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Abstract

Medium-range forecasts (one day to two weeks) of solar radiation are commonly assessed with a single forecast at a given location.

In this paper, we forecast maps of surface solar irradiance, using ensembles of forecasts from the THORPEX Interactive Grand

Global Ensemble (TIGGE) with a 6-h timestep. We compare our forecasts with observations derived from MeteoSat Second

Generation (MSG) and provided by the HelioClim-3 database as gridded observations over metropolitan France. First, we study

the ensembles from six meteorological centers. Second, we use sequential aggregation to linearly combine all the forecasts with

weights that vary in space and time. Sequential aggregation updates the weights before any forecast, using available observations.

We use the global numerical weather prediction from the European Center for Medium-range Weather Forecasts (ECMWF) as a

reference forecast. The issue of spatial resolution is discussed because the low resolution forecasts from TIGGE are compared to

high resolution irradiance estimated from MSG data. We found that the TIGGE ensembles are under-dispersed but rather different

from one to another. Aggregation decreases the forecast error by 20%, and produces a more realistic spatial pattern of predicted

irradiance.
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1. Introduction

Solar radiation forecasts and especially global horizontal ir-

radiance (GHI) forecasts are needed for the integration of pho-

tovoltaic power (PV). The increasing installed capacity of pho-

tovoltaic power requires that solar radiation forecasts be always

more accurate in terms of spatial and temporal resolutions.

Many meteorological centers provide solar radiation fore-

casts with two strategies: either a single deterministic forecast,

or ensemble forecasts generally with coarser resolution. Deter-

ministic forecasts have been extensively studied for solar and
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photovoltaic forecasts. Inman et al. (2013) and Espinar et al.

(2010) review numerous modeling techniques to generate solar

and PV forecasts from meteorological variables. Deterministic

predictions from various meteorological centers are compared

by Lorenz et al. (2009) and Perez et al. (2013) in a broad range

of sites. In the previously cited papers, some forecasting tech-

niques resort to combinations of forecasts. These combinations

are derived from a regression over a moving time-window and

are applied to a few members.

Vernay et al. (2013) listed several available maps of solar ra-

diation deriving from cloud products of satellite observations.

Even though solar radiation forecasts cover large areas, theyEmail address: jean.thorey@inria.fr (J. Thorey) 



are usually compared to ground measurements (PV or solar) or

to satellite observations only at measurement sites (e.g., Gautier

et al., 1980, among the firsts). Indeed maps of satellite obser-

vations are not broadly used to assess the accuracy of solar ra-

diation forecasts. Morcrette (1991) used satellite observations

as reference to assess the performance of numerical weather

predictions (NWP), but not predictions of solar irradiance (e.g.,

short-wave radiation). Perez et al. (1997) studied the interac-

tions between satellite observations and measurement sites with

respect to the distances between sites. Due to the variety of er-

ror causes, Thelen and Edwards (2013) restricted the compari-

son between NWP and satellite observations to reflectance for

short-wave radiation. Dehghan et al. (2014) give emphasis on

the spatial resolution of both NWP and satellite data at ground

measurement sites.

Ensemble forecasts are classical in meteorology for any field

with large uncertainty and for uncertainty quantification. How-

ever, no article using ensemble forecast for solar radiation was

found in the literature, despite several conference presentations.

Still, Yokohata et al. (2012) studied climatological ensembles of

top atmosphere radiation and radiation in cloud-free conditions.

In the framework of sequential aggregation, a single fore-

cast is built as a linear combination of the ensemble members.

The weights of the combination may depend on both time and

space. The resulting aggregated forecast is hopefully more

skillful than the ensemble members. Cesa-Bianchi and Lu-

gosi (2006) detail the strong mathematical background of these

methods, which is summarized and tested by Stoltz (2010) and

Mallet et al. (2009); Mallet (2010) on forecasts of respectively

electricity consumption and ozone concentrations.

We propose here to compare the ensemble forecasts of solar

radiation from TIGGE (THORPEX Interactive Grand Global

Ensemble (Bougeault et al., 2010)) and to combine them. The

satellite observations from HelioClim are used in this article

as reference observations. The use of both ensemble forecasts

(from several sources) and satellite observations makes it possi-

ble to generate an aggregated forecast with local combinations

on the spatial grid. The Integrated Forecast System (IFS) from

ECMWF produces our reference forecast.

In Section 2, we describe the TIGGE data sets and we study

the performance of the TIGGE ensembles. The HelioClim

satellite observations are introduced in Section 2.4, along with

a detailed comparison with TIGGE forecasts. Our sequential-

aggregation strategy is introduced in Section 3. It is applied in

Section 4, where the analysis of the results includes the compo-

sition of the ensemble, the spatial patterns in the forecast maps,

the forecast time horizon and the sensitivity to the aggregation

parameters.

2. Analysis of TIGGE solar radiation and HelioClim

database

2.1. Description of TIGGE data

Several meteorological centers provide free-of-charge en-

semble forecasts of solar radiation in TIGGE (Table 1). The

data sets are available on TIGGE with a 2-day delay after the

model ran. Detailed studies of the ensemble forecasts from

TIGGE were achieved on geopotential height (Buizza et al.,

2005), and 850-hPa and 2-m temperatures (Hagedorn et al.,

2012) for example. As far as we know, no such study exists

for solar radiation.

The temporal resolution of TIGGE forecasts is 6 h with time

horizon up to 15 days. Most meteorological centers provide at

least two forecast sets per day. For the sake of clarity and be-

cause of the 6-h timestep of TIGGE forecasts, we focus on one

forecast set per day for each meteorological center. With these

constraints, 6 meteorological centers provide an ensemble:

China Meteorological Administration (CMA), European Cen-

tre for Medium-Range Weather Forecasts (ECMWF), MetOf-
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Center Origin Number of members Run

CMA China 14 2400
ECMWF UE 50 2400
UKMO UK 23 2400
KMA Korea 23 2400
CPTEC Brazil 14 2400
Météo-France France 34 1800

Table 1: Overview of TIGGE ensembles available for solar radiation, with fore-
casts starting from 1800 or 2400 UTC for the following 108 to 360 hours (hori-
zon). In total, there are 158 ensemble members.

fice (UKMO), Korea Meteorological Administration (KMA),

Centro de Previsao Tempo e Estudos Climaticos (CPTEC), and

Météo-France (M.-F.). We name “whole ensemble” the ensem-

ble including all 158 members without consideration of their

origins, as opposed to the 6 TIGGE center ensembles.

While each center ensemble has a native spatial resolution,

our TIGGE data sets are obtained on a common regular grid

with the spatial resolution of 0.25◦ × 0.25◦, which is finer or

close to the native resolutions. The resolution of the TIGGE

data sets is coarser than the 0.125◦ × 0.125◦ resolution of

the ECMWF deterministic forecast. Our study focuses on

Metropolitan France and the surrounding areas for the 0600–

1200 UTC accumulation period of day D with model runs start-

ing at 1800 or 2400 UTC in day D-1. Thus we study the fore-

casts for either 12 h or 18 h of lead time. We do not study daily

radiation but focus on the shortest timestep available in TIGGE.

The flux values from TIGGE are averaged over the 6-h timestep

so that the values of the forecasts for 1200 UTC are expressed

in W m−2 and correspond to the averaged flux between 0600

and 1200 UTC.

The nature of the solar radiation data sets in TIGGE is mostly

net shortwave solar radiation (SSR) as defined for classical me-

teorological fields. Net shortwave solar radiation is the fraction

of the downwards shortwave solar radiation (SSRD) absorbed

by the ground on an horizontal plane. Note that KMA data

are different from the other TIGGE data sets and are SSRD

240
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Figure 1: Annual average of 6-hour forecasts at 1200 UTC in W m−2, for the
KMA ensemble mean in year 2012. The white circles exhibit the locations of
ground observation sites for HelioClim evaluation.

data. In the context of photovoltaic production, we are inter-

ested in SSRD. The well-known global horizontal irradiance

(GHI) refers to SSRD. The albedo coefficient α is the reflec-

tion coefficient of the ground. The albedo defines a relationship

between SSR and SSRD, where the incident flux is divided be-

tween the absorbed flux and the reflected flux. Thus we deduce

that:

SSRD =
SSR
1 − α

. (1)

Depending on the ground surface, the albedo coefficient can

vary in space and time.

2.2. Analysis of the TIGGE ensembles of forecasts

Now we analyze and compare the ensembles of forecasts

over the area spanning 41◦ to 51.50◦ in latitude and −5.50◦ to

10◦ in longitude. Two data sets are used in our study. The main

data set consists of 350 consecutive days starting on 2012-01-

02. The secondary data set is dated from 2011-06-09 to 2011-

09-05 due to data availability and includes only 100 random

locations. The secondary data set is only used as learning data

set. An example of the annual average of the 6-hour forecasts

at 1200 UTC for one center (KMA) is provided in Figure 1, in

order to show the large spatial variability of the average fore-

cast.

We propose two sorting procedures so as to consistently
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No sorting Sorting by center Full sorting

CMA
ECMWF

UKMO
KMA

CPTEC
MeteoFrance

CMA
ECMWF

UKMO
KMA

CPTEC
MeteoFrance
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0.88
0.92
0.96
1.00

Figure 2: Matrices of correlation between members (R2 matrices). Each row and column of the correlation matrices is dedicated to one given member. The rows
and columns appear in the same order. Each matrix entry is the correlation coefficient between the merged data (all timesteps, 100 random locations) of a pair
of members. On the left, the correlations are shown between raw members, as they are retrieved from TIGGE. In the middle, the correlations are computed after
sorting within each center ensemble. On the right, the correlations are obtained after a full sorting of the forecasts.

number the forecasts in time. This step is required for the

weights in our aggregation to be clearly associated with a given

ensemble member and therefore to be meaningful. The two

sorting procedures rely on the rank at each grid point. At any

time and location, the first member of a sorted ensemble always

provides the lowest value, and the last member gives the highest

value. The first sorting procedure is applied to the 158 members

of the whole ensemble, and the second sorting procedure is ap-

plied separately in each center ensemble.

Correlation coefficients between members are computed in

order to quantify the similarities between the members (Fig-

ure 2). In the correlation matrices, the rectangles and squares

materialize some separation between the different ensembles.

Indeed the correlation matrices reveal that the members are es-

pecially close to one another within the same ensemble. In

other words, one member from a given meteorological center

ensemble is more correlated to another member of the same en-

semble than to another member from a different ensemble. The

CPTEC ensemble is very distinguishable due to the extremely

high correlations between its own members and also due to the

low resemblance between its members and the others.

Sorting has generally two effects on the ensembles. First,

the sorted members with close ranks have higher correlations

among them than non-sorted members. Second, the pairs of

members with the lowest correlation coefficient are found be-

tween sorted members of extreme rank.

2.3. Reference performance measures

The strengths and weaknesses of the statistical indicators

commonly used in solar forecasting are developed in Hoff et al.

(2013). The well-known root mean square error (RMSE) and

mean absolute error (MAE) are classical performance indica-

tors. The RMSE of the predictions ŷ with respect to the obser-

vations y over the set S is given by

RMS E =

√
1
|S|

∑
s∈S

(ŷs − ys)2 , (2)

where |S| is the number of elements (cardinality) in S, and s

indexes space or time or both. In case s describes all locations at

one single timestep, the spatial RMSE is computed. The MAE

is calculated in a similar way as

MAE =
1
|S|

∑
s∈S

|ŷs − ys| . (3)
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It is noticeable that the errors ŷs − ys are computed indepen-

dently for each s, hence errors due to geographical or temporal

shifts are not detected as such. In case of missing predictions,

the missing indices are excluded from the set S.

The average observed value is introduced to define relative

indicators; e.g. for the relative RMSE:

rRMS E =
RMS E
1
|S|

∑
s∈S

ys

, (4)

where rRMSE and RMSE are computed over the same set S.

Except for the scores of Table 2, HelioClim is used as the obser-

vation ys. Because our main interest is to provide information

over land and not over sea, all scores and regression coefficients

are given for land locations only.

2.4. Comparison with HelioClim

2.4.1. Description of HelioClim data

Provided by Transvalor (Armines), HelioClim satellite ob-

servations are based on MSG satellite data (Meteosat Second

Generation). The operational version HC3-v4 is used here. The

HelioSat2 method (Rigollier et al., 2004) has been deployed

to generate this HelioClim database (Blanc et al., 2011). The

satellite estimations rely on instantaneous reflectance measure-

ments. Data are acquired every 15 min, converted to an estima-

tion of the incident radiation flux, and averaged over the 15-min

timestep. The spatial resolution of HelioClim over France is

natively between 3 and 5 kilometers; our HelioClim data were

retrieved with a spatial resolution of 1/12◦, which is already

much finer that the resolution of the forecasts.

Our zone of interest includes five BSRN stations (Base-

line Surface Radiation Network) (Ohmura et al., 1998) for

the evaluation of HelioClim performance. The stations are

located in Camborne (United Kingdom), Cener (Spain), Car-

pentras (South France), Palaiseau (North France), and Payerne

Station Bias RMSE MAE

Camborne -1.4 % (-3.3) 10.6 % (25.6) 8.3 % (20.0)
Palaiseau 3.4 % (8.5) 10.7 % (26.9) 8.6 % (21.5)
Payerne -6.9 % (-18.3) 14.4 % (38.3) 10.9 % (29.1)
Carpentras 1.3 % (4.6) 8.3 % (28.9) 6.7 % (23.3)
Cener 2.9 % (9.7) 9.5 % (32.0) 7.6 % (25.6)

Table 2: Evaluation of HelioClim-3 estimation of SSRD compared to in-situ
measurements (daily average of daytime data). The relative scores are given,
followed by the absolute scores in brackets (in W m−2).

(Switzerland), as exhibited in Figure 1. The evaluation results

(Table 2) are computed over several years and show an average

relative RMSE of 10.7% and an average relative MAE of 8%.

In Section 4, we wish to produce our own forecasts based on

the previously described ensembles and we wish our forecasts

to be at the finest available resolution, which is the spatial reso-

lution of our HelioClim data. Consequently our study is carried

out at the resolution of HelioClim. All the forecasts are inter-

polated by bilinear interpolation to reach the same resolution of

1/12◦, for a total amount of 127×187 grid points. On the high-

resolution grid, the forecasts vary spatially slowly compared to

the satellite observations.

2.4.2. TIGGE ensembles and HelioClim

The difference of nature between the HelioClim incident

radiation (SSRD) and the ground-absorbed radiation from

TIGGE (SSR) prevents a direct comparison. Therefore we test

several conversion methods in Appendix A. The method of

linear conversion (lin) based on historical data shows the best

RMSE. This method is used until the end of the section.

The monthly RMSEs are impacted by the seasonal variability

(Figure 3). Solar radiation forecasting is more difficult between

April and July, during the brightest days with large variability.

It is worthy of notice that the ranking of the ensemble means

is steady over time. The ensemble means of KMA and UKMO

(after linear conversion) show better scores than the reference

forecast, while their spatial resolution is natively poorer. An im-

proved forecast, called TIGGE-mean, may be built as the mean
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Figure 3: Monthly RMSEs of TIGGE ensemble means in W m−2, after lin-
ear conversion (lin); (blue: CMA), (green: ECMWF), (red: UKMO), (cyan:
KMA), (magenta: CPTEC) and (yellow: Météo-France). The dashed line is the
score of the reference forecast. The dashed-dotted line is the score of a typical
aggregated forecast (see Section 4.2.3).

of the TIGGE ensemble means (CPTEC excluded) with linear

conversion. The score of the TIGGE-mean lies at 66.9 W m−2,

which is better than any TIGGE ensemble mean.

The same analysis was undertaken with the MAE (not

shown) and reveals similar trends: 54.4 W m−2 (reference fore-

cast MAE), 50.2 W m−2 (UKMO ensemble mean with linear

conversion MAE), 48.0 W m−2 (TIGGE-mean MAE).

We highlight the fact that no center ensemble is steadily the

closest to the satellite observations, whatever the score dis-

crepancy described above. If we track over the consecutive

timesteps the origin of the best member at each location, we

find that this origin changes from one timestep to the next with

a frequency of 75%. Furthermore, the proportion of times and

locations where the best member belongs to a given center is

reported here: reference ECMWF 3%, CMA 10%, ensemble

ECMWF 26%, UKMO 19%, KMA 18%, CPTEC 2%, Météo-

France 23%. Considering the fact that the ECMWF reference

forecast is one single member compared to 158 members, its

frequency of being the closest member to the observation is

rather high. On the opposite, the CPTEC ensemble and, to a

lesser extent, the CMA ensemble show the lowest frequencies.
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Figure 4: Rank histograms of the center ensembles. In the ideal case of a flat
histogram, the height of all the bars would be equal to 1.
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Figure 5: Rank histograms for the whole ensemble. In the ideal case of a
flat histogram, the height of all the bars would be equal to 1. The gray scale
indexes the number of ensembles whose spread contains the observation, from
black (no ensemble) to white (all ensembles, but not observed because of the
very low dispersion of CPTEC).
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Rank histograms (Anderson, 1996; Talagrand et al., 1999;

Hamill and Colucci, 1997) evaluate the quality of the spread of

an ensemble. Each observation is given a rank, which corre-

sponds to the number of members with lower values than the

considered observation. Then the distribution of rank frequen-

cies can reveal the presence of under-dispersion (U-shaped his-

togram), over-dispersion, and biases. The rank histograms of

the center ensembles and the rank histogram of the whole 158-

member ensemble are shown in Figure 4 and 5, for data con-

verted by center (lin). The values of the bars of each histogram

are normalized with respect to the total number of observations,

so that the height of the bars of the ideally flat histogram is al-

ways 1. There are clear outliers on all histograms, which is

a clear sign of general under-dispersion (Hamill, 2001). The

frequencies with which observations fall within an ensemble

envelop are: CMA 34%, ECMWF 45%, UKMO 58%, KMA

56%, CPTEC 1%, Météo-France 59%, whole ensemble 89%.

The whole ensemble is less under-dispersed than each center

ensemble and exhibits a rank structure with peaks. The ranks of

the major inner peaks (14, 28, 37, 78, 112, 121, 135 and 144)

correspond to combinations of ensemble sizes, starting from ei-

ther extreme peak. For example, the peak at rank 28 corre-

sponds to the combination of the ensemble sizes of CPTEC and

CMA (both 14). The peak at rank 135 corresponds to an ensem-

ble of 23 members (UKMO or KMA) starting from the outer

peak at rank 158. The peaks are generated by the 4% share of

the observations (inner black bars) which do not fall within any

of the center ensemble envelops. Indeed these observations are

necessarily indexed at ranks related to combinations of ensem-

ble sizes. We conclude that the peaks are due to the variety of

the under-dispersed ensembles.

3. Ensemble forecast strategy: sequential aggregation

In this section we detail the principles of sequential aggrega-

tion. In particular, we explain the method of discounted ridge

regression. The performance and robustness of discounted

ridge regression have been tested for the case of air quality

(Mallet et al., 2009). While time series of scalar fields were

considered above, in this section we only consider scalar time

series.

3.1. Notation

Let xm,t describe the m-th member of our forecast ensemble

at time t, with m ∈ {1, . . . ,M} indexing the members and

t ∈ {1, . . . ,T } indexing the forecast timesteps. The vector xt

refers to the ensemble of forecasts [x1,t, x2,t, . . . , xM,t]>. At each

timestep, the members should be conveniently combined with

the weights wm,t to generate the forecast

ŷt =

M∑
m=1

wm,t xm,t (5)

of the observation yt.

3.2. Sequential aggregation: method

The aggregation weights wm,t are updated before the fore-

cast step t, using only past observations y1, y2, . . . , yt−1 and

past simulations x1, x2 and xt−1. For the discounted ridge

regression with parameters (λ, γ), the weight vector wt =

[w1,t,w2,t, ...,wM,t]> is found through minimization of

J(u) = λ‖u − wref‖
2
2 +

t−1∑
t′=1

βγ(t − t′) × (yt′ − u · xt′ )2 (6)

with

βγ(t − t′) = 1 +
γ

(t − t′)2 (7)

and wref a reference weight vector chosen by the operator and

constant in time. The parameter λ affects the distance be-

tween w and the reference vector wref (usually set to zero or to

7



[1/M, . . . , 1/M]>, following the ensemble mean). The function

              βγ gives higher importance to the most recent timesteps. When

both λ and γ are set to zero, a simple recursive least-square re-

gression is achieved.

The classical ridge regression without discount provides the

theoretical guarantee that the final score of the aggregated fore-

cast will be close to the final score of the best constant linear

combination. Indeed we have

T∑
t=1

1
T

(yt − ŷt)2 − min
u∈BM

T∑
t=1

1
T

(yt − u · xt)2 ≤ O

(
ln T
T

)
, (8)

under the assumption of bounded losses (yt − ŷt)2. The condi-

tion u ∈ BM , where BM is a 2-norm ball in RM , means that ‖u‖

is bounded. The best linear combination with constant weights

(implicitly defined above by the second term in the left hand

side) is named the oracle. The oracle is found by least-square

regression over the whole set. By definition, the oracle shows

better performance than any member in the ensemble. Conse-

quently the aggregated forecast is more skillful in the long run

than the best member. The discounted ridge regression pro-

vides asymptotically this guarantee, which is verified for each

sequence of discounted regret.

3.3. Algorithm

Parameters: λ, γ, wref ;

Initialization: w1;

For each time index t = 1, 2, ..., T

1. get the predictions xt,

2. compute ŷt, with xt and wt,

3. get the observation yt and compute wt+1.

The initial weight vector w1 is arbitrarily set, e.g., to

[1/M, . . . , 1/M]>.

4. Application

4.1. Experiment setup

The sequential aggregation with discounted ridge regression

as described in 3.2 is applied independently at each location of

the 127×187 grid. In a similar fashion to the study of Section 2,

the forecast variable is the incident radiation flux integrated be-

tween 0600 and 1200 UTC. The TIGGE forecasts are available

at 1800 or 2400 on day D-1 to forecast the quantity of interest

for day D at 1200, also named (D, 1200).

The ensemble data are SSR data from TIGGE without any

SSR-SSRD conversion because the aggregation does not de-

pend on any multiplicative coefficient applied to the members.

In other words, the weights of the aggregation produce multi-

plicative corrections and solve the issue of the nature of TIGGE

data.

The aggregation parameters (λ, γ) are respectively set to

6 × 106 and 20 by default (see Section 4.2.6 for the assessment

of the parameters). The values of the reference vector wref are

set to 1/M in order to drive the aggregated forecast towards the

ensemble mean. Even though the ensemble mean may not be

the most appropriate reference vector, the vector wref mostly

impacts the beginning of the aggregation so that the critical pa-

rameters are truly (λ, γ).

The aggregation may be achieved in a single step by choosing

members from all of the center ensembles. Another approach

involves two steps: a first aggregation within each center en-

semble and a second aggregation with the resulting forecasts

as members. Both procedures have been tested and only the

procedure achieved in a single step is presented here since the

second procedure did not lead to significantly different results.

In order to study the impact of the number of members M,

the same amount of members are chosen from each meteoro-

logical center, but the center ensembles do not have the same

size. Therefore, the members are chosen in a way that their

8



ranks are linearly spaced and centered on the median of each

center ensemble. The full sorting procedure is not impacted

by this member selection because in this case the members are

mixed up before sorting and rank selection. It is possible to

realize aggregation with one single member, such as the refer-

ence forecast. In this case the weight plays the role of a local

correction factor.

Missing data (only CPTEC ensemble) are replaced by the

ensemble mean of the available members.

4.2. Results

4.2.1. Aggregation example with one center ensemble

In this section, the aggregation is first run with the ensemble

KMA only (without sorting) and then with an additional deter-

ministic member. In the first case, we indicate that the RMSE of

the SSRD ensemble mean is 75.0 W m−2, whereas the RMSE of

the ensemble mean with linear conversion is 72.1 W m−2. The

RMSE of the aggregated forecast equals 70.0 W m−2 and may

decrease when data from another source is included in the en-

semble. For example, when the ECMWF deterministic forecast

is added as a member, the RMSE reaches 67.5 W m−2. The

scores are to be compared to the 58.9 W m−2 RMSE of the ora-

cle of the same ensemble and to the 65.1 W m−2 RMSE of the

oracle with only KMA data.

One question is whether the improvement due to the de-

terministic member originates from its high spatial resolution.

We therefore include the ECMWF deterministic forecast at the

lower resolution of 0.25◦ × 0.25◦ which is obtained by averag-

ing the fine 0.125◦ × 0.125◦ forecast. In that case, the RMSE

is also equal to 67.5 W m−2, which means that the resolution of

the reference forecast is not the key factor. For comparison, the

RMSE of the reference forecast corrected by discounted ridge

regression is equal to 68.0 W m−2.

4.2.2. Oracles with orthogonal members

We now want to quantify the potential improvements brought

by sequential aggregation with all members, using a relevant or-

acle. The problem of overfitting can arise because of the large

number of members (158) compared to the length T = 350

of the time sequence. In that case, the score of the oracle is

artificially good, and the competition against the oracle does

not carry any meaning. We present here oracles computed

with the help of principal component analysis (PCA), so as to

avoid overfitted oracles. The PCA generates orthogonal modes,

and consequently orthogonal members. The 158 members are

sorted within each center ensemble and then orthogonalized by

PCA, independently at each grid point. We compute the or-

acle of the ensemble of size M′, by selecting M′ orthogonal

members based on the M′ modes explaining the largest vari-

ance share of the ensemble. In Figure 6 the RMSE of the oracle

and the total amount of variance explained by its members are

plotted against the number of orthogonal members. An indi-

cation of possible overfitting is shown in Figure 6, because the

RMSE still decreases with the number of PCA modes while the

share of unexplained variance is small. Indeed the 32 first or-

thogonal members explain 95% of the variance and generate an

oracle with an RMSE of 54.4 W m−2, whereas the RMSE of the

oracle with all PCA modes (100% of explained variance) equals

33.9 W m−2. Consequently, the 32-member oracle is considered

as the relevant oracle; its score is a relevant evaluation of the

best score that may be achieved by linear combination without

overfitting.

4.2.3. Typical aggregation

In this paper, the “typical aggregation” refers to the aggre-

gation with 30 members (5 per sorted center ensemble), with

default parameters λ = 6 × 106 and γ = 20. The resulting fore-

cast is simply referred to as typical aggregated forecast and is

used below to illustrate spatial and temporal features resulting
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Figure 7: Maps of statistical scores for the typical aggregated forecast (unitless for rRMSE, in W m−2 for MAE and RMSE).
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Figure 8: Annual averaged estimation for 1200 UTC in W m−2. Although it is based on individual members with low resolution, the aggregated forecast shows fine
structures that are comparable to those of HelioClim.
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Figure 6: RMSE (solid line with disks, left axis) and explained variance
(dashed-dotted line, right axis) of oracles with orthogonal members plotted
against number of orthogonal members.
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Figure 9: Sorted spatial RMSE in W m−2 along 350 days; ECMWF deter-
ministic forecast (red and used to sort the days), typical aggregated forecast
(blue), ECMWF deterministic forecast corrected by discounted ridge regres-
sion (green).

from sequential aggregation. Note that the typical aggregation

is compared to all members in Figure 13 and to the ensemble

means for each month in Figure 3. We highlight the fact that

the typical aggregated forecast performs better than any of the

individual members, steadily over time.

The maps of scores of RMSE, MAE and relative RMSE are

shown in Figure 7. The MAE and RMSE maps show very sim-

ilar patterns. The relative MAE is not shown for it is similar

to the relative RMSE. The maps indicate that the topographic

relief of mountains severely degrades the forecast accuracy. In-

deed the absolute largest errors are found in the region of the

Alps and in the region of the Pyrenees. The coarse resolution

of the members may explain the poor performance in the re-

gions of complex terrain. Also, in the mountainous regions,

the albedo shows higher temporal variations, which is diffi-

cult to catch for the aggregation. On the opposite, the best

scores are steadily achieved in the inner lands of Spain and in

the south-east of France. High relative errors are numerous in

the northern area especially during the spring-summer period,

because of the low values of the observations combined with

large errors. For example in spring and summer period, the

British area shows a relative RMSE higher than 20%, whereas

the south-east of France reaches a relative RMSE below 12.5%,

even though the two areas are associated with similar RMSEs

over the same period. We recall here that the relative RMSE of

the satellite observations compared to BSRN stations is worth

10.7% on average.

Most of the members are computed with a low spatial res-

olution and do not show fine long-term spatial structures. On

the contrary, the aggregated forecast is built independently at

each location, which allows the procedure to adapt locally and

to finally show fine structures, that are resolved by HelioClim.

These structures are finer than any structures found in the en-

semble members (due to their low resolutions), even in the

11



ECMWF deterministic forecasts (Figure 8).

In order to compare predictions performance at each date,

the spatial RMSE of various predictions are temporally sorted

according to the performance of the ECMWF reference forecast

(Figure 9). The overall trend is the same for the three forecasts.

The aggregated forecast often shows the best performance, but

it does not always perform better than the aggregation applied

to the reference forecast only. One benefit of aggregation is that

large improvements are achieved at the most difficult timesteps,

even with one single member in the ensemble.

4.2.4. Members selection and sorting

The performance of the aggregated forecast is impacted by

the number of members up to a certain extent (Figure 10). Be-

yond a total amount of roughly 60 members (10 members from

each center ensemble), the scores reach a plateau. The full sort-

ing procedure is the first to reach its own plateau, which may

be caused by the merger process of the members with sort-

ing. Besides, the sorting procedures impact the scores with

limited consequences (less than 1 W m−2) for large enough en-

sembles. According to the observed performance, the sort-

ing procedure by center should be preferred if more than 5

members per center are chosen. It is noticeable that the ref-

erence forecast brings a score improvement whatever the num-

ber of aggregated members. The best score achieved with de-

fault (λ, γ) equals 61.5 W m−2 for the RMSE and 43.6 W m−2

for the MAE. Compared to the scores of reference forecast,

the improvements brought by the aggregation equal 21.2% for

the RMSE and 19.8% for the MAE. Besides, compared to the

scores of TIGGE-mean, these improvements are worth 8.1% for

the RMSE and 9.1% for the MAE.

The aggregation ensemble may also be built with only 5 out

of 6 center ensembles. We compare the aggregated forecast of

30 members, so that 6 members are chosen in each of 5 center

ensembles. In this case, the reference aggregated forecast is the
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Figure 10: RMSE in W m−2 against the maximal number of members chosen
from each center ensemble; (blue: no sorting), (green: sorting full ensemble),
(red: sorting by center), (magenta: sorting by center and reference forecast
included in the ensemble).

typical aggregated forecast with 5 members chosen in each of

the 6 center ensembles. Either way, the members are sorted per

ensemble. We found that the aggregated forecast with 5 cen-

ters performs better than the typical aggregated forecast, when

the omitted members are from CMA or CPTEC. The largest

improvement occurs when the CPTEC is excluded with a ben-

efit of only 0.3 W m−2. On the opposite, the score is the most

severely degraded when the members from KMA are left out,

generating the RMSE of 64.1 W m−2, while the RMSE of the

typical aggregated forecast equals 62.5 W m−2. To conclude,

not using all center ensembles to build the aggregation ensem-

ble can generate both benefits and loss in terms of score. How-

ever, these benefits are lower than the loss caused by leaving out

skillful forecasts. In practice, one may arguably keep all center

ensembles.

4.2.5. Time horizon

We consider an ensemble forecast delivered at time t for the k

next steps. The weights of the sequential aggregation are com-

monly used for the first step ahead (see the algorithm, in Sec-

tion 3.3), but can also be used for the following timesteps t + k,

where k > 1. In fact, the weights can even be used for timesteps

12



that are not included in the sequential aggregation, such as the

forecast for 1800 UTC. This new framework allows us to gen-

erate the aggregated forecast for (D, 1800), (D+1, 1200) and

(D+1, 1800) with the weights initially computed for the predic-

tion (D, 1200). In terms of time horizon, the prediction for (D,

1200) corresponds to the 12 h horizon, (D, 1800) to 18 h, (D+1,

1200) to 36 h and (D+1, 1800) to 42 h. The time horizons of

Météo-France forecasts are actually 6 h longer, because its pre-

dictions start at 1800 and not 2400. The night time predictions

steps are skipped because of their very low values.

The RMSE of the ensemble means and the scores the typi-

cal aggregated forecast are shown in Figure 11, depending on

the time horizon. The scores of CPTEC ensemble mean are not

shown, because of their high values. The six presented fore-

casts share the same trends. The scores of predictions for 1800

beat the scores for predictions 1200 of the same day, by less

than 4 W m−2 on average, which is consistent with the fact that

the forecasts for 1200 have higher values than the forecasts for

1800. Furthermore, the predictions for day D+1 show an av-

erage degradation of more than 5 W m−2 compared to the pre-

diction for day D. Additionally, we notice that the ensemble

mean from ECMWF shows the steadiest performance over time

and that the benefits of the aggregated forecast are retained for

longer time horizons.

4.2.6. Influence of the aggregation parameters

We searched the best set of parameters (λ, γ) that provides

the lowest RMSE for the data set of year 2011, already pre-

sented in Section 2.2. We found that at most 3 W m−2 were to

be gained in terms of RMSE on a wide range of parameters

(Figure 12(a)). Our default parameters (6.106, 20) produce the

score of 67.1 W m−2, which is close to the best score achieved

on the grid of Figure 12(a) (e. g. 66.7 W m−2 with λ = 6.106

and γ = 5). Furthermore, we found that the best set of param-

eters varies in terms of space and time. Indeed, if we exclude
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Figure 11: Impact of the horizon up to 42 h on the RMSE of the aggregated
forecast and ensemble mean (lin); (dash dot: aggregated with 60 members),
(blue: CMA), (green: ECMWF), (red: UKMO), (cyan: KMA), and (yellow:
Météo-France).

the 50 first timesteps in the RMSE, then the most appropriate

parameters are λ = 107 and γ = 20. If we choose a posteriori

the optimal (λ, γ) for each grid point, only 1 W m−2 is to be

gained from default parameters. The minor variations of per-

formance guarantee that we may choose our default parameters

within one order of magnitude, and test them on another data

set without significant loss of performance.

We produce the same analysis for the data set of year 2012

in Figure 12(b). In this case, the best parameters are λ = 5.106

and γ = 10, with the score of 61.5 W m−2 that is very similar

to the score of 61.7 W m−2 obtained with default parameters.

Therefore, the order of magnitude of the parameters for year

2012 can be deduced from the data set of year 2011. Besides

we also found that if we choose the best (λ, γ) for each grid

point, the gain does not exceed 1 W m−2. As stated with the data

set of year 2011, once the relevant order of magnitude for the

parameters (λ, γ) is known, only little improvement is possible

by adjusting them.
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Figure 12: RMSE grid (W m−2) depending on the aggregation parameters, ag-
gregating a 134-member ensemble using at most 30 sorted members from each
center ensemble.

5. Conclusion538

The ensemble forecasts from TIGGE provide a wide range

of meteorological fields including net short-wave solar radia-

tion, with the large timestep of 6 h. After conversion based on

a constant albedo, the resulting ensembles are under-dispersed,

even when grouped together. The performance of the ensem-

ble means is assessed with RMSE and MAE and compared to

the deterministic forecast from ECMWF. The reference forecast

has higher resolution than the best TIGGE ensemble means,

but produces similar scores. Sequential aggregation brings im-

provements to the TIGGE ensembles on several features, in-

cluding RMSE and MAE, with theoretical guarantees. In this

study, the aggregated forecast performs better than any member

of the ensembles and any ensemble mean. On average, the ag-

gregated forecast retrieves all spatial patterns, even at a much

finer resolution than any of the members. Besides, the mem-

bers combination proves to be consistent with the time horizon.

Finally sequential aggregation is easy-to-use for its parameters

do not need accurate values.

Practical applications of the aggregation algorithm should

investigate higher temporal resolutions, especially the hourly

timestep. Next developments may focus on the study of un-

certainty with sequential aggregation, which is possible using

filtering (Mallet et al., 2013), but without the same theoretical

robustness as in this paper. The introduction of multiple model

runs per day with temporal interpolations may result in a robust

framework for intraday forecasting. Furthermore, new proce-

dures are to be developed to explore sequential aggregation with

spatial dependencies between grid points, with the objective of

better forecasting daily spatial patterns. There is also a need

for quantifying the possible resolution improvements brought

by the aggregation.
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Appendix A Conversion from SSR to SSRD and refer-

ence forecast

A.1 Methods

Several conversion methods allowing the estimation of the

albedo are tested. Even though the KMA data set is already

SSRD and does not need data conversion, the below methods

are also tested on the KMA data set, for the sake of complete-

ness.

First, we infer three conversions from our reference forecast.

The SSR and SSRD forecasts from ECMWF are used to pro-

vide three SSR-SSRD empirical conversions (Table 3): with a

constant 1.18 coefficient (glob), with local multiplicative coef-

ficients (mult), and with local additive coefficients (add). The

local multiplicative conversion is in fact the local estimation (in

space and time) of the factor 1/(1 − α) based on ECMWF con-

tinuous forecast.

Although it may lead to local large errors due to seasonal

changes in snow cover and vegetation, we model a constant

albedo in space and time (glob). The linear relationship

(Eq. (1)) between SSR and SSRD forecasts from ECMWF is

found by linear regression on data from 100 random locations

and for 350 days in year 2012. The resulting slope value (sup-

posed to be equal to 1/(1 − α)) is 1.18 and the intercept value

equals 13 W m−2. The squared correlation coefficient R2 of

0.968 shows that SSR and SSRD forecasts are strongly cor-

related in practice. According to the ratio between ECMWF

label conversion formula

glob xtigge × 1.18

mult xtigge ×
xssrd

ecmw f

xssr
ecmw f

add xtigge −
(
xssr

ecmw f − xssrd
ecmw f

)
lin xtigge × acenter + bcenter

Table 3: Empirical conversion formula of TIGGE data xtigge from SSR to
SSRD. The deterministic forecasts from ECMWF are named xecmw f .

SSRD and SSR forecasts, the relative standard deviation (stan-

dard deviation divided by mean) of the coefficient 1/(1 − α) is

equal to 8.8% on average over all the grid points. Consequently

the local variations of the ratio 1/(1 − α) are rather small com-

pared to its local mean value. Besides, more than 90% of the

values of the coefficient 1/(1 − α) are comprised between 1.13

and 1.48.

Second, a constant albedo is computed for each center en-

semble. This method is referred to as “lin” in Table 3 and is also

referred to as the linear conversion below, because the method

is based on linear regressions. Taking HelioClim observations

as SSRD data and TIGGE ensemble means as SSR data, linear

regressions are carried out on past data sets of year 2011 de-

scribed in Section 2.2. The results of the regressions (Table 4)

show two slopes lower than one (KMA and CPTEC), and inter-

cepts ranging from −21 W m−2 to 41 W m−2. Remind that KMA

data is already SSRD data so that its slope is not related to the

albedo. The diversity of slopes and intercepts values suggest

that the albedo coefficient should be evaluated independently

for each center ensemble.

A.2 Numerical results

The deterministic forecasts from ECMWF provide sev-

eral scores. We build another deterministic forecast, called

SSRD-lin, based on deterministic SSR and the linear con-

version method. Compared to HelioClim, the RMSE of the
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Center Slope acenter Intercept bcenter R2

(W m−2)

CMA 1.11 18 0.72
ECMWF 1.18 −21 0.78
UKMO 1.10 19 0.81
KMA 0.91 18 0.81
CPTEC 0.82 41 0.48
Météo-France 1.07 37 0.76

Table 4: Linear regression SSR-SSRD, based on data from year 2011.

ECMWF SSRD deterministic forecast equals 78.0 W m−2 while

the RMSE of SSRD-lin equals 76.9 W m−2. When the largest

error percentiles of SSRD and SSRD-lin forecasts are com-

pared, we see that the largest errors belong to SSRD-lin only

beyond the 99th percentile. On the one hand, the physical ap-

proach with local albedos (as opposed to SSRD-lin) does not

generate the largest errors. On the other hand, local albedos do

not provide the best score.

Furthermore, the resolution of the ECMWF deterministic

forecast does not impact its performance. Indeed the ECMWF

deterministic forecast at degraded resolution of 0.25◦ × 0.25◦,

by interpolation, shows the RMSE of 77.7 W m−2 when com-

pared to HelioClim, which is below the RMSE of the reference

forecast. The two predictions at different resolutions have sim-

ilar performance, since the distance between them, measured

with a root mean square discrepancy (in time and space), equals

3.0 W m−2.

The RMSEs are shown in Figure 13 for all members without

sorting procedures. The RMSEs between individual members

and satellite observations are at least twice as big as the RM-

SEs between satellite observations and ground measurements

(Table 2). It is noteworthy that members of a same center en-

semble perform similarly. The scores strongly depend on the

conversion methods and on the origin of each forecast. We

highlight again the fact that the nature of KMA data is already

SSRD.

The linear conversion (lin) is the best conversion method
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Figure 13: Annual RMSEs of all members in W m−2 according to SSR-SSRD
conversion method; (blue: no conversion), (green: add), (red: mult), (cyan:
glob) and (magenta: lin). The abscissa is the member label and the members
are grouped by origin. The dashed line is the score of the reference forecast.
The dashed-dotted line is the score of a typical aggregated forecast (see Sec-
tion 4.2.3).

tested here except for the CPTEC ensemble. The multiplicative

conversion method was supposed to provide accurate forecasts.

However, here is confirmed the need for the conversion method

to adapt to each center ensemble.
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