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Abstract

During production of large metal workpieces, an internal presence of voids is usually observed. Such
internal defects are generally closed up using hot metal forming processes, such as hot forging or
hot rolling. Prediction models for void closure, associated with process simulation, are extremely
powerful tools and might signi�cantly support process design. However, there is at present a lack of
accurate models being able to predict void closure according to industrial conditions, particularly in
terms of void geometries. In this paper, an original model for void closure is presented, accounting
for the void's geometry and orientation, as well as the mechanical state during deformation. The
model was build and calibrated based on a wide campaign of �nite element simulations at the scale
of a representative volume element. Various void geometries were de�ned and several mechanical
states were prescribed on a range that is representative of industrial loadings. The model's accuracy
was veri�ed using industrial data and was compared to literature. Great advantages were obtained
for non-spherical voids in terms of void volume evolution.

Keywords: Void closure; Model; Finite elements; Hot metal forming

1. Introduction

Industrial needs for large metal components used in aerospace, transport or energy applications
constantly increase. During the �rst steps of elaboration of ingots or preforms, defects, such as
voids and internal cavities, may occur. An elimination of these internal defects is required to
avoid catastrophic failure during process, or during service of �nal components. Void elimination
is usually performed by means of hot metal forming processes, inducing large deformation in the
material at high temperature, and leading to closure of internal voids. Optimization and control of
such forming processes in terms of costs and �nal material soundness remains of prime importance.

The phenomenon of void closure is generally described using two stages: the mechanical clo-
sure of void, bringing internal surfaces into contact, and the �nal bonding of the internal surfaces
providing complete healing and thus a sound material (Park and Yang, 1996). The present work
focuses on the mechanical closure phenomenon.

Although main studies regarding void closure were published over the last two decades, some
qualitative improvements in terms of process conditions were already pointed out using experimental
observations in Tomlison et al. (1958) for hot forging, and in Wallerö (1985) for hot rolling. Tomlison
et al. studied the e�ect of hot forging process parameters on void closure and found out that concave
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dies are favourable for void closure. These results were con�rmed by Dudra and Im (1990) using
FML1 dies, by Banaszek and Stefanik (2006) using bowl-shape dies and by Chen et al. (2012) using
V-shape dies. For hot rolling processes, Wallerö (1985) pointed out that large roll diameters and
large spread passes are recommanded for better void closure. From such results, it was concluded
that compressive states have tendency to improve the closure e�ciency (Ståhlberg, 1986).

Ståhlberg and Keife (1992) stated that initial cooling of workpieces can be favourable for void
closure in the case of hot forging. It is explained by the fact that the temperature gradient induces
more compressive stress states in the bulk of workpieces. Pietrzyk et al. (1995) con�rmed the
favourable e�ect of pre-cooling workpieces in hot rolling. Överstam and Jarl (2004) also pointed
out a coupled e�ect between friction and temperature regarding their e�ect on void closure. In
fact, all these studies deal with stress states in the workpiece and con�rm the favourable e�ect of
compressive states for void closure.

Ståhlberg et al. (1980) studied the deformation of round and square voids in a rigid-perfectly
plastic material. They proposed an upper bound for void closure based on the plane-strain condition,
considering two di�erent deformation modes around the voids. Tanaka et al. (1986) pointed out
that a good indicator for void closure is the integral of stress triaxiality ratio over the cumulated
strain. Nakasaki et al. (2006) discussed the use of this variable in the case of hot rolling and
proposed a modi�ed model to �t experimental data. Kakimoto et al. (2010) also used the same
indicator to establish a criterion for void closure. Based on a series of �nite element simulations,
the authors concluded that voids are systematically closed when the integral of stress triaxiality
reaches a threshold value.

Based on a similar approach, a stress triaxiality based (STB) model for void closure was proposed
in the commercial software FORGE R© as a post-processing mean-�eld model (Saby, 2013). This
model is able to provide maps of void volume prediction, according to the integral of stress triaxiality
ratio over cumulated strain at any position in the workpiece. Calibration of this model can be
performed using compression cases of a billet containing a given void (usually spherical), and is
therefore limited to the chosen con�guration.

Based on the analytical evolution of a sphere found by Duva and Hutchinson (1984) and the
analytical evolution of a crack-like shape found by He and Hutchinson (1981), Zhang and Cui (2009)
proposed a model for predicting the volume evolution of an initially spherical void, by analytically
taking into account the change of shape during deformation. A semi-empirical model was also
proposed by the same authors (Zhang et al., 2009), by adding correction terms to the solutions
obtained by Duva and Hutchinson (1984), in order to empirically take into account the change
of shape during deformation. Although many improvements can be obtained using such models,
both works of Zhang and co-workers were restricted to the case of initial spherical voids. Initial
non-spherical void shapes may however have a non-negligible impact on void closure rate, such
as observed by Lee and Mear (1994) using ellipsoidal voids. In particular, the elongation and
orientation of the void with respect to the main compression axis may signi�cantly a�ect the void
closure rate.

This paper presents a new prediction model for void closure, based on a large campaign of
numerical simulations at the micro-scale, using a representative volume element (RVE) containing
ellipsoidal voids. A description of the RVE simulations is given in the �rst section. Then a para-
metric sensitivity study to void geometry (orientation and aspect ratios) and to several material
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parameters is presented. The parameters that exhibit a �rst-order in�uence on void closure are then
quantitatively assessed and the prediction model is de�ned and discussed in the fourth section.

2. Description of the meso-scale approach

2.1. Representative Volume Element

The mechanisms of void closure are studied using �nite element analysis in a tridimensional
RVE. This methodology enables the closure mechanisms to be studied at the meso-scale and was
presented in previous work (Saby et al., 2013). In the present work, the dimensions of the RVE
are Dx = Dy = Dz = 10 mm and mesh size is set to the value 0.1 mm around the void in order to
ensure validity of the RVE simulations. An ellipsoidal void, with initial dimensions r1, r2, r3 (see
Fig. 1) is placed at the central position in the RVE. The initial void volume fraction is f0 = 10−3.
The initial aspect ratios are de�ned as the ratios r3

r1
and r2

r1
.

Tridimensional unstructured volume meshing is used, with tetrahedral elements as shown in
Fig. 2. The FE simulations are performed using the software FORGE2011 R©, using a mixed velocity-
pressure P1+/P1 formulation.

A visco-plastic behaviour law (Eq.1) is used. This law is known as the Hansel-Spittel law and
is widely used for modeling the behaviour of metals at high temperature. The �ow stress σ0 is
expressed as:

σ0 = A (ε̄+ ε0)n ˙̄εmem4/(ε̄+ε0), (1)

where A is the material consistency at the given temperature (isothermal conditions are assumed
here), m the strain-rate sensitivity, (n,m4) the strain hardening and softening coe�cients, and ε0

a regularization term that enables initial rigidity of the material.

~ez

~ey~ex ~u1

~u2~u3

r1

r2r3

Figure 1: De�nition of the void's dimensions and orientation in the canonical basis ( ~ex, ~ey, ~ez).

2.2. Boundary conditions

In the large majority of models (e.g. micro-analytical solutions in Duva and Hutchinson (1984),
or empirical criteria in Kakimoto et al. (2010)), equivalent strain and stress triaxiality ratio rise

as key parameters regarding mechanical in�uence. Equivalent strain expresses as ε̄ =
√

2
3ε : ε and

stress triaxiality ratio TX = σm
σe
, where σm = 1

3tr(σ) is the mean stress and σe =
√

3
2σ : σ is the von

Mises equivalent stress. Void volume evolution is generally presented as a function of equivalent
strain ε̄. It was also observed that strain-rate has no in�uence on void volume evolution (Saby
et al., 2013). Consequently, an arbitrary constant strain-rate is applied with the value ˙̄ε = 1s−1.
The constant strain-rate is prescribed using a normal velocity Vz(t) = −Dz(t) on the upper surface
of the RVE, i.e. along the z-axis (see Fig. 3).

In this work, it is chosen to prescribe a constant stress triaxiality ratio in order to quantitatively
study its in�uence on void closure. Normal stresses are applied along the x and y-axes using
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Figure 2: Initial mesh of the RVE containing an ellipsoidal void.
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Figure 3: Representative Volume Element containing an ellipsoidal void, and prescribed boundary conditions.

axisymmetric conditions σxx = σyy. The matrix material is isotropic and the void volume fraction
is very low. By neglecting the e�ect that might have the void on the global deformation of the
RVE, it comes εxx ≈ εyy. Equivalent strain therefore reduces to:

ε̄ ≈ |εzz| =
∣∣∣∣ln(D0

z −Dz

D0
z

)∣∣∣∣ , (2)

where Dz and D0
z are the current height and the initial height of the RVE, respectively. From the

de�nition of stress triaxiality ratio, the condition σxx = σyy leads to:

TX =
σm
σe

=
σxx + σyy + σzz

3σe
=

2σxx + σzz
3σe

, (3)
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and equivalent von Mises stress reduces to:

σe =
1√
2

√
(σxx − σyy)2 + (σyy − σzz)2 + (σxx − σzz)2 = |σxx − σzz|. (4)

It comes:

σxx =

(
TX +

1

3

)
σe ∀σzz ≤ σxx,

σxx =

(
TX −

1

3

)
σe ∀σzz ≥ σxx.

(5)

In Eq. 5, the values of σxx (and thus the ones of σyy) to be prescribed are calculated using the
current global equivalent von Mises stress in the RVE. The latter is given by the material behaviour
in Eq. 1, according to the global strain condition in Eq. 2 that is directly prescribed by the boundary
condition Vz.

3. Parametric sensitivity study

Equivalent strain and stress triaxiality states are considered in most models from literature.
Material parameters are considered in the analytical and semi-empirical models. However, there is
at present a lack of models being able to consider geometrical aspects of the voids, although it was
qualitatively shown as a key parameter (Lee and Mear, 1994; Saby et al., 2013). Geometry is thus
mainly addressed within this work.

A wide campaign of FE simulations at the RVE scale was de�ned and is presented in this
section. The main objective is thus to clearly identify the parameters with �rst-order in�uence on
void closure.

First, thirteen ellipsoids were de�ned using di�erent orientations and the e�ect of spatial orien-
tation was observed. Then, seven various ellipsoidal geometries were de�ned using various aspect
ratios in order to study the e�ect of geometry for three key orientations. The e�ect of mechani-
cal state was then studied for various geometries. For each geometrical case, eight di�erent stress
triaxiality ratios were successively applied on the RVE over the range TX = [−1, 0]. This range
was previously identi�ed as representative of most hot forging and hot rolling processes, based on
a preliminary study of process simulations (Saby, 2013). The in�uence of material parameters was
also studied in terms of strain hardening/softening and strain-rate sensitivity.

The Hansel-Spittel law (Eq. 1) was used with constants that are typical for the behaviour of hot
steels. The stress�strain curve obtained in the given mechanical conditions is illustrated in Fig. 4.

3.1. Sensitivity to void orientation

Let us de�ne the canonical basis ( #�ex,
#�ey,

#�ez), see Fig. 1. The three principal vectors of deforma-
tion ( #�e1,

#�e2,
#�e3) can be obtained by diagonalizing the strain-rate tensor. According to the boundary

conditions that are applied on the RVE (see Fig. 3), the main compression direction systematically
coincides with the z-axis. The three principal vectors for the void geometry ( # �u1,

# �u2,
# �u3) in Fig. 1

are de�ned as the eigenvectors of the void's inertia matrix.
The orientation of a void is de�ned with respect to the main compression direction #�e1, using

parameters (p1, p2, p3) such as:
p1 = ( ~u1. ~e1)2,

p2 = ( ~u2. ~e1)2,

p3 = ( ~u3. ~e1)2,

(6)
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Figure 4: Stress�strain curve of the the material used for the calibration (Eq. 1).

This de�nition veri�es p1 + p2 + p3 = 1.
In Fig. 1, the particular con�guration (1, 0, 0) is illustrated, meaning that the principal direction

~u1 of the ellipsoid is colinear with the principal deformation direction ~e1.
Several orientations were de�ned in order to study the in�uence of orientation on void closure.

A given ellipsoid of dimensions r2/r1 = 2 and r3/r1 = 1.5 was used. The cases presented in Fig. 5
and 6 were obtained by rotating the void around the ~ey axis and the ~ex axis, respectively.

Angle (degrees) 0 30 45 60 90

~ez

~ey~ex

Parameters (p1, p2, p3) (1, 0, 0) (0.75, 0, 0.25) (0.5, 0, 0.5) (0.25, 0, 0.75) (0, 0, 1)

Figure 5: Various ellipsoids, obtained by rotation around ~ey.

Angle (degrees) 0 30 45 60 90

~ez

~ey~ex

Parameters (p1, p2, p3) (1, 0, 0) (0.75, 0.25, 0) (0.5, 0.5, 0) (0.25, 0.75, 0) (0, 1, 0)

Figure 6: Various ellipsoids, obtained by rotation around ~ex.

The void volume evolutions for each series of cases are presented in Fig. 7. Void volume is
expressed as V/V0, where V is the current measured volume in the RVE and V0 its initial value. The
orientation is given using the couple of values (p1, p2), since p3 can be deduced from p3 = 1−p1−p2.

From the curves, it can be seen that orientation has a signi�cant in�uence on void volume
evolution. Three particular cases can be pointed out: the case (p1, p2) = (1, 0), the case (p1, p2) =
(0, 1) and the case (p1, p2) = (0, 0). Each case corresponds to a compression along ~u1, ~u2 and ~u3,
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respectively. The curves indicate that compression along ~u1 involves the fastest void closure, as
the void is compressed along its smallest dimension r1. On the contrary, compression along ~u3

involves the slowest void closure, as compression is made along the void's longest dimension r3.
These two cases can be seen as upper and lower bounds for these given ellipsoid dimensions. Void
evolution under compression along ~u2, as well as for any other orientation, are naturally between
these bounds.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
ε̄

0.0

0.2

0.4
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1.0

V
/
V
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(p1 ,p2 ) =(0.93,0.0)

(p1 ,p2 ) =(0.75,0.0)

(p1 ,p2 ) =(0.5,0.0)

(p1 ,p2 ) =(0.25,0.0)

(p1 ,p2 ) =(0.07,0.0)

(p1 ,p2 ) =(0.0,0.0)

(a) Rotation around ~ey (p2 = 0)
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(p1 ,p2 ) =(0.93,0.07)

(p1 ,p2 ) =(0.75,0.25)

(p1 ,p2 ) =(0.5,0.5)

(p1 ,p2 ) =(0.25,0.75)

(p1 ,p2 ) =(0.07,0.93)

(p1 ,p2 ) =(0.0,1.0)

(b) Rotation around ~ex (p3 = 0)

Figure 7: In�uence of orientation parameters.

3.2. Sensitivity to void's aspect ratios

The upper and lower bounds obtained previously using a given ellipsoid evidently depends on
the initial geometry. In order to assess the in�uence of geometry on these bounds, several ellipsoids

were de�ned according to various aspect ratios. The aspect ratios are de�ned by
(
r3
r1
, r2r1

)
.

Various aspect ratios were used and are presented in Fig. 8 (using the orientation (p1, p2) =
(1, 0)). Ellipsoids A and B are prolate, since r1 = r2 < r3. Ellipsoids C and D are oblate, since
r1 < r2 = r3. Ellipsoids E and F are de�ned such as r1 < r2 < r3. For each ellipsoid, the RVE
was generated and identical deformation conditions were applied in order to obtain void volume
evolutions along the three principal directions of each ellipsoid.

Sphere Ell-A Ell-B Ell-C Ell-D Ell-E Ell-F~ez

~ey~ex (
r3
r1
, r2r1

)
=(1,1) (2,1) (4,1) (2,2) (3,3) (2, 1.5) (4,3)

Figure 8: Various ellipsoids with given aspect ratio
(

r3
r1
, r2
r1

)
, for (p1, p2) = (1, 0).

The void volume evolutions are given in Fig. 9. In the case of ellipsoids A, B, C and D, two
of the three curves (corresponding to the three orientations) are superimposed. This is due to
the particular symmetry of such geometries. For the prolate ellipsoid A, identical behaviours are
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obtained for compressions along the ~u1 and ~u2 axes. This result is observed for the prolate ellipsoid
B as well. For the oblate ellipsoids C, identical behaviours are obtained for compressions along the
~u2 and ~u3 axes. The same behaviour is observed for the oblate ellipsoid D. For ellipsoids E and F,
the closure rates along one direction depends on the geometry.

By comparing the pairs of ellipsoids (A, B), (C, D) and (E, F), it is observed that larger aspects
ratios tend to increase the di�erence in terms of closure rate between the minor axis and the major
axis.

By comparing the triplet of ellipsoids (A, C, E) in the orientation (1, 0), di�erent closure rates
are observed, although their �rst aspect ratio are identical r3r1 = 2. This remark shows that void
closure not only depends on one aspect ratio but on the tridimensional morphology.

3.3. Sensitivity to stress triaxiality ratio

As described in section 2.2, boundary conditions are applied in order to prescribe a constant
stress triaxiality ratio. Void closure was studied under various stress triaxiality ratios and the curves
are presented in Fig. 10.

The curves con�rm that compressive stress states have a favorable e�ect on void closure. This
result is in good agreement with existing models (STB models, analytical models and semi-empirical
models).

3.4. Final stages of closure

When looking at the curves in Fig. 7, 9 and 10, it can be observed that void volume generally
exhibits a slight change of slope at �nal stages. This phenomenon is due to the presence of contact
between internal void surfaces at the �nal stage of closure, as shown in Fig. 11. This phenomenon
was also observed by Zhang et al. (2009) for spherical voids.

The change of slope also depends on the void's morphology. It remains moderate for spherical
and ellipsoidal voids but might increase in the case of very tortuous voids (Saby et al., 2013). Nev-
ertheless, for most industrial cases,although the use of equivalent ellipsoids remains unsu�cient to
faithfully represent the �nal behaviour of real void, very satisfactory results were obtained regarding
the void volume evolution over a range V/V0 ∈ [Vcrit, 1]. The value Vcrit may vary between 0.4 and
0.2 depending on the tortuosity of the considered void.

An accurate quanti�cation of the tortuosity would therefore be required in order to address
its e�ect on �nal stages of void closure. In the present work, the sensitivity study to geometrical
parameters is based on FE simulations of RVE containing ellipsoidal voids, and the range of interest
is de�ned as V/V0 = [0.2, 1]. The �nal stages were thus ignored in this work for the construction of
the model.

3.5. Sensitivity to material parameters

A dependence to material behaviour was pointed out in the literature. For visco-plastic materi-
als, Duva and Hutchinson (1984) studied the e�ect of strain-rate sensitivity coe�cient using various
stress triaxiality conditions for the evolution of a spherical void. They used a power-law matrix
without strain hardening σ0 = A ˙̄εm and proposed an analytical dependence of void evolution to
strain-rate sensitivity coe�cient m. The authors stated that the e�ect of strain-rate sensitivity for
such materials can also be applied for the case of strain hardening materials obeying σ0 = Aε̄n.
In fact, the involved mechanisms are the same and the same analysis can be conducted by simply
replacing ˙̄ε by ε̄.
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Figure 9: Void volume evolution for various initial geometries, and for three di�erent orientations.

Ragab (2004) studied the e�ect of strain hardening on void opening, dealing with damage
prediction. The author has shown that strain hardening mainly a�ects the coalescence phenomenon.
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Figure 10: Void volume evolutions of Ell-E, under various values of stress triaxiality ratios.
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ε̄ = 0 ε̄ = 0.1 ε̄ = 0.2 ε̄ = 0.3 ε̄ = 0.35

Figure 11: Evolution of the void Ell-E during closure for the orientation (p1, p2) = (1, 0) under TX = −1/3. The
blue color shows the contact between internal surfaces.

A slight e�ect was observed on void evolution (in this case, growth) as well. This results is in good
agreement with the remark from Duva and Hutchinson (1984).

In this section, the e�ect of material parameters from Eq. 1 are studied on the closure behaviour
of a spherical void.

3.6. In�uence of material consistency

Using an arbitrary strain hardening coe�cient (n = 1), material laws with di�erent values of
A = {1, 2, 10, 100} MPa were compared. The stress-strain curves are plotted in Fig. 12a. The
resulting void volume evolutions are plotted in Fig. 12b. All closure behaviours are identical in all
cases, regardless of the value of A.

A second case was de�ned using another value of strain hardening coe�cient n = 0.1, and for
the values A = {1, 10} MPa. The stress-strain curves and the resulting void volume evolution
are plotted in Fig. 12c and Fig. 12d, respectively. As both void volume evolutions are again
superimposed, the same conclusion can be made. The material consistency A has no in�uence on
void closure. An arbitrary value A = 1 MPa is thus set for the following analyses.

3.6.1. E�ect of strain-rate sensitivity m

In order to focus on the pure e�ect of m, the Hansel-Spittel law can be used with the parameters
n = m4 = ε0 = 0 (see Eq. 1). A rigid perfectly plastic material is obtained, such as the one used
in the analytical solutions of Duva and Hutchinson (1984) and the semi-empirical model of Zhang
et al. (2009).

Within this work, due to convergence di�culties when using rigid perfectly plastic behaviour
(n = 0) in FORGE (2011), the value n = 0.01 was used instead. Several values of m were de�ned
on the range [0.01, 1] and the resulting void volume evolutions are plotted in Fig. 13.

The curves show a signi�cant in�uence of m on void closure behaviour. The results are in rather
good agreement with the values obtained from the model of Zhang et al. (2009).

Although the e�ect is signi�cant on the whole tested range m = [0.01, 1], the values of m for
hot metals rarely exceed m = 0.25. Over the range m = [0.01, 0.2], the e�ect of m on void volume
evolution remains moderate.

3.6.2. E�ect of strain hardening/softening n

In order to study the pure e�ect of strain hardening n, the Hansel-Spittel equation is used with
the parameters m = m4 = ε0 = 0. Several values of n over the range [0.01, 1] were de�ned to cover
a large variety of material behaviours.

Softening behaviour can be introduced in the Hansel-Spittel law using negative values of n.
Another case with the values (n,m4) = (−0.1,−0.001) was thus added in order to qualitatively
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Figure 12: E�ect of material consistency A on void volume evolution, under ˙̄ε = 1s−1 and TX = −1/3, for di�erent
values A = {1, 2, 10, 100} MPa, using n = 1 in (a,b) and using n = 0.1 in (c,d).
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Figure 13: E�ect of strain-rate sensitivitym on void volume evolution, using n = 0.01 under ˙̄ε = 1s−1 and TX = −1/3.

represent a material with softening behaviour. Note that in this particular case, a non-zero value of
m4 must be set in order to avoid the presence of an in�nite value of σ0 at ε̄ = 0. It was veri�ed that
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the introduction of the non-zero value of m4 has no signi�cant impact on the material behaviour.
Although this particular case may not physically represent a typical hot metal behaviour, it is
a simple qualitative example exhibiting a negative slope of the stress�strain curve that is easily
comparable to the cases de�ned above.

The stress-strain curves are presented in Fig. 14a and illustrate the large variety of material
behaviours that is considered. The resulting void volume evolutions are plotted in Fig. 14b.
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Figure 14: E�ect of strain hardening on the evolution of a spherical void, using strain-rate sensitivities m = 0 under
˙̄ε = 1s−1 and TX = −1/3 (∗for negative strain hardening values, the value m4 = −10−3 is used).

The curves in Fig. 14b for various values of n are roughly identical to the ones in Fig. 13 for
various values of m. As mentioned by Duva and Hutchinson (1984), the e�ect of strain hardening
and the e�ect of strain-rate sensitivity are driven by the same mechanisms. The resulting in�uence
of n can therefore be used for the one of m and vice-versa.

Fig. 14b also indicates that strain hardening has a signi�cant e�ect on void volume evolution on
the tested range n = [−0.1, 1]. A di�erence of about 40% was measured in terms of void volumes
at ε̄ = 0.4, between the cases n = −0.1 and n = 1. This di�erence tends to decrease at the �nal
stages, as the slope drops due to internal contact.

The e�ect of internal contact is illustrated in Fig. 15. In the case of a linear material n = 1, the
void's shape remains ellipsoidal throughout the deformation. When reducing strain hardening n,
the curvature is changed and contact between internal surfaces appears earlier. This e�ect induces a
faster void closure at the beginning, and, on the contrary, reduces the �nal slope to complete closure.
However, it is noteworthy that the required deformation for complete closure is comparable for all
cases.

The values of strain hardening for hot metal rarely exceed the value n = 0.2. The di�erence in
terms of void volume at ε̄ = 0.4 reduces to about 15% over the range n = [−0.1, 0.2]. In the case
of hot metal forming, the e�ect of strain hardening/softening is thus signi�cantly lower than the
e�ects of void geometry or stress triaxiality ratio.

As a consequence, the e�ect of strain-rate sensitivity m and of strain hardening/softening n are
considered as second-order parameters and will not be addressed in the prediction model presented
in this paper.
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(a) n = 1 (b) n = 0.1

(c) n = 0.01 (d) n = −0.1

Figure 15: Cutting plane illustrating the von Mises equivalent stress �eld, for an initially spherical void at ε̄ = 0.4,
under ˙̄ε = 1s−1, TX = −1/3 and for di�erent values of strain hardening coe�cient n.

4. Prediction model for void closure

This section presents the construction steps for the new prediction model for void closure.
First, the choice of an analytical function that is able to model void closure as a function of
equivalent strain is presented. Then the dependence to void orientation is quantitatively studied in
order to extend the analytical function to any orientation of ellipsoid (for a given ellipsoid). The
dependence to aspect ratios is then quantitatively studied in order to extend the analytical function
to any ellipsoid (geometry and orientation). Finally, the dependence to stress triaxiality ratio is
quantitatively studied in order to extend the analytical function to any ellipsoid and to any stress
triaxiality ratio. The �nal equation is veri�ed using four geometry-equivalent ellipsoids (obtained
from real observations).

The analytical functions are calibrated using the RVE simulations from the campaign presented
in the previous section, using regression analysis. The regressions accuracy is systematically il-
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lustrated using the R2�correlation coe�cient. The �nal di�erence that is obtained between the
calibrated prediction model and the reference states (from RVE simulations) is given using the
L2�norm.

4.1. Choice of an analytical function

A relationship between void volume and equivalent strain is sought here. According to the
parabolic aspects of the curves obtained in the previous section for various geometries and under
various conditions, a second order polynomial function is proposed. The analytical function can be
expressed as:

V/V0 = A+Bε̄+ Cε̄2. (7)

where A, B and C are �tting parameters. The initial condition leads to A = 1. This expression
can be reduced to a linear expression:

V/V0 − 1

ε̄
= B + Cε̄, (8)

in which the two coe�cients B and C can be �tted using linear regression analysis. This is of great
interest regarding the large quantity of parameters to be assessed within this study.

As pointed out in the previous section, the �nal void evolution may not be representative of
void closure in the general case, as it is driven by the particular ellipsoidal shape. As a consequence,
interest is focused on the range V/V0 = [0.2, 1]. Values below the threshold value 0.2 will therefore
be ignored in the regression analysis (see example in Fig. 16). The beginning of the curves is ignored
as well due to the presence of a vertical asymptote at ε̄ = 0 on the linearized curves, and in order
to accurately capture the linear evolution using linear regression analysis.

4.2. Dependence to orientation

For all orientation cases, the void volume evolutions were �tted using linear regression analysis.
It is illustrated for several particular orientations in Fig. 16. Values of B and C coe�cients were
obtained with very good correlation (using R2−correlation coe�cients). The values for B and C
are plotted with dots in Fig. 17 versus orientation parameters p1 and p2. Each coe�cient exhibits a
linear dependence to orientation parameters. Linear regression is thus used to �t this dependence
and R2−correlation showed very good values as well. As a consequence, the following expression is
proposed:

B = p1B
~u1 + p2B

~u2 + p3B
~u3

C = p1C
~u1 + p2C

~u2 + p3C
~u3
. (9)

In this equation, B ~ui and C ~ui are geometry-dependent parameters that correspond to void evolution
under compression along ~ui. They can be obtained using the three particular cases (p1, p2) = (1, 0),
(p1, p2) = (0, 1) and (p1, p2) = (0, 0), respectively. According to the analytical expression in Eq. 9,
for a given ellipsoid, knowing its volume evolution along its three principal directions is su�cient
for predicting its volume evolution in any random orientation. The values of B ~ui and C ~ui are thus
obtained from the regression shown in Fig. 16.

Based on B ~ui and C ~ui coe�cients that were obtained with Ell-E for (p1, p2) = {(1, 0); (0, 1);
(0, 0)}, the validity of Eq. 9 was checked using randomly oriented ellipsoids. Four orientations were
de�ned using successive rotations around ~ex and ~ey. The resulting pairs of orientation parameters
(p1, p2) are (0.56, 0.19), (0.19, 0.56), (0.19, 0.06) and (0.06, 0.19). The model was computed using
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Figure 16: Curve �tting (with R2−correlation factor) performed on RVE results (Ell-E for the three principal
orientations) by linear regression using the linearized expression (Eq. 8).
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Figure 17: In�uence of orientation parameters on B and C coe�cients.

Eqs. 7 and 9 for each orientation. A comparison is given in Fig. 18, together with bound cases (1, 0)
and (0, 0). For the six curves, a very good agreement was obtained between the model and the
values obtained from RVE simulations. The average L2�norm error was computed over the whole
deformation, between the RVE-values and the model in Eq. 9, and remains under 3% for all cases.
As a consequence, the model is suitable to take into account the e�ect of orientation. Together
with Eq. 7 the model is suitable for predicting void evolution for any orientation.

4.3. Dependence to geometry

The dependence to aspect ratios is now studied using the same methodology as described above.
Void evolution coe�cients B and C are obtained from curves in Fig. 9 using linear regression
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Figure 18: Void volume evolution obtained using RVE simulations (dots) and model predictions (lines) given by
Eqs. 7 and 9, for various orientations, with average L2-norm error.

analysis. The linearized form of void volume evolution is used as well, such as shown in Fig 19.
The R2−correlation coe�cient was excellent again, meaning that Eq. 7 is suitable to model closure
of ellipsoidal voids.

For each ellipsoid, three coe�cients B ~ui (and C ~ui) were obtained, respectively along their three
principal directions i = {1, 2, 3}. The values obtained for B ~ui (and C ~ui) are plotted in Fig. 20
versus a geometry parameter de�ned as

γi =
3
√
V0

ri
. (10)

This parameter represents an apparent geometry parameter according to the ~ui direction. It is a
non-dimension parameter that considers tridimensional features of the geometry with respect to
each principal direction. For example, in the case of the �rst principal direction ~u1, the parameter
can be expressed as:

γ1 =
3
√
V0

r1
=

3

√
4π
3 r1r2r3

r1
=

3

√
4π
3 r1r2r3

r3
1

= 3

√
4π

3

r2

r1

r3

r1
. (11)

The γ1 parameter is proportional to the cubic root of the product of aspect ratios. In this manner,
this parameter contains the information relative to the void's tridimensional geometry. This pa-
rameter was chosen as it provided a bijective relation with the B ~ui and C ~ui coe�cients, regardless
of the value of i.
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As expected, due to axisymmetrical features, it was veri�ed that for prolate ellipsoids, B ~u1 =
B ~u2 and C ~u1 = C ~u2 . Regarding oblate ellipsoids it was found that B ~u2 = B ~u3 and C ~u2 = C ~u3 .
Finally, for the spherical void B ~u1 = B ~u2 = B ~u3 and C ~u1 = C ~u2 = C ~u3 .
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Figure 19: Curve �tting (with R2−correlation factor) performed using RVE results for various geometries and
orientations (given in Fig. 9), by linear regression using the linearized expression (Eq. 8).

On Fig. 20, all cases are presented on the same plot in order to establish a unique relationship
b(γi) (and c(γi)) between void closure and the apparent geometry parameter. This is done because,
for a given apparent geometry parameter, the same mechanisms are involved whether the apparent
geometry corresponds to the �rst, the second or the third principal direction. Eq. 9 thus becomes:

B = b(γ1)p1 + b(γ2)p2 + b(γ3)p3,

C = c(γ1)p1 + c(γ2)p2 + c(γ3)p3.
(12)

From Fig. 20, a bijective monotonously decreasing evolution was observed2. A quadratic poly-
nomial function is proposed such that:

b(γi) = b0 + b1γi + b2γ
2
i ,

c(γi) = c0 + c1γi + c2γ
2
i .

(13)

2The values in y-abscissa were intentionally erased for con�dentiality reasons.
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The values plotted in Fig. 20 were used to identify coe�cients b0, b1 and b2 (and c0, c1 and c2)
using polynomial regression analysis. The R2−correlation factor is very good again.
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Fit (R2 =0.9911)
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γi

0
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Fit (R2 =0.964)

Figure 20: In�uence of the geometry parameter γi on B and C coe�cients, obtained from �tting for all cases given
in Fig. 19 (common legend).

4.4. Dependence to stress triaxiality ratio

Eq. 13 was obtained for the particular value TX = −1/3, i.e. under uniaxial compression (using
the boundary conditions σx = σy = 0).

In order to quantitatively assess the in�uence of stress triaxiality ratio and to extend Eq. 13,
the analysis was repeated under various stress triaxiality ratios over the range TX = [−1, 0]. The
evolution of b(γi) and c(γi) (i.e. the dependence to geometry) is plotted3 for various stress triaxiality
ratios in Fig. 21. The curves exhibit a rather linear dependence to the geometry parameter γi for
low compressive stress states. Non-linearity occurs when decreasing the value of TX .

In Fig. 21, it can be seen that the �tting accuracy also decreases for compressive stress triaxiality
ratios. The case that is plotted using a red square exhibits rather large discrepancy. It corresponds
to Ellipsoid B when it is deformed perpendicularly to its longest direction (see Fig. 8).

The coe�cients bi and ci (i ∈ {0, 1, 2}) were obtained using polynomial regression analysis for
each case and are plotted3 in Fig. 22.

A linear dependence is observed for the bi coe�cients over the whole range of TX . For the ci
coe�cients, a linear dependence is observed as well on the range −0.4 ≤ TX ≤ 0, and a quadratic
dependence is observed on the range −1 ≤ TX ≤ −0.4. The regression was therefore split and
two batches of calibration constants were obtained, one for each range of TX . The good values of
R2�correlation coe�cients indicate that the chosen analytical functions are suitable to model these
dependences.

3The values in y-abscissa were intentionally erased for con�dentiality reasons.

19



0 1 2 3 4 5

0

B (RVE)

Fit (R2 =0.952

0 1 2 3 4 5
γi

0

C (RVE)

Fit (R2 =0.9696

(a) TX = −0.04

0 1 2 3 4 5

0

B (RVE)

Fit (R2 =0.9702

0 1 2 3 4 5
γi

0

C (RVE)

Fit (R2 =0.975

(b) TX = −0.13

0 1 2 3 4 5

0

B (RVE)

Fit (R2 =0.9911)

0 1 2 3 4 5
γi

0

C (RVE)

Fit (R2 =0.964)

(c) TX = −0.33

0 1 2 3 4 5

0

B (RVE)

Fit (R2 =0.9916

0 1 2 3 4 5
γi

0

C (RVE)

Fit (R2 =0.9584

(d) TX = −0.39

0 1 2 3 4 5

0

B (RVE)

Fit (R2 =0.98

0 1 2 3 4 5
γi

0

C (RVE)

Fit (R2 =0.9459

(e) TX = −0.57

0 1 2 3 4 5

0

B (RVE)

Fit (R2 =0.9307

0 1 2 3 4 5
γi

0

C (RVE)

Fit (R2 =0.9248

(f) TX = −0.94

Figure 21: Comparison, for several values of stress triaxiality ratio TX , of the in�uence of the geometry parameter
γi on B and C coe�cients, obtained from curve �tting (see legend for the dots in Fig. 19).
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Figure 22: In�uence of stress triaxiality on the bi and ci coe�cients (i ∈ {0, 1, 2}) from Eq. 13.

The �nal dependence to γi and to stress triaxiality ratio TX can be written as:

b(γi) = b00 + b10γi + b20γ
2
i +TX

(
b01 + b11γi + b21γ

2
i

)
,

c(γi) = c00 + c10γi + c20γ
2
i +TX

(
c01 + c11γi + c21γ

2
i

)
+ T 2

X

(
c02 + c12γi + c22γ

2
i

) (14)

where bij and cij are calibration constants.
The coe�cients B and C are called closure coe�cients. In fact, B can be seen as the initial

closure coe�cient, providing the initial slope of the void volume evolution at ε = 0. The coe�cient
C can be seen as a deformation-dependent coe�cient, translating the change of shape during defor-
mation. This is in good agreement with the results of Lee and Mear (1994). The authors pointed
out the necessity to consider the change of shape of a void during deformation.

In the present work, the coe�cient is calibrated under constant loadings. The value of C thus
contains the information of the change of shape during a uniform loading.

For a better prediction, the current evolution of the void must be known throughout the de-
formation. For a single pass process, this assumption is correct as the material is generally loaded
along one main axis.

4.5. Final expression of the prediction model

Finally, the crossed dependences to orientation, to geometry and to stress triaxiality ratio can
be summarized in a single expression:
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V

V0
= 1 +Bε̄+ Cε̄2 with


B =

3∑
i=1

2∑
j=0

1∑
k=0

bjk(TX)k(γi)
jpi,

C =
3∑
i=1

2∑
j=0

2∑
k=0

cjk(TX)k(γi)
jpi.

(15)

5. Validation of the prediction model

In order to verify the reliability of the proposed model, predicted evolutions are compared to the
void volume evolutions that were measured for several ellipsoidal voids, under various mechanical
conditions. Four morphology-equivalent ellipsoids were obtained from tridimensional observations
of real voids, such as presented in previous work (Saby et al., 2013). The RVEs containing these
ellipsoidal voids are illustrated in Fig. 23. Various stress triaxiality values are prescribed on the
range TX = [−1, 0].

Dimensions (mm) Orientation
r1 r2 r3 p1 p2 p3

Ellipsoid A1 1.35 1.62 2.36 0.97 0.01 0.02
Ellipsoid A2 1.20 1.42 2.10 0.67 0.10 0.23
Ellipsoid A3 1.34 1.63 3.17 0.88 0.21 0.01
Ellipsoid A4 0.47 1.61 3.97 0.20 0.22 0.58

Table 1: Geometrical features of the ellipsoids used for the validation of the calibration.

Void volume evolution is thus plotted for each ellipsoid in Fig. 24. For each plot, the predicted
volume evolution is plotted as well. It is computed using Eq. 15, according to the geometrical
features given in Table. 1 and the prescribed stress triaxiality ratio TX .

The objective here is to assess the ability of the model to predict the behaviour of ellipsoids.
This is directly related to the e�ciency of the chosen model, as well as the calibration step.

The aspect ratios of ellipsoid A1 can be obtained from its dimensions and are (r3/r1) = 1.75
and (r2/r1) = 1.20. The orientation parameter p1 is close to unity and p2 ≈ p3 ≈ 0. These values of
orientation indicate that the principal vector of the void # �u1 is colinear with the main deformation
direction #�e1 . In other words, the void is mainly deformed along its smallest dimension r1. As a
consequence, according to Eq. 12, the closure coe�cients b and c are respectively equal to b(γ1)
and c(γ1).

The L2�norm error was computed between the model and the result from RVE simulation. For
all tested values of stress triaxiality ratio, the error remains lower than 5%. In the case of Ellipsoid
A1, the model is capable of predicting its void volume with very good accuracy.

The aspect ratios of ellipsoid A2 are (r3/r1) = 1.75 and (r2/r1) = 1.18. Note that, by chance,
the values are roughly identical to the ones of ellipsoid A1. Regarding its orientation, ellipsoid A2
is slightly tilted compared to ellipsoid A1. As a consequence, the values of closure coe�cients B
(respectively coe�cients C) are given by a linear combination of b(γ1), b(γ2) and b(γ3) (respectively
c(γ1), c(γ2) and c(γ3)), according to Eq. 12.

For the lowest triaxiality ratios, the prediction is excellent, with a L2�norm error about 3%.
When increasing the value of stress triaxiality, the prediction slightly underestimates void closure,
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Figure 23: Initial RVEs containing morphology-equivalent ellipsoids.

the L2�norm error remaining lower than 9% over the whole range of TX . The obtained error is
mainly due to the fact that the closure rates are relatively small for low compressive states. When
looking at Fig. 21, the relative error that is made by regression for the value of B is higher for the
value TX = −0.04 than for the value TX = −0.94, due to the fact that the values are close to zero
when TX tends to zero. As a consequence, the error made on the value of B is visible on the initial
slope of the volume evolutions in Fig. 24.

In Fig. 25, the void volume predictions obtained from the model of Zhang et al. (2009) and from
the STB model are plotted for ellipsoid A2 and the L2�norm error is given. Note that the use of the
Zhang model requires the de�nition of a material parameter m∗. The authors provide calibration
coe�cients for a discrete series of values m∗ = {0.01, 0.1, 0.2, 1/3, 0.5, 1}. Since the model was
theoretically developed for viscoplastic materials without strain hardening, the value of m∗ may
not be strictly de�ned in the present case, since a viscoplastic material containing strain hardening
was used in the present FE simulations. Among all possible values of m∗, the value that provided
the lowest error between the Zhang model and the FE simulations was retained (m∗ = 0.2) and the
results are illustrated in Fig. 25a.

In the Zhang model, the initial slope at ε̄ = 0 shows good agreement with FE-data. However,
this agreement decreases when deformation increases. Using the Zhang model, the prediction leads
to a L2�norm error on the range [7�17]%, while it is on the range [3�9]% for the new proposed
model. The error is mainly due to the analytical function that is expressed to model the void
volume evolution during deformation.
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Figure 24: Illustration of the L2�norm error made by the prediction model on the actual closure of an ellipsoidal
void.
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Figure 25: Illustration of the L2�norm error made by existing models for the prediction of Ellipsoid A2.
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In the case of the STB model, the analytical function that is used is a linear expression. Ac-
cording to the FE-data, this linear expression is clearly inadequate when deformation increases.
The resulting L2�norm error rises over 100%.

The aspect ratios of ellipsoid A3 are (r3/r1) = 2.37 and (r2/r1) = 1.22. In this case, the second
aspect ratio is relatively similar to the previous ones as well. However, the �rst aspect ratio is
larger, indicating that the void is more elongated along its third principal direction. Its orientation
parameters exhibit the particular value of p3 ≈ 0, meaning that the third principal direction is
perpendicular to the z-axis (the deformation axis). The behaviour of the void is thus driven by a
combination of the closure coe�cients b(γ1) and b(γ2) (and c(γ1) and c(γ2)), only.

The L2�norm error remains lower than 5%. The accuracy of the prediction for ellipsoid A3 is
comparable to the one obtained for ellipsoid A1.

The aspect ratios of ellipsoid A4 are (r3/r1) = 8.45 and (r2/r1) = 3.43. The orientation
parameters indicate that the void does not show any particular orientation.

Regarding Eq. 14, the apparent geometrical parameters γ1 = 4.95 and γ3 = 0.59 of ellipsoid A4
are situated at the boundaries of the range of tested values for the calibration (see Fig. 21). The
accuracy of the regression is therefore lower for such values, and the resulting error is visible on the
�nal prediction of void volume in Fig. 24d. This case can therefore be considered as an extreme
case for the validation of the model.

The same comment can be made regarding the fact that the maximum discrepancy is obtained
for low compressive values of stress triaxiality ratio. The L2�norm error rises to 17% in the case
TX = 0. For more compressive triaxiality ratios, the error remains rather low, with the best
prediction obtained for the value TX = −0.58, with an error of about 3%.

6. Conclusions

Based on a wide campaign of FE simulations at the RVE-scale, the signi�cant in�uence of
geometry and orientation of a void on its closure behaviour was demonstrated. The in�uence of
stress state (using the stress triaxiality ratio on the range [−1, 0]) was also veri�ed. These crossed
in�uences were quanti�ed and a new prediction model for void closure was proposed.

Four ellipsoids were used as validation cases. Their geometry and orientation was obtained from
tridimensional observations of real industrial voids. The model provides very good prediction for all
cases under several stress states. The prediction error is signi�cantly lower than the error obtained
from the models from literature (based on spherical voids).

The chosen analytical expression is thus suitable for an accurate prediction of void closure for an
ellipsoid of any geometry, in any orientation and under any stress triaxiality ratio. This model can
easily be implemented as a post-processing subroutine and linked with process simulation. Process
design can consequently be performed with greater accuracy. This is the object of a forthcoming
publication.

Further developments would also be necessary to keep track of void geometry during deforma-
tion. This additionnal information would show great interest regarding multipass processes.
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