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During production of large metal workpieces, an internal presence of voids is usually observed. Such internal defects are generally closed up using hot metal forming processes, such as hot forging or hot rolling. Prediction models for void closure, associated with process simulation, are extremely powerful tools and might signicantly support process design. However, there is at present a lack of accurate models being able to predict void closure according to industrial conditions, particularly in terms of void geometries. In this paper, an original model for void closure is presented, accounting for the void's geometry and orientation, as well as the mechanical state during deformation. The model was build and calibrated based on a wide campaign of nite element simulations at the scale of a representative volume element. Various void geometries were dened and several mechanical states were prescribed on a range that is representative of industrial loadings. The model's accuracy was veried using industrial data and was compared to literature. Great advantages were obtained for non-spherical voids in terms of void volume evolution.

Introduction

Industrial needs for large metal components used in aerospace, transport or energy applications constantly increase. During the rst steps of elaboration of ingots or preforms, defects, such as voids and internal cavities, may occur. An elimination of these internal defects is required to avoid catastrophic failure during process, or during service of nal components. Void elimination is usually performed by means of hot metal forming processes, inducing large deformation in the material at high temperature, and leading to closure of internal voids. Optimization and control of such forming processes in terms of costs and nal material soundness remains of prime importance.

The phenomenon of void closure is generally described using two stages: the mechanical closure of void, bringing internal surfaces into contact, and the nal bonding of the internal surfaces providing complete healing and thus a sound material [START_REF] Park | A study of void crushing in large forgings I: Bonding mechanism and estimation model for bonding eciency[END_REF]. The present work focuses on the mechanical closure phenomenon.

Although main studies regarding void closure were published over the last two decades, some qualitative improvements in terms of process conditions were already pointed out using experimental observations in [START_REF] Tomlison | La suppression des cavites internes dans les pieces de forge par refoulement[END_REF] for hot forging, and in [START_REF] Wallerö | Closing of a central longitudinal pore in hot rolling[END_REF] for hot rolling. Tomlison et al. studied the eect of hot forging process parameters on void closure and found out that concave dies are favourable for void closure. These results were conrmed by [START_REF] Dudra | Analysis of void closure in open-die forging[END_REF] using FML 1 dies, by [START_REF] Banaszek | Theoretical and laboratory modelling of the closure of metallurgical defects during forming of a forging[END_REF] using bowl-shape dies and by [START_REF] Chen | Study of void closure in hot radial forging process using 3D nonlinear nite element analysis[END_REF] using V-shape dies. For hot rolling processes, [START_REF] Wallerö | Closing of a central longitudinal pore in hot rolling[END_REF] pointed out that large roll diameters and large spread passes are recommanded for better void closure. From such results, it was concluded that compressive states have tendency to improve the closure eciency [START_REF] Ståhlberg | Inuence of spread and stress on the closure of a central longitudinal hole in the hot rolling of steel[END_REF]. [START_REF] Ståhlberg | A study of hole closure in hot rolling as inuenced by forced cooling[END_REF] stated that initial cooling of workpieces can be favourable for void closure in the case of hot forging. It is explained by the fact that the temperature gradient induces more compressive stress states in the bulk of workpieces. [START_REF] Pietrzyk | Simulation of the behaviour of voids in steel plates during hot rolling[END_REF] conrmed the favourable eect of pre-cooling workpieces in hot rolling. [START_REF] Överstam | Fem-simulation of drawing out in open die forging[END_REF] also pointed out a coupled eect between friction and temperature regarding their eect on void closure. In fact, all these studies deal with stress states in the workpiece and conrm the favourable eect of compressive states for void closure. [START_REF] Ståhlberg | A study of void closure during plastic deformation[END_REF] studied the deformation of round and square voids in a rigid-perfectly plastic material. They proposed an upper bound for void closure based on the plane-strain condition, considering two dierent deformation modes around the voids. [START_REF] Tanaka | Factors contributing to crushing of voids during forging[END_REF] pointed out that a good indicator for void closure is the integral of stress triaxiality ratio over the cumulated strain. [START_REF] Nakasaki | Application of hydrostatic integration parameter for free-forging and rolling[END_REF] discussed the use of this variable in the case of hot rolling and proposed a modied model to t experimental data. [START_REF] Kakimoto | Development of forging process design to close internal voids[END_REF] also used the same indicator to establish a criterion for void closure. Based on a series of nite element simulations, the authors concluded that voids are systematically closed when the integral of stress triaxiality reaches a threshold value.

Based on a similar approach, a stress triaxiality based (STB) model for void closure was proposed in the commercial software FORGE R as a post-processing mean-eld model [START_REF] Saby | Understanding and modeling of void closure mechanisms in hot metal forming processes[END_REF]. This model is able to provide maps of void volume prediction, according to the integral of stress triaxiality ratio over cumulated strain at any position in the workpiece. Calibration of this model can be performed using compression cases of a billet containing a given void (usually spherical), and is therefore limited to the chosen conguration.

Based on the analytical evolution of a sphere found by [START_REF] Duva | Constitutive potentials for dilutely voided nonlinear materials[END_REF] and the analytical evolution of a crack-like shape found by [START_REF] He | The penny-shaped crack and the plane strain crack in an innite body of power-law material[END_REF], Zhang and Cui (2009) proposed a model for predicting the volume evolution of an initially spherical void, by analytically taking into account the change of shape during deformation. A semi-empirical model was also proposed by the same authors (Zhang et al., 2009), by adding correction terms to the solutions obtained by [START_REF] Duva | Constitutive potentials for dilutely voided nonlinear materials[END_REF], in order to empirically take into account the change of shape during deformation. Although many improvements can be obtained using such models, both works of Zhang and co-workers were restricted to the case of initial spherical voids. Initial non-spherical void shapes may however have a non-negligible impact on void closure rate, such as observed by [START_REF] Lee | Studies of the growth and collapse of voids in viscous solids[END_REF] using ellipsoidal voids. In particular, the elongation and orientation of the void with respect to the main compression axis may signicantly aect the void closure rate.

This paper presents a new prediction model for void closure, based on a large campaign of numerical simulations at the micro-scale, using a representative volume element (RVE) containing ellipsoidal voids. A description of the RVE simulations is given in the rst section. Then a parametric sensitivity study to void geometry (orientation and aspect ratios) and to several material 1 Free of Mannesmann eect at Lower press load 2 parameters is presented. The parameters that exhibit a rst-order inuence on void closure are then quantitatively assessed and the prediction model is dened and discussed in the fourth section.

2. Description of the meso-scale approach

Representative Volume Element

The mechanisms of void closure are studied using nite element analysis in a tridimensional RVE. This methodology enables the closure mechanisms to be studied at the meso-scale and was presented in previous work [START_REF] Saby | Three-dimensional analysis of real void closure at the meso-scale during hot metal forming processes[END_REF]. In the present work, the dimensions of the RVE are D x = D y = D z = 10 mm and mesh size is set to the value 0.1 mm around the void in order to ensure validity of the RVE simulations. An ellipsoidal void, with initial dimensions r 1 , r 2 , r 3 (see Fig. 1) is placed at the central position in the RVE. The initial void volume fraction is f 0 = 10 -3 . The initial aspect ratios are dened as the ratios r 3 r 1 and r 2 r 1 . Tridimensional unstructured volume meshing is used, with tetrahedral elements as shown in Fig. 2. The FE simulations are performed using the software FORGE2011 R , using a mixed velocitypressure P 1 + /P 1 formulation.

A visco-plastic behaviour law (Eq.1) is used. This law is known as the Hansel-Spittel law and is widely used for modeling the behaviour of metals at high temperature. The ow stress σ 0 is expressed as:

σ 0 = A (ε + ε 0 ) n εm e m 4 /(ε+ε 0 ) , (1) 
where A is the material consistency at the given temperature (isothermal conditions are assumed here), m the strain-rate sensitivity, (n, m 4 ) the strain hardening and softening coecients, and ε 0 a regularization term that enables initial rigidity of the material.
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Figure 1: Denition of the void's dimensions and orientation in the canonical basis ( ex, ey, ez).

Boundary conditions

In the large majority of models (e.g. micro-analytical solutions in [START_REF] Duva | Constitutive potentials for dilutely voided nonlinear materials[END_REF], or empirical criteria in [START_REF] Kakimoto | Development of forging process design to close internal voids[END_REF]), equivalent strain and stress triaxiality ratio rise as key parameters regarding mechanical inuence. Equivalent strain expresses as ε = 2 3 ε : ε and stress triaxiality ratio T X = σm σe , where σ m = 1 3 tr(σ) is the mean stress and σ e = 3 2 σ : σ is the von Mises equivalent stress. Void volume evolution is generally presented as a function of equivalent strain ε. It was also observed that strain-rate has no inuence on void volume evolution [START_REF] Saby | Three-dimensional analysis of real void closure at the meso-scale during hot metal forming processes[END_REF]. Consequently, an arbitrary constant strain-rate is applied with the value ε = 1s -1 . The constant strain-rate is prescribed using a normal velocity V z (t) = -D z (t) on the upper surface of the RVE, i.e. along the z-axis (see Fig. 3).

In this work, it is chosen to prescribe a constant stress triaxiality ratio in order to quantitatively study its inuence on void closure. Normal stresses are applied along the x and y-axes using axisymmetric conditions σ xx = σ yy . The matrix material is isotropic and the void volume fraction is very low. By neglecting the eect that might have the void on the global deformation of the RVE, it comes ε xx ≈ ε yy . Equivalent strain therefore reduces to:

ε ≈ |ε zz | = ln D 0 z -D z D 0 z , (2) 
where D z and D 0 z are the current height and the initial height of the RVE, respectively. From the denition of stress triaxiality ratio, the condition σ xx = σ yy leads to:

T X = σ m σ e = σ xx + σ yy + σ zz 3σ e = 2σ xx + σ zz 3σ e , (3) 
and equivalent von Mises stress reduces to:

σ e = 1 √ 2 (σ xx -σ yy ) 2 + (σ yy -σ zz ) 2 + (σ xx -σ zz ) 2 = |σ xx -σ zz |. (4) 
It comes:

σ xx = T X + 1 3 σ e ∀σ zz ≤ σ xx , σ xx = T X - 1 3 σ e ∀σ zz ≥ σ xx .
(5)

In Eq. 5, the values of σ xx (and thus the ones of σ yy ) to be prescribed are calculated using the current global equivalent von Mises stress in the RVE. The latter is given by the material behaviour in Eq. 1, according to the global strain condition in Eq. 2 that is directly prescribed by the boundary condition V z .

Parametric sensitivity study

Equivalent strain and stress triaxiality states are considered in most models from literature. Material parameters are considered in the analytical and semi-empirical models. However, there is at present a lack of models being able to consider geometrical aspects of the voids, although it was qualitatively shown as a key parameter [START_REF] Lee | Studies of the growth and collapse of voids in viscous solids[END_REF][START_REF] Saby | Three-dimensional analysis of real void closure at the meso-scale during hot metal forming processes[END_REF]. Geometry is thus mainly addressed within this work.

A wide campaign of FE simulations at the RVE scale was dened and is presented in this section. The main objective is thus to clearly identify the parameters with rst-order inuence on void closure.

First, thirteen ellipsoids were dened using dierent orientations and the eect of spatial orientation was observed. Then, seven various ellipsoidal geometries were dened using various aspect ratios in order to study the eect of geometry for three key orientations. The eect of mechanical state was then studied for various geometries. For each geometrical case, eight dierent stress triaxiality ratios were successively applied on the RVE over the range T X = [-1, 0]. This range was previously identied as representative of most hot forging and hot rolling processes, based on a preliminary study of process simulations [START_REF] Saby | Understanding and modeling of void closure mechanisms in hot metal forming processes[END_REF]. The inuence of material parameters was also studied in terms of strain hardening/softening and strain-rate sensitivity.

The Hansel-Spittel law (Eq. 1) was used with constants that are typical for the behaviour of hot steels. The stressstrain curve obtained in the given mechanical conditions is illustrated in Fig. 4.

Sensitivity to void orientation

Let us dene the canonical basis ( # e x , # e y , # e z ), see Fig. 1. The three principal vectors of deforma-

tion ( # e 1 , # e 2 , #
e 3 ) can be obtained by diagonalizing the strain-rate tensor. According to the boundary conditions that are applied on the RVE (see Fig. 3), the main compression direction systematically coincides with the z-axis. The three principal vectors for the void geometry ( # u 1 , # u 2 , # u 3 ) in Fig. 1 are dened as the eigenvectors of the void's inertia matrix.

The orientation of a void is dened with respect to the main compression direction # e 1 , using parameters (p 1 , p 2 , p 3 ) such as: This denition veries p 1 + p 2 + p 3 = 1.

p 1 = ( u 1 . e 1 ) 2 , p 2 = ( u 2 . e 1 ) 2 , p 3 = ( u 3 . e 1 ) 2 , (6 
In Fig. 1, the particular conguration (1, 0, 0) is illustrated, meaning that the principal direction u 1 of the ellipsoid is colinear with the principal deformation direction e 1 .

Several orientations were dened in order to study the inuence of orientation on void closure. A given ellipsoid of dimensions r 2 /r 1 = 2 and r 3 /r 1 = 1.5 was used. The cases presented in Fig. 5 and 6 were obtained by rotating the void around the e y axis and the e x axis, respectively. e z e y e x Parameters (p 1 , p 2 , p 3 ) (1, 0, 0) (0.75, 0, 0.25) (0.5, 0, 0.5) (0.25, 0, 0.75) (0, 0, 1) The void volume evolutions for each series of cases are presented in Fig. 7. Void volume is expressed as V /V 0 , where V is the current measured volume in the RVE and V 0 its initial value. The orientation is given using the couple of values (p 1 , p 2 ), since p 3 can be deduced from p 3 = 1-p 1 -p 2 .

From the curves, it can be seen that orientation has a signicant inuence on void volume evolution. Three particular cases can be pointed out: the case (p 1 , p 2 ) = (1, 0), the case (p 1 , p 2 ) = (0, 1) and the case (p 1 , p 2 ) = (0, 0). Each case corresponds to a compression along u 1 , u 2 and u 3 , respectively. The curves indicate that compression along u 1 involves the fastest void closure, as the void is compressed along its smallest dimension r 1 . On the contrary, compression along u 3 involves the slowest void closure, as compression is made along the void's longest dimension r 3 . These two cases can be seen as upper and lower bounds for these given ellipsoid dimensions. Void evolution under compression along u 2 , as well as for any other orientation, are naturally between these bounds. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

ε 0.0 0.2 0.4 0.6 0.8 1.0 V/V 0 (p 1 ,p 2 ) =(1.0,0.0) (p 1 ,p 2 ) =(0.93,0.0) (p 1 ,p 2 ) =(0.75,0.0) (p 1 ,p 2 ) =(0.5,0.0) (p 1 ,p 2 ) =(0.25,0.0) (p 1 ,p 2 ) =(0.07,0.0) (p 1 ,p 2 ) =(0.0,0.0) (a) Rotation around ey (p2 = 0) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ε 0.0 0.2 0.4 0.6 0.8 1.0 V/V 0 (p 1 ,p 2 ) =(1.0,0.0) (p 1 ,p 2 ) =(0.93,0.07) (p 1 ,p 2 ) =(0.75,0.25) (p 1 ,p 2 ) =(0.5,0.5) (p 1 ,p 2 ) =(0.25,0.75) (p 1 ,p 2 ) =(0.07,0.93) (p 1 ,p 2 ) =(0.0,1.0) (b) Rotation around ex (p3 = 0)

Sensitivity to void's aspect ratios

The upper and lower bounds obtained previously using a given ellipsoid evidently depends on the initial geometry. In order to assess the inuence of geometry on these bounds, several ellipsoids were dened according to various aspect ratios. The aspect ratios are dened by r 3 r 1 , r 2 r 1 . Various aspect ratios were used and are presented in Fig. 8 (using the orientation (p 1 , p 2 ) = (1, 0)). Ellipsoids A and B are prolate, since r 1 = r 2 < r 3 . Ellipsoids C and D are oblate, since r 1 < r 2 = r 3 . Ellipsoids E and F are dened such as r 1 < r 2 < r 3 . For each ellipsoid, the RVE was generated and identical deformation conditions were applied in order to obtain void volume evolutions along the three principal directions of each ellipsoid.
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Figure 8: Various ellipsoids with given aspect ratio r 3 r 1 , r 2 r 1 , for (p1, p2) = (1, 0).

The void volume evolutions are given in Fig. 9. In the case of ellipsoids A, B, C and D, two of the three curves (corresponding to the three orientations) are superimposed. This is due to the particular symmetry of such geometries. For the prolate ellipsoid A, identical behaviours are obtained for compressions along the u 1 and u 2 axes. This result is observed for the prolate ellipsoid B as well. For the oblate ellipsoids C, identical behaviours are obtained for compressions along the u 2 and u 3 axes. The same behaviour is observed for the oblate ellipsoid D. For ellipsoids E and F, the closure rates along one direction depends on the geometry.

By comparing the pairs of ellipsoids (A, B), (C, D) and (E, F), it is observed that larger aspects ratios tend to increase the dierence in terms of closure rate between the minor axis and the major axis.

By comparing the triplet of ellipsoids (A, C, E) in the orientation (1, 0), dierent closure rates are observed, although their rst aspect ratio are identical r 3 r 1 = 2. This remark shows that void closure not only depends on one aspect ratio but on the tridimensional morphology.

Sensitivity to stress triaxiality ratio

As described in section 2.2, boundary conditions are applied in order to prescribe a constant stress triaxiality ratio. Void closure was studied under various stress triaxiality ratios and the curves are presented in Fig. 10.

The curves conrm that compressive stress states have a favorable eect on void closure. This result is in good agreement with existing models (STB models, analytical models and semi-empirical models).

Final stages of closure

When looking at the curves in Fig. 7, 9 and 10, it can be observed that void volume generally exhibits a slight change of slope at nal stages. This phenomenon is due to the presence of contact between internal void surfaces at the nal stage of closure, as shown in Fig. 11. This phenomenon was also observed by Zhang et al. (2009) for spherical voids.

The change of slope also depends on the void's morphology. It remains moderate for spherical and ellipsoidal voids but might increase in the case of very tortuous voids [START_REF] Saby | Three-dimensional analysis of real void closure at the meso-scale during hot metal forming processes[END_REF]. Nevertheless, for most industrial cases,although the use of equivalent ellipsoids remains unsucient to faithfully represent the nal behaviour of real void, very satisfactory results were obtained regarding the void volume evolution over a range V /V 0 ∈ [V crit , 1]. The value V crit may vary between 0.4 and 0.2 depending on the tortuosity of the considered void.

An accurate quantication of the tortuosity would therefore be required in order to address its eect on nal stages of void closure. In the present work, the sensitivity study to geometrical parameters is based on FE simulations of RVE containing ellipsoidal voids, and the range of interest is dened as V /V 0 = [0.2, 1]. The nal stages were thus ignored in this work for the construction of the model.

Sensitivity to material parameters

A dependence to material behaviour was pointed out in the literature. For visco-plastic materials, [START_REF] Duva | Constitutive potentials for dilutely voided nonlinear materials[END_REF] studied the eect of strain-rate sensitivity coecient using various stress triaxiality conditions for the evolution of a spherical void. They used a power-law matrix without strain hardening σ 0 = A εm and proposed an analytical dependence of void evolution to strain-rate sensitivity coecient m. The authors stated that the eect of strain-rate sensitivity for such materials can also be applied for the case of strain hardening materials obeying σ 0 = Aε n . In fact, the involved mechanisms are the same and the same analysis can be conducted by simply replacing ε by ε. 0.0 0.1 0.2 0.3 0.4 0.5 0.6
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Figure 9: Void volume evolution for various initial geometries, and for three dierent orientations. [START_REF] Ragab | Application of an extended void growth model with strain hardening and void shape evolution to ductile fracture under axisymmetric tension[END_REF] studied the eect of strain hardening on void opening, dealing with damage prediction. The author has shown that strain hardening mainly aects the coalescence phenomenon. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 A slight eect was observed on void evolution (in this case, growth) as well. This results is in good agreement with the remark from [START_REF] Duva | Constitutive potentials for dilutely voided nonlinear materials[END_REF].
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In this section, the eect of material parameters from Eq. 1 are studied on the closure behaviour of a spherical void.

Inuence of material consistency

Using an arbitrary strain hardening coecient (n = 1), material laws with dierent values of A = {1, 2, 10, 100} MPa were compared. The stress-strain curves are plotted in Fig. 12a. The resulting void volume evolutions are plotted in Fig. 12b. All closure behaviours are identical in all cases, regardless of the value of A.

A second case was dened using another value of strain hardening coecient n = 0.1, and for the values A = {1, 10} MPa. The stress-strain curves and the resulting void volume evolution are plotted in Fig. 12c and Fig. 12d, respectively. As both void volume evolutions are again superimposed, the same conclusion can be made. The material consistency A has no inuence on void closure. An arbitrary value A = 1 MPa is thus set for the following analyses.

Eect of strain-rate sensitivity m

In order to focus on the pure eect of m, the Hansel-Spittel law can be used with the parameters n = m 4 = ε 0 = 0 (see Eq. 1). A rigid perfectly plastic material is obtained, such as the one used in the analytical solutions of [START_REF] Duva | Constitutive potentials for dilutely voided nonlinear materials[END_REF] and the semi-empirical model of Zhang et al. (2009).

Within this work, due to convergence diculties when using rigid perfectly plastic behaviour (n = 0) in FORGE (2011), the value n = 0.01 was used instead. Several values of m were dened on the range [0.01, 1] and the resulting void volume evolutions are plotted in Fig. 13.

The curves show a signicant inuence of m on void closure behaviour. The results are in rather good agreement with the values obtained from the model of Zhang et al. (2009).

Although the eect is signicant on the whole tested range m = [0.01, 1], the values of m for hot metals rarely exceed m = 0.25. Over the range m = [0.01, 0.2], the eect of m on void volume evolution remains moderate.

Eect of strain hardening/softening n

In order to study the pure eect of strain hardening n, the Hansel-Spittel equation is used with the parameters m = m 4 = ε 0 = 0. Several values of n over the range [0.01, 1] were dened to cover a large variety of material behaviours.

Softening behaviour can be introduced in the Hansel-Spittel law using negative values of n. Another case with the values (n, m 4 ) = (-0.1, -0.001) was thus added in order to qualitatively represent a material with softening behaviour. Note that in this particular case, a non-zero value of m 4 must be set in order to avoid the presence of an innite value of σ 0 at ε = 0. It was veried that the introduction of the non-zero value of m 4 has no signicant impact on the material behaviour. Although this particular case may not physically represent a typical hot metal behaviour, it is a simple qualitative example exhibiting a negative slope of the stressstrain curve that is easily comparable to the cases dened above. The stress-strain curves are presented in Fig. 14a and illustrate the large variety of material behaviours that is considered. The resulting void volume evolutions are plotted in Fig. 14b. 

V/V 0 n =1 n =0.5 n =0.2 n =0.1 n =0.01 n =-0.1 * (b) Void volume evolution
Figure 14: Eect of strain hardening on the evolution of a spherical void, using strain-rate sensitivities m = 0 under ε = 1s -1 and TX = -1/3 ( * for negative strain hardening values, the value m4 = -10 -3 is used).

The curves in Fig. 14b for various values of n are roughly identical to the ones in Fig. 13 for various values of m. As mentioned by [START_REF] Duva | Constitutive potentials for dilutely voided nonlinear materials[END_REF], the eect of strain hardening and the eect of strain-rate sensitivity are driven by the same mechanisms. The resulting inuence of n can therefore be used for the one of m and vice-versa.

Fig. 14b also indicates that strain hardening has a signicant eect on void volume evolution on the tested range n = [-0.1, 1]. A dierence of about 40% was measured in terms of void volumes at ε = 0.4, between the cases n = -0.1 and n = 1. This dierence tends to decrease at the nal stages, as the slope drops due to internal contact.

The eect of internal contact is illustrated in Fig. 15. In the case of a linear material n = 1, the void's shape remains ellipsoidal throughout the deformation. When reducing strain hardening n, the curvature is changed and contact between internal surfaces appears earlier. This eect induces a faster void closure at the beginning, and, on the contrary, reduces the nal slope to complete closure. However, it is noteworthy that the required deformation for complete closure is comparable for all cases.

The values of strain hardening for hot metal rarely exceed the value n = 0.2. The dierence in terms of void volume at ε = 0.4 reduces to about 15% over the range n = [-0.1, 0.2]. In the case of hot metal forming, the eect of strain hardening/softening is thus signicantly lower than the eects of void geometry or stress triaxiality ratio.

As a consequence, the eect of strain-rate sensitivity m and of strain hardening/softening n are considered as second-order parameters and will not be addressed in the prediction model presented in this paper. 

Prediction model for void closure

This section presents the construction steps for the new prediction model for void closure. First, the choice of an analytical function that is able to model void closure as a function of equivalent strain is presented. Then the dependence to void orientation is quantitatively studied in order to extend the analytical function to any orientation of ellipsoid (for a given ellipsoid). The dependence to aspect ratios is then quantitatively studied in order to extend the analytical function to any ellipsoid (geometry and orientation). Finally, the dependence to stress triaxiality ratio is quantitatively studied in order to extend the analytical function to any ellipsoid and to any stress triaxiality ratio. The nal equation is veried using four geometry-equivalent ellipsoids (obtained from real observations).

The analytical functions are calibrated using the RVE simulations from the campaign presented in the previous section, using regression analysis. The regressions accuracy is systematically il-lustrated using the R 2 correlation coecient. The nal dierence that is obtained between the calibrated prediction model and the reference states (from RVE simulations) is given using the L 2 norm.

Choice of an analytical function

A relationship between void volume and equivalent strain is sought here. According to the parabolic aspects of the curves obtained in the previous section for various geometries and under various conditions, a second order polynomial function is proposed. The analytical function can be expressed as:

V /V 0 = A + B ε + C ε2 . ( 7 
)
where A, B and C are tting parameters. The initial condition leads to A = 1. This expression can be reduced to a linear expression:

V /V 0 -1 ε = B + C ε, (8) 
in which the two coecients B and C can be tted using linear regression analysis. This is of great interest regarding the large quantity of parameters to be assessed within this study.

As pointed out in the previous section, the nal void evolution may not be representative of void closure in the general case, as it is driven by the particular ellipsoidal shape. As a consequence, interest is focused on the range V /V 0 = [0.2, 1]. Values below the threshold value 0.2 will therefore be ignored in the regression analysis (see example in Fig. 16). The beginning of the curves is ignored as well due to the presence of a vertical asymptote at ε = 0 on the linearized curves, and in order to accurately capture the linear evolution using linear regression analysis.

Dependence to orientation

For all orientation cases, the void volume evolutions were tted using linear regression analysis. It is illustrated for several particular orientations in Fig. 16. Values of B and C coecients were obtained with very good correlation (using R 2 -correlation coecients). The values for B and C are plotted with dots in Fig. 17 versus orientation parameters p 1 and p 2 . Each coecient exhibits a linear dependence to orientation parameters. Linear regression is thus used to t this dependence and R 2 -correlation showed very good values as well. As a consequence, the following expression is proposed:

B = p 1 B u 1 + p 2 B u 2 + p 3 B u 3 C = p 1 C u 1 + p 2 C u 2 + p 3 C u 3 . ( 9 
)
In this equation, B u i and C u i are geometry-dependent parameters that correspond to void evolution under compression along u i . They can be obtained using the three particular cases (p 1 , p 2 ) = (1, 0), (p 1 , p 2 ) = (0, 1) and (p 1 , p 2 ) = (0, 0), respectively. According to the analytical expression in Eq. 9, for a given ellipsoid, knowing its volume evolution along its three principal directions is sucient for predicting its volume evolution in any random orientation. The values of B u i and C u i are thus obtained from the regression shown in Fig. 16.

Based on B u i and C u i coecients that were obtained with Ell-E for (p 1 , p 2 ) = {(1, 0); (0, 1); (0, 0)}, the validity of Eq. 9 was checked using randomly oriented ellipsoids. Four orientations were dened using successive rotations around e x and e y . The resulting pairs of orientation parameters (p 1 , p 2 ) are (0.56, 0.19), (0.19, 0.56), (0.19, 0.06) and (0.06, 0.19). The model was computed using Eqs. 7 and 9 for each orientation. A comparison is given in Fig. 18, together with bound cases (1, 0) and (0, 0). For the six curves, a very good agreement was obtained between the model and the values obtained from RVE simulations. The average L 2 norm error was computed over the whole deformation, between the RVE-values and the model in Eq. 9, and remains under 3% for all cases. As a consequence, the model is suitable to take into account the eect of orientation. Together with Eq. 7 the model is suitable for predicting void evolution for any orientation.

V/V 0 -1 ε V/V 0 =0 V/V 0 =0.2

Dependence to geometry

The dependence to aspect ratios is now studied using the same methodology as described above. Void evolution coecients B and C are obtained from curves in Fig. 9 analysis. The linearized form of void volume evolution is used as well, such as shown in Fig 19.

The R 2 -correlation coecient was excellent again, meaning that Eq. 7 is suitable to model closure of ellipsoidal voids.

For each ellipsoid, three coecients B u i (and C u i ) were obtained, respectively along their three principal directions i = {1, 2, 3}. The values obtained for B u i (and C u i ) are plotted in Fig. 20 versus a geometry parameter dened as

γ i = 3 √ V 0 r i . (10) 
This parameter represents an apparent geometry parameter according to the u i direction. It is a non-dimension parameter that considers tridimensional features of the geometry with respect to each principal direction. For example, in the case of the rst principal direction u 1 , the parameter can be expressed as:

γ 1 = 3 √ V 0 r 1 = 3 4π 3 r 1 r 2 r 3 r 1 = 3 4π 3 r 1 r 2 r 3 r 3 1 = 3 4π 3 r 2 r 1 r 3 r 1 . (11) 
The γ 1 parameter is proportional to the cubic root of the product of aspect ratios. In this manner, this parameter contains the information relative to the void's tridimensional geometry. This parameter was chosen as it provided a bijective relation with the B u i and C u i coecients, regardless of the value of i.

As expected, due to axisymmetrical features, it was veried that for prolate ellipsoids, B u 1 = B u2 and C u 1 = C u 2 . Regarding oblate ellipsoids it was found that B u 2 = B u 3 and C u 2 = C u 3 . Finally, for the spherical void

B u 1 = B u 2 = B u 3 and C u 1 = C u 2 = C u 3 . 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ε 0.0 0.2 0.4 0.6 0.8 1.0 V/V 0 (p 1 ,p 2 ) =(1.0,0.0) Sphere (R 2 =0.9991) Ell-A (R 2 =0.9968) Ell-B (R 2 =0.9935) Ell-C (R 2 =0.9981) Ell-D (R 2 =0.9909) Ell-E (R 2 =0.9982) Ell-F (R 2 =0.9934) (p 1 ,p 2 ) =(0.0,1.0) Sphere (R 2 =0.9991) Ell-A (R 2 =0.9968) Ell-B (R 2 =0.9930) Ell-C (R 2 =0.9971) Ell-D (R 2 =0.9984) Ell-E (R 2 =0.9960) Ell-F (R 2 =0.9914) (p 1 ,p 2 ) =(0.0,0.0) Sphere (R 2 =0.9991) Ell-A (R 2 =0.9982) Ell-B (R 2 =0.9847) Ell-C (R 2 =0.9970) Ell-D (R 2 =0.9984) Ell-E (R 2 =0.9989) Ell-F (R 2 =0.9996) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 ε 6 5 4 3 2 1 0 1 V/V 0 -1 ε V/V 0 =0 V/V 0 =0.2
Figure 19: Curve tting (with R 2 -correlation factor) performed using RVE results for various geometries and orientations (given in Fig. 9), by linear regression using the linearized expression (Eq. 8).

On Fig. 20, all cases are presented on the same plot in order to establish a unique relationship b(γ i ) (and c(γ i )) between void closure and the apparent geometry parameter. This is done because, for a given apparent geometry parameter, the same mechanisms are involved whether the apparent geometry corresponds to the rst, the second or the third principal direction. Eq. 9 thus becomes:

B = b(γ 1 )p 1 + b(γ 2 )p 2 + b(γ 3 )p 3 , C = c(γ 1 )p 1 + c(γ 2 )p 2 + c(γ 3 )p 3 . (12) 
From Fig. 20, a bijective monotonously decreasing evolution was observed 2 . A quadratic polynomial function is proposed such that:

b(γ i ) = b 0 + b 1 γ i + b 2 γ 2 i , c(γ i ) = c 0 + c 1 γ i + c 2 γ 2 i . (13) 
The values plotted in Fig. 20 were used to identify coecients b 0 , b 1 and b 2 (and c 0 , c 1 and c 2 ) using polynomial regression analysis. The R 2 -correlation factor is very good again.

0 1 2 3 4 5 0 B (RVE) Fit (R 2 =0.9911) 0 1 2 3 4 5 γ i 0 C (RVE) Fit (R 2 =0.964)
Figure 20: Inuence of the geometry parameter γi on B and C coecients, obtained from tting for all cases given in Fig. 19 (common legend).

Dependence to stress triaxiality ratio

Eq. 13 was obtained for the particular value T X = -1/3, i.e. under uniaxial compression (using the boundary conditions σ x = σ y = 0).

In order to quantitatively assess the inuence of stress triaxiality ratio and to extend Eq. 13, the analysis was repeated under various stress triaxiality ratios over the range T X = [-1, 0]. The evolution of b(γ i ) and c(γ i ) (i.e. the dependence to geometry) is plotted3 for various stress triaxiality ratios in Fig. 21. The curves exhibit a rather linear dependence to the geometry parameter γ i for low compressive stress states. Non-linearity occurs when decreasing the value of T X .

In Fig. 21, it can be seen that the tting accuracy also decreases for compressive stress triaxiality ratios. The case that is plotted using a red square exhibits rather large discrepancy. It corresponds to Ellipsoid B when it is deformed perpendicularly to its longest direction (see Fig. 8).

The coecients b i and c i (i ∈ {0, 1, 2}) were obtained using polynomial regression analysis for each case and are plotted 3 in Fig. 22.

A linear dependence is observed for the b i coecients over the whole range of T X . For the c i coecients, a linear dependence is observed as well on the range -0.4 ≤ T X ≤ 0, and a quadratic dependence is observed on the range -1 ≤ T X ≤ -0.4. The regression was therefore split and two batches of calibration constants were obtained, one for each range of T X . The good values of R 2 correlation coecients indicate that the chosen analytical functions are suitable to model these dependences. 1.0 0.8 0.6 0.4 0.2 0.0

0 b 0 b 1 b 2 Fit (R 2 =0.99895) Fit (R 2 =0.99520) Fit (R 2 =0.99574)
1.0 0.8 0.6 0.4 0.2 0.0

T X 0 c 0 c 1 c 2 Fit (R 2 =0.99365) Fit (R 2 =0.99857) Fit (R 2 =0.99766) Fit (R 2 =0.99570) Fit (R 2 =0.98976) Fit (R 2 =0.99936)
Figure 22: Inuence of stress triaxiality on the bi and ci coecients (i ∈ {0, 1, 2}) from Eq. 13.

The nal dependence to γ i and to stress triaxiality ratio T X can be written as:

b(γ i ) = b 00 + b 10 γ i + b 20 γ 2 i +T X b 01 + b 11 γ i + b 21 γ 2 i , c(γ i ) = c 00 + c 10 γ i + c 20 γ 2 i +T X c 01 + c 11 γ i + c 21 γ 2 i + T 2 X c 02 + c 12 γ i + c 22 γ 2 i ( 14 
)
where b ij and c ij are calibration constants.

The coecients B and C are called closure coecients. In fact, B can be seen as the initial closure coecient, providing the initial slope of the void volume evolution at ε = 0. The coecient C can be seen as a deformation-dependent coecient, translating the change of shape during deformation. This is in good agreement with the results of [START_REF] Lee | Studies of the growth and collapse of voids in viscous solids[END_REF]. The authors pointed out the necessity to consider the change of shape of a void during deformation.

In the present work, the coecient is calibrated under constant loadings. The value of C thus contains the information of the change of shape during a uniform loading.

For a better prediction, the current evolution of the void must be known throughout the deformation. For a single pass process, this assumption is correct as the material is generally loaded along one main axis.

Final expression of the prediction model

Finally, the crossed dependences to orientation, to geometry and to stress triaxiality ratio can be summarized in a single expression:

V V 0 = 1 + B ε + C ε2 with              B = 3 i=1 2 j=0 1 k=0 b jk (T X ) k (γ i ) j p i , C = 3 i=1 2 j=0 2 k=0 c jk (T X ) k (γ i ) j p i .
(15)

Validation of the prediction model

In order to verify the reliability of the proposed model, predicted evolutions are compared to the void volume evolutions that were measured for several ellipsoidal voids, under various mechanical conditions. Four morphology-equivalent ellipsoids were obtained from tridimensional observations of real voids, such as presented in previous work [START_REF] Saby | Three-dimensional analysis of real void closure at the meso-scale during hot metal forming processes[END_REF]. The RVEs containing these ellipsoidal voids are illustrated in Fig. 23 Void volume evolution is thus plotted for each ellipsoid in Fig. 24. For each plot, the predicted volume evolution is plotted as well. It is computed using Eq. 15, according to the geometrical features given in Table . 1 and the prescribed stress triaxiality ratio T X .

The objective here is to assess the ability of the model to predict the behaviour of ellipsoids. This is directly related to the eciency of the chosen model, as well as the calibration step.

The aspect ratios of ellipsoid A1 can be obtained from its dimensions and are (r 3 /r 1 ) = 1.75 and (r 2 /r 1 ) = 1.20. The orientation parameter p 1 is close to unity and p 2 ≈ p 3 ≈ 0. These values of orientation indicate that the principal vector of the void # u 1 is colinear with the main deformation direction # e 1 . In other words, the void is mainly deformed along its smallest dimension r 1 . As a consequence, according to Eq. 12, the closure coecients b and c are respectively equal to b(γ 1 ) and c(γ 1 ).

The L 2 norm error was computed between the model and the result from RVE simulation. For all tested values of stress triaxiality ratio, the error remains lower than 5%. In the case of Ellipsoid A1, the model is capable of predicting its void volume with very good accuracy.

The aspect ratios of ellipsoid A2 are (r 3 /r 1 ) = 1.75 and (r 2 /r 1 ) = 1.18. Note that, by chance, the values are roughly identical to the ones of ellipsoid A1. Regarding its orientation, ellipsoid A2 is slightly tilted compared to ellipsoid A1. As a consequence, the values of closure coecients B (respectively coecients C) are given by a linear combination of b(γ 1 ), b(γ 2 ) and b(γ 3 ) (respectively c(γ 1 ), c(γ 2 ) and c(γ 3 )), according to Eq. 12.

For the lowest triaxiality ratios, the prediction is excellent, with a L 2 norm error about 3%. When increasing the value of stress triaxiality, the prediction slightly underestimates void closure, the L 2 norm error remaining lower than 9% over the whole range of T X . The obtained error is mainly due to the fact that the closure rates are relatively small for low compressive states. When looking at Fig. 21, the relative error that is made by regression for the value of B is higher for the value T X = -0.04 than for the value T X = -0.94, due to the fact that the values are close to zero when T X tends to zero. As a consequence, the error made on the value of B is visible on the initial slope of the volume evolutions in Fig. 24.

In Fig. 25, the void volume predictions obtained from the model of Zhang et al. (2009) and from the STB model are plotted for ellipsoid A2 and the L 2 norm error is given. Note that the use of the Zhang model requires the denition of a material parameter m * . The authors provide calibration coecients for a discrete series of values m * = {0.01, 0.1, 0.2, 1/3, 0.5, 1}. Since the model was theoretically developed for viscoplastic materials without strain hardening, the value of m * may not be strictly dened in the present case, since a viscoplastic material containing strain hardening was used in the present FE simulations. Among all possible values of m * , the value that provided the lowest error between the Zhang model and the FE simulations was retained (m * = 0.2) and the results are illustrated in Fig. 25a.

In the Zhang model, the initial slope at ε = 0 shows good agreement with FE-data. However, this agreement decreases when deformation increases. Using the Zhang model, the prediction leads to a L 2 norm error on the range [717]%, while it is on the range [39]% for the new proposed model. The error is mainly due to the analytical function that is expressed to model the void volume evolution during deformation. In the case of the STB model, the analytical function that is used is a linear expression. According to the FE-data, this linear expression is clearly inadequate when deformation increases. The resulting L 2 norm error rises over 100%.

The aspect ratios of ellipsoid A3 are (r 3 /r 1 ) = 2.37 and (r 2 /r 1 ) = 1.22. In this case, the second aspect ratio is relatively similar to the previous ones as well. However, the rst aspect ratio is larger, indicating that the void is more elongated along its third principal direction. Its orientation parameters exhibit the particular value of p 3 ≈ 0, meaning that the third principal direction is perpendicular to the z-axis (the deformation axis). The behaviour of the void is thus driven by a combination of the closure coecients b(γ 1 ) and b(γ 2 ) (and c(γ 1 ) and c(γ 2 )), only.

The L 2 norm error remains lower than 5%. The accuracy of the prediction for ellipsoid A3 is comparable to the one obtained for ellipsoid A1.

The aspect ratios of ellipsoid A4 are (r 3 /r 1 ) = 8.45 and (r 2 /r 1 ) = 3.43. The orientation parameters indicate that the void does not show any particular orientation.

Regarding Eq. 14, the apparent geometrical parameters γ 1 = 4.95 and γ 3 = 0.59 of ellipsoid A4 are situated at the boundaries of the range of tested values for the calibration (see Fig. 21). The accuracy of the regression is therefore lower for such values, and the resulting error is visible on the nal prediction of void volume in Fig. 24d. This case can therefore be considered as an extreme case for the validation of the model.

The same comment can be made regarding the fact that the maximum discrepancy is obtained for low compressive values of stress triaxiality ratio. The L 2 norm error rises to 17% in the case T X = 0. For more compressive triaxiality ratios, the error remains rather low, with the best prediction obtained for the value T X = -0.58, with an error of about 3%.

Conclusions

Based on a wide campaign of FE simulations at the RVE-scale, the signicant inuence of geometry and orientation of a void on its closure behaviour was demonstrated. The inuence of stress state (using the stress triaxiality ratio on the range [-1, 0]) was also veried. These crossed inuences were quantied and a new prediction model for void closure was proposed.

Four ellipsoids were used as validation cases. Their geometry and orientation was obtained from tridimensional observations of real industrial voids. The model provides very good prediction for all cases under several stress states. The prediction error is signicantly lower than the error obtained from the models from literature (based on spherical voids).

The chosen analytical expression is thus suitable for an accurate prediction of void closure for an ellipsoid of any geometry, in any orientation and under any stress triaxiality ratio. This model can easily be implemented as a post-processing subroutine and linked with process simulation. Process design can consequently be performed with greater accuracy. This is the object of a forthcoming publication.

Further developments would also be necessary to keep track of void geometry during deformation. This additionnal information would show great interest regarding multipass processes.
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 23 Figure 2: Initial mesh of the RVE containing an ellipsoidal void.
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 4 Figure 4: Stressstrain curve of the the material used for the calibration (Eq. 1).
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 5 Figure 5: Various ellipsoids, obtained by rotation around ey.
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 6 Figure 6: Various ellipsoids, obtained by rotation around ex.
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 7 Figure 7: Inuence of orientation parameters.
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 1011 Figure 10: Void volume evolutions of Ell-E, under various values of stress triaxiality ratios.
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 1213 Figure 12: Eect of material consistency A on void volume evolution, under ε = 1s -1 and TX = -1/3, for dierent values A = {1, 2, 10, 100} MPa, using n = 1 in (a,b) and using n = 0.1 in (c,d).
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 15 Figure 15: Cutting plane illustrating the von Mises equivalent stress eld, for an initially spherical void at ε = 0.4, under ε = 1s -1 , TX = -1/3 and for dierent values of strain hardening coecient n.
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 1617 Figure16: Curve tting (with R 2 -correlation factor) performed on RVE results (Ell-E for the three principal orientations) by linear regression using the linearized expression (Eq. 8).
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 21 Figure21: Comparison, for several values of stress triaxiality ratio TX , of the inuence of the geometry parameter γi on B and C coecients, obtained from curve tting (see legend for the dots in Fig.19).

Figure 23 :

 23 Figure 23: Initial RVEs containing morphology-equivalent ellipsoids.

  Figure 24: Illustration of the L 2 norm error made by the prediction model on the actual closure of an ellipsoidal void.

Table 1 :

 1 . Various stress triaxiality values are prescribed on the range T X = [-1, 0]. Geometrical features of the ellipsoids used for the validation of the calibration.

			Dimensions (mm)			Orientation	
		r 1	r 2	r 3	p 1	p 2	p 3
	Ellipsoid A1	1.35	1.62	2.36	0.97	0.01	0.02
	Ellipsoid A2	1.20	1.42	2.10	0.67	0.10	0.23
	Ellipsoid A3	1.34	1.63	3.17	0.88	0.21	0.01
	Ellipsoid A4	0.47	1.61	3.97	0.20	0.22	0.58
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