007a) with e.g.,
Markovmodels (Flexer et al., 2005), explicit dynamical models
(Lagrange, 2010) or multi-scale pooling (Hamel et al., 2011).
Our results suggest that collapsing the temporal dimension
does not necessarily lead to reduced performance; what seems
to matter rather is to group feature observations according
to any physical dimensions of the signal, e.g., frequency.
Such alternative, non-temporal paradigms remain mostly
unexplored in the audio pattern recognition community.

From a biological point of view, this pattern suggests that,
for the task studied here, structured temporal representations
are not a computational requirement. This is compatible with
recent experimental evidence showing that at least part of the

human processing of sound textures relies only on summary
statistics (McDermott et al., 2013; Nelken and de Cheveigné,
2013).

5. Does the topology of neuronal responses determine cortical

algorithms?

The orderly mapping in cortical space of characteristic
neuronal responses, such as the tonotopical map of
characteristic frequencies, plausibly reflects a computational
need to process several areas of the corresponding dimensions
conjunctly (Eggermont, 2010). Performance data for the
group of algorithms investigated in this study seems to
corroborate this intuition. First, the most efficient models for
our task tend to operate primarily on frequency: rate and scale
data is only effective if treated conjunctly with frequency, and
it can be summarized out to little cost as long as the frequency
axis is maintained (Figure 8). Second, in F-R-S models, it
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FIGURE 8 | Model performance depending on the dimensions

embedded in its feature space. For series data (regardless of the

time,frequency, rate or scale basis for the series), feature spaces consisting of

frequency, frequency+rate and frequency+scale were the most effective.

Feature spaces consisting of only rates or scales (not in combination with

frequency) were significantly less effective. For non-series data, differences

were in the same trend but non-significant. Standard deviations computed

over all R-precision scores achieved by all approaches using a given

conjunction of dimensions as its feature space (e.g., for the series / RS group,

over the precision scores of all |*> RS|).

was found more effective to reduce the dimensionality of the
R-S space while preserving the F axis, rather than reducing
the dimension of the conjunct F-R-S space (Figure 7). Third,
the best performing algorithm found here treats data as a
frequency series, i.e., a series of successive R-S maps measured
along the tonotopical axis (F>RS). Finally, models that put
similar emphasis on R and S rather than F are typically low
performers, and processing either R and S appears to be
relatively inter-changeable. This computational behavior
therefore fully supports a structurative role of the frequency
dimension in brain representations of sound, and is in
accordance with the fact that no rate and scale gradients have
been observed to date in the mammalian auditory cortex,
even within each isofrequency lamina (Atencio and Schreiner,
2010).

6. What are the neuronal equivalents of the series and vector

approaches, and why is the former more effective?

Contrary to the vector approach, series models proceed
by grouping feature observations in successive (if time-
based) or simultaneous (if frequency-, rate- or scale-based)
categories, providing a two-layer representation of the data.
All algorithms considered, such representations (*>*) appear
more effective (M = 0.77, SD = 0.08) than those which
treat STRF data as a single unstructured ensemble (M =
0.68, SD = 0.18), F(1, 108) = 13.0, p = 0.0004. While this

computational observation is in some accordance with the
tonotopic organization of auditory structures, it is unclear
why it should be more effective. First, grouping STRF
activation data into several categories that can be considered
simultaneously may be a simple and agnostic way to represent
heterogeneous stimuli, e.g., stimuli that are slowly-changing in
the low-frequency band while rapidly-changing in the high-
frequency band (Lu et al., 2001). Second, such structured
representations may provide a more compact code for storing
exemplars in memory (McDermott et al., 2013). This may
further indicate that the memory structures that store sensory
traces for e.g., exemplar comparison, are organized in the
same structured laminae as the sensory structures—see also
Weinberger (2004).

Additionally, to process such series data, there was no
strong difference between the GMM and DP approaches:
GMMs yieldedmarginally superior performance for time- and
scale-series and were equivalent to DP for frequency- and rate-
series. This computational observation suggests that, while it
is important to group data into categories, there is no strong
requirement to process the differences/transitions from one
category to the next (as done by DP); rather, it is the variability
among categories (as modeled by GMMs) that seems most
important to account for.

4. Discussion and Generalizability

Meta-analysis of the precision values in the above case-study
revealed that the most effective representations to retrieve
the categorical structure of the corpus should (1) preserve
information about center frequency rather than averaging over
this dimension, and (2) process the output as a series, e.g., with
respect to this center-frequency dimension and not necessarily
to time. These two computational trends are in interesting
accordance with the tonotopical organization of STRFs in central
auditory structures (Eggermont, 2010; Ress and Chandrasekaran,
2013) as well as recent findings on texture discrimination
by summary statistics (McDermott et al., 2013; Nelken and
de Cheveigné, 2013). More generally, this suggests that meta-
analysis over a space of computational models (possibly explored
exhaustively) can generate insights that would otherwise be
overlooked in a field where current results are scattered, having
been developed with different analytical models, fitting methods
and datasets.

We designed the space of computational models analyzed in
the present case-study to explore the specific issue of dimension
integration and reduction, in an attempt to generalize claims
that, e.g., FRS representations were always better than F. As such,
our analysis leaves out a number of other computational factors
that may both have an impact on model performance and be
generative of biological insights into what real auditory systems
are doing. One of these factors is the summarization strategy
used to integrate dimensions which, in this work, is fixed to the
MEAN operator.We based our choice of MEAN on pilot data (all
possible collapses of FRS, compared with Euclidean Distance,
i.e., bottom-most stream of paths in Figure 7), for which it
was systematically better than max, min and median. However,
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we cannot exclude that other operators than mean, incl. max,
min, median, and more generally all statistical moments, would
achieve better performance in the other algorithmic paths tested
in the paper, or in other tasks and types of stimuli. In particular,
there has been some recent convergence in the convolutional
vision model literature over max-pooling, which seems to out-
perform average-pooling when data sparsity is high (Boureau
et al., 2010), and appears closer to physiology in the cat primary
visual cortex (Lampl et al., 2004).

Similarly, our methodology may be generalized to consider
other aspects of algorithmic behavior than categorization
accuracy (as calculated here with R-precision), e.g., information
loss, processing speed or representation compactness. While
we did not find here a systematic effect of rate and scales on
precision, it is possible that these physical dimensions have a
beneficial impact on these other performance metrics, making
them valuable features of the biological systems, e.g., helping
reducing memory or attention load, and processing speed (see
a similar discussion in McDermott et al., 2013).

More critically, the generalizability of results from the present
case-study depends critically on both the representativity of the
corpus (here, a relatively small subset of environmental sounds)
and the relevance of the task (sound source categorization). It
is well-known that pattern recognition methods (both in terms
of feature representation, classifiers or distance metrics) depend
critically on the structure of the data itself, e.g., how many
exemplars and how much variance in each category, as well as
how much overlap between categories (see e.g., Lagrange et al.,
2015 for a recent case of this going wrong). The corpus used
here results of a compromise between the need to reflect the
full range of natural sounds (e.g., bird songs and water textures)
and the need to include overlapping categories (e.g., pouring
water and waterways). However, it remains difficult to assess
the extent conclusions from the present case-study may simply
reflect the specific structure of the sounds and task used in
the analysis. For instance, the importance of preserving center
frequency evidenced in the present study may suggest that the
specific environmental sound categories used in the test corpus
were simply more easily separable with frequency information
than with temporal cues. It is possible that other environmental
sound sources, or other types of stimuli with more elaborate
temporal structure than environmental textures, require more
structured time representations.

While discriminating broad categories of environmental
sound sources is a relevant auditory behavior for humans, other
behaviors such as discriminating speech phonemes uttered by a
single speaker (understanding speech), or variations of musical
timbre by a single instrument (playing the violin) may have
been more important driving-forces in the development of our
auditory representations, and therefore more likely to reveal
more extensive use of the rate and scale physical dimensions.
For speech in particular, certain phonemes are well discriminated

along the rate dimension (e.g., front/closed vowels corresponding
to slower rates than other vowels, Mesgarani et al., 2007), and
the present conclusion that frequency is much more important
than all of the other features may not hold. However, phoneme-
specific acoustic properties are typically encoded by distributed

population responses in A1 which may not correspond directly
to the cells’ spectrotemporal tuning, but rather to the integration
of multiple responses (Mesgarani et al., 2014), making it
difficult to predict systematic dependencies on rate and scale.
Reports of improvement of automatic speech recognition
systems with STRFs are contrasted (Sivaram and Hermansky,
2008; Kollmeier et al., 2013), and may be most apparent
in adverse listening conditions such as noise or concurrent
speakers. (See also Patil et al., 2012, for a similar discussion of
musical timbre).

Similarly, the classification task used in the present case-study
does not reflect the full range of computations performed by
biological systems on acoustic input. It is possible that other types
of computations (e.g., similarity judgements) or, as noted earlier,
other aspects of these computations (e.g., speed, compactness)
could benefit from the additional representational power of rate
and scale dimensions more than the task evaluated here. The
trends identified here should therefore be confirmed on a larger
sound dataset with more exemplars per category (Giannoulis
et al., 2013) or, better yet, meta-analyzed across multiple separate
datasets (Misdariis et al., 2010).

Finally, one should also note that the STRF model used
in this study is linear, while auditory (and especially cortical)
neurons have known non-linear characteristics. In particular,
neurophysiological studies have suggested that a non-linear spike
threshold can impact neural coding properties (Escabí et al.,
2005). Further work should incorporate such non-linearities in
the representations explored here, both to increase the biological
relevance of themeta-analysis and to better understand the added
computational value of these mechanisms compared to simpler
linear representations.
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