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Introduction

TATB (1,3,5-triamino-2,4,6-trinitrobenzene) is an energetic molecular crystal that
combines high energetic performance and good thermal stability. By adding a small
amount of a polymer acting as a binder between TATB grains, it is possible to obtain
exceptionally safe explosives displaying good mechanical properties. A first step toward
the understanding of the influence of the microstructure on the mechanical properties of
TATB is the development of stochastic models to describe the microstructure of the
material.

Materials and Methods

In a previous work, Ambos et al. [1] developed a model based upon Johnson-Mehl
tessellations [2]. This model afforded curved grain boundaries, and therefore a certain
non-convexity of grains. However, it did not reproduce their elongated character. To
improve this aspect, we rely on an anisotropic Johnson-Mehl model to simulate the TATB
microstructure. The Johnson-Mehl tesselation is a sequential version of the Voronoi
tessellation, where nucleation germs are implanted sequentially with time. All classes
grow then isotropically with the same rate, and the growth of crystal boundaries is
stopped when they meet. All Poisson points falling in an existing crystal are removed.
From a mathematical perspective, a Johnson-Mehl tessellation is constructed from a
sequential Poisson point process where the points x;, i = 1, .., N are implanted
sequentially at a time t;, i = 1, .., N. The classes C;, i = 1, .., N corresponding to the
points x;, i = 1, .., N are defined by
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In our study, we introduce a modified version of the Johnson-Mehl model. Our aim is to
account for the shape anisotropy of the grains. To that end, we attach to each implanted
point a random direction taken on the unit sphere S? which will be referred to as
principal growth direction, thus forming a marked point process P in R*xS3xR+. All points
of P are then implanted sequentially with time. Once a point is implanted, the
corresponding class grows with an orientation-dependent velocity, defined for all vector
u of the unit sphere S? by

Vu)=u+ K-1)(u.p)p

where p denotes the principal growth direction and u.p is the scalar product between
vectors u and p. K is a parameter introduced to model grain anisotropy.

Results and Discussion

Overall, the model is characterized by two parameters, namely the intensity 6 of the
nucleation process and the anisotropy factor K. In our study, the sample image of the
material provides us with a bidimensional section of the tridimensional microstructure.
Estimating the parameters of the model is thus a complicated task, especially since in
practice, stereological properties of the anisotropic Johnson-Mehl model are hardly
tractable analytically [3, 4]. As a consequence, we rely on the minimum contrast method
to perform the parameters estimation [5]. Our approach consists in selecting the model
parameters that minimize the difference between the granulometry and the distribution
of eccentricities of the grains of the tessellation as measured on the sample image and
on the random realizations. We rely on the Nelder-Mead algorithm [6] to perform the
parameters identification. The optimal couple of parameters is found to be 6 = 5.0 x 10”7
um3/s and K = 2.24 and is illustrated in Figure 1. Figure 2 compares the predicted and
experimental two-dimensional grain size and elongation distributions.
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Figure 1. Experimental (left) and simulated (right) images of a slice of the tri-
dimensional crystaline microstructure.
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Figure 2. Granulometries (left) and grains eccentricities distribution (right) of the
simulated microstructures for distinct models, compared with the one measured on the
sample image of the microstructure.

Conclusion

In this study, we developed a stochastic model aimed at describing the complex
crystalmicrostructure of TATB crystal. The model is based upon a Johnson-Mehl
tessellation with anisotropic distance, which allows us to capture the grain anisotropy.
The result appears quite satisfactory, except for the smallest grain fraction, say below 10
um.
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