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The λΠ-calculus Modulo is a variant of the λ -calculus with dependent types where β -conversion is
extended with user-defined rewrite rules. It is an expressive logical framework and has been used
to encode logics and type systems in a shallow way. Basic properties such as subject reduction or
uniqueness of types do not hold in general in the λΠ-calculus Modulo. However, they hold if the
rewrite system generated by the rewrite rules together with β -reduction is confluent. But this is
too restrictive. To handle the case where non confluence comes from the interference between the
β -reduction and rewrite rules with λ -abstraction on their left-hand side, we introduce a notion of
rewriting modulo β for the λΠ-calculus Modulo. We prove that confluence of rewriting modulo β

is enough to ensure subject reduction and uniqueness of types. We achieve our goal by encoding the
λΠ-calculus Modulo into Higher-Order Rewrite System (HRS). As a consequence, we also make the
confluence results for HRSs available for the λΠ-calculus Modulo.

1 Introduction

The λΠ-calculus Modulo is a variant of the λ -calculus with dependent types (λΠ-calculus or LF)
where β -conversion is extended with user-defined rewrite rules. Since its introduction by Cousineau
and Dowek [8], it has been used as a logical framework to express different logics and type systems. A
key advantage of rewrite rules is that they allow designing shallow embeddings, that is embeddings that
preserve the computational content of the encoded system. It has been used, for instance, to encode func-
tional Pure Type Systems [8], First-Order Logic [9], Higher-Order Logic [2], the Calculus of Inductive
Constructions [4], resolution and superposition proofs [6], and the ς -calculus [7].

The expressive power of the λΠ-calculus Modulo comes at a cost: basic properties such as subject
reduction or uniqueness of types do not hold in general. Therefore, one has to prove these properties
for each particular set of rewrite rules considered. The usual way to do so is to prove that the rewriting
relation generated by the rewrite rules together with β -reduction is confluent. This entails a property
called product compatibility (also known as Π-injectivity or injectivity of function types) which, in turn,
implies both subject reduction and uniqueness of types. Another important consequence of confluence
is that, together with termination, it implies the decidability of the corresponding congruence. Indeed,
for confluent and terminating relations, checking congruence boils down to a syntactic equality check
between normal forms. As a direct corollary, we get the decidability of type checking in the λΠ-calculus
Modulo for the corresponding rewrite relations.

One case where confluence is easily lost is if one allows rewrite rules with λ -abstractions on their
left-hand side. For instance, consider the following rewrite rule (which reflects the mathematical equality
(e f )′ = f ′ ∗ e f ):

D (λx : R.Exp ( f x)) ↪→ fMult (D (λx : R. f x)) (λx : R.Exp ( f x)).

This rule introduces a non-joinable critical peak when combined with β -reduction:
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2 Rewriting Modulo β in the λΠ-calculus Modulo

x,y,z ∈ V (Variable)
c, f ∈ CO (Object Constant)
C,F ∈ CT (Type Constant)
t,u,v ::= x | c | u v | λx : U.t (Object)
U,V ::= C |U v | λx : U.V | Πx : U.V (Type)
K ::= Type | Πx : U.K (Kind)
t,u,v ::= u |U | K | Kind (Term)

Figure 1: The terms of the λΠ-calculus Modulo

D (λx : R.Exp ((λy : R.y) x))

fMult (D (λx : R.(λy : R.y) x)) (λx : R.(Exp ((λy : R.y) x))) D (λx : R.Exp x)

D β

A way to recover confluence is to consider a generalized rewriting relation where matching is done
modulo β -reduction. In this setting D (λx : R.Exp x) is reducible because it is β -equivalent to the redex
D (λx : R.Exp((λy : R.y) x)) and, as we will see, this allows closing the critical peak.

In this paper, we formalize the notion of rewriting modulo β in the context of the λΠ-calculus
Modulo. We achieve this by encoding the λΠ-calculus Modulo into Nipkow’s Higher-Order Rewrite
Systems [14]. This encoding allows us, first, to properly define matching modulo β using the notion
of higher order rewriting and, secondly, to make available, in the λΠ-calculus Modulo, confluence and
termination criteria designed for higher-order rewriting. Then we prove that the assumption of conflu-
ence for the rewriting modulo β relation can be used, in most proofs, in place of standard confluence.
In particular this implies subject reduction (for both standard rewriting and rewriting modulo β ) and
uniqueness of types.

The paper is organized as follows. First, we define in Section 2 the λΠ-calculus modulo for which
we prove subject reduction and uniqueness of types under the assumption of product compatibility and
we show that confluence implies this latter property. In Section 3, we show that a naive definition of
rewriting modulo β does not work in a typed setting. This leads us to use Higher-Order Rewrite Systems
which we present in Section 4 and in which we encode the λΠ-calculus Modulo in Section 5. Then, we
use this encoding to properly define rewriting modulo β in Section 6 and generalize the results of the
previous sections. We discuss possible applications in Section 7 before concluding in Section 8.

2 The λΠ-Calculus Modulo

The λΠ-calculus Modulo is an extension of the dependently-typed λ -calculus (λΠ-calculus) where the
β -conversion is extended by user-defined rewrite rules.

2.1 Terms

The terms of the λΠ-calculus Modulo are the same as the terms of the λΠ-calculus. Their syntax is
given in Figure 1.
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∆ ::= /0 | ∆(x : U) (Local Context)
Γ ::= /0 | Γ(c : U) | Γ(C : K) | Γ(u ↪→ v) | Γ(U ↪→V ) (Global Context)

Figure 2: Syntax for contexts

Definition 2.1 (Object, Type, Kind, Term). A term is either an object, a type, a kind or the symbol Kind.
An object is either a variable in the set V , or an object constant in the set CO, or an application u v

of two objects, or an abstraction λx : A.t where A is a type and t is an object.
A type is either a type constant in the set CT , or an application U v where U is a type and v is an

object, or an abstraction λx : U.V where U and V are types, or a product Πx : U.V where U and V are
types.

A kind is either a product Πx : U.K where U is a type and K is a kind or the symbol Type.
Type and Kind are called sorts.
The sets V , CO and CT are assumed to be infinite and pairwise disjoint.

Definition 2.2. A term is algebraic if it is not a variable, it is built from constants, variables and appli-
cations and variables do not have arguments.

Notation 2.1. In addition to the naming convention of Figure 1, we use A and B to denote types or kinds;
T to denote a type, a kind or Kind; s for Type or Kind.

Moreover, we write t~u to denote the application of t to an arbitrary number of arguments u1, . . . ,un.
We write u[x/v] for the usual (capture-avoiding) substitution of x by v in u. We write A−→ B for Πx : A.B
when B does not depend on x.

2.2 Contexts

We distinguish two kinds of context: local and global contexts. A local context is a list of typing decla-
rations corresponding to variables. The syntax for contexts is given in Figure 2.

Definition 2.3 (Local Context). A local context is a list of variable declarations (variables together with
their type).

Following our previous work [17], we give a presentation of the λΠ-calculus Modulo where the
rewrite rules are internalized in the system as part of the global context. This is a difference with earlier
presentations [8] where the rewrite rules lived outside the system and were typed in an external system
(either the simply-typed calculus or the λΠ-calculus). The main benefit of this approach is that the typing
of the rewrite rules is made explicit and becomes an iterative process: rewrite rules previously added in
the system can be used to type new ones.

Definition 2.4. A rewrite rule is a pair of terms. We distinguish object-level rewrite rules (pairs of
objects) from type-level rewrite rules (pairs of types).

These are the only allowed rewrite rules. We write (u ↪→ v) for the rewrite rule (u,v).
It is left-algebraic if u is algebraic and left-linear if no free variable occurs twice in u.

Definition 2.5 (Global Context). A global context is a list of object declarations (an object constant
together with a type), type declarations (a type constant together with a kind), object-level rewrite rules
and type-level rewrite rules.
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(Sort) Γ;∆ ` Type : Kind

(Variable) (x : A) ∈ ∆

Γ;∆ ` x : A

(Constant) (c : A) ∈ Γ

Γ;∆ ` c : A

(Application) Γ;∆ ` t : Πx : A.B Γ;∆ ` u : A
Γ;∆ ` tu : B[x/u]

(Abstraction) Γ;∆ ` A : Type Γ;∆(x : A) ` t : B B 6= Kind
Γ;∆ ` λx : A.t : Πx : A.B

(Product) Γ;∆ ` A : Type Γ;∆(x : A) ` B : s
Γ;∆ `Πx : A.B : s

(Conversion)
Γ;∆ ` t : A Γ;∆ ` B : s A≡βΓ B

Γ;∆ ` t : B

Figure 3: Typing rules for terms in the λΠ-calculus Modulo.

2.3 Rewriting

Definition 2.6 (β -reduction). The β -reduction relation→β is the smallest relation on terms containing
(λx : A.u)v→β u[x/v], for all terms A,u and v, and closed by subterm rewriting.

Definition 2.7 (Γ-reduction). Let Γ be a global context. The Γ-reduction relation →Γ is the smallest
relation on terms containing u→Γ v for every rewrite rule (u ↪→ v) ∈ Γ, closed by substitution and by
subterm rewriting. We say that→Γ is left-algebraic (respectively left-linear) if the rewrite rules in Γ are
left-algebraic (respectively left-linear).

Notation 2.2. We write →βΓ for →β ∪ →Γ, ≡β for the congruence generated by →β and ≡βΓ the
congruence generated by→βΓ.

It is important to notice that these notions of reduction are defined as relations on all (untyped)
terms. In particular, we do not require the substitutions to be well-typed. This allows defining the notion
of rewriting independently from the notion of typing (see below). This makes the system closer from
what we would implement in practice.

Since the rewrite rules are either object-level or type-level, rewriting preserves the three syntactic
categories (object, type, kind). Moreover, sorts are only convertible to themselves.

2.4 Type System

We now give the typing rules for the λΠ-calculus Modulo. We begin by the inference rules for terms,
then for local contexts and finally for global contexts.

Definition 2.8 (Well-Typed Term). We say that a term t has type A in the global context Γ and the local
context ∆ if the judgment Γ;∆ ` t : A is derivable by the inference rules of Figure 3. We say that a term is
well-typed if such A exists.
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(Empty Local Context) Γ `ctx /0

(Variable Declaration) Γ `ctx ∆ Γ;∆ `U : Type x /∈ dom(∆)

Γ `ctx ∆(x : U)

Figure 4: Typing rules for local contexts

The typing rules only differ from the usual typing rules for the λΠ-calculus by the (Conversion) rule
where the congruence is extended from β -conversion to βΓ-conversion allowing taking into account the
rewrite rules in the global context.

Definition 2.9 (Well-Formed Local Context). A local context ∆ is well-formed with respect to a global
context Γ if the judgment Γ `ctx ∆ is derivable by the inference rules of Figure 4.

Well-formed local contexts ensure that local declarations are unique and well-typed.
Besides the new conversion relation, the main difference between the λΠ-calculus and the λΠ-

calculus Modulo is the presence of rewrite rules in global contexts. We need to take this into account
when typing global contexts.

A key feature of any type system is the preservation of typing by reduction: the subject reduction
property.

Definition 2.10 (Subject Reduction). Let Γ be a global context. We say that a rewriting relation →
satisfies the subject reduction property in Γ if, for all terms t1, t2,T and local context ∆ such that Γ `ctx ∆,
Γ;∆ ` t1 : T and t1→ t2 imply Γ;∆ ` t2 : T .

In the λΠ-calculus Modulo, we cannot allow adding arbitrary rewrite rules in the context, if we want
to preserve subject reduction. In particular, to prove subject reduction for the β -reduction we need the
following property:

Definition 2.11 (Product-Compatibility). We say that a global context Γ satisfies the product compati-
bility property (and we note PC(Γ)) if the following proposition is verified:
if Πx : A1.B1 and Πx : A2.B2 are two well-typed product types in the same well-formed local context such
that Πx : A1.B1 ≡βΓ Πx : A2.B2 then A1 ≡βΓ A2 and B1 ≡βΓ B2.

On the other hand, subject reduction for the Γ-reduction requires rewrite rules to be well-typed in the
following sense:

Definition 2.12 (Well-typed Rewrite Rules).

• A rewrite rule (u ↪→ v) is well-typed for a global context Γ if, for any substitution σ , well-formed
local context ∆ and term T , Γ;∆ ` σ(u) : T implies Γ;∆ ` σ(v) : T .

• A rewrite rule is permanently well-typed for a global context Γ if it is well-typed for any extension
Γ0 ⊃ Γ that satisfies product compatibility. We write Γ ` u ↪→ v when (u ↪→ v) is permanently
well-typed in Γ.

The notion of permanently well-typed rewrite rule makes possible to typecheck rewrite rules only
once and not each time we make new declarations or add other rewrite rules in the context.

We can now give the typing rules for global contexts.

Definition 2.13 (Well-formed Global Context). A global context is well-formed if the judgment Γ wf is
derivable by the inference rules of Figure 5.
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(Empty Global Context) /0 wf

(Object Declaration) Γ wf Γ; /0 `U : Type c /∈ dom(Γ)

Γ(c : U) wf

(Type Declaration) Γ wf Γ; /0 ` K : Kind PC(Γ(C : K)) C /∈ dom(Γ)

Γ(C : K) wf

(Rewrite Rules) Γ wf (∀i)Γ ` ui ↪→ vi PC(Γ(u1 ↪→ v1) . . .(un ↪→ vn))

Γ(u1 ↪→ v1) . . .(un ↪→ vn) wf

Figure 5: Typing rules for global contexts

The rules (Object Declaration) and (Type Declaration) ensure that constant declarations are well-
typed. One can remark that the premise PC(Γ(c : U)) is missing in the (Object Declaration) rule. This
is because PC(Γ(c : U)) can be proved from PC(Γ); to prove product compatibility for Γ(c : U) it suffices
to emulate the constant c by a fresh variable and use the product compatibility property of Γ. This cannot
be done for type declarations since type-level variables do not exist in the λΠ-calculus Modulo. The rule
(Rewrite Rules) permits adding rewrite rules. Notice that we can add several rewrite rules at once. In
this case, only product compatibility for the whole system is required. On the other hand, when a rewrite
rule is added it needs to be well-typed independently from the other rules that are added at the same time.

Well-formed global contexts satisfy subject reduction and uniqueness of types. Proofs can be found
in the long version of this paper at the author’s webpage.
Theorem 2.1 (Subject Reduction). Let Γ be a well-formed global context. Subject reduction holds for
→βΓ in Γ.
Theorem 2.2 (Uniqueness of Types). Let Γ be a well-formed global context and let ∆ be a local context
well-formed for Γ. If Γ;∆ ` t : T1 and Γ;∆ ` t : T2 then T1 ≡βΓ T2.

Remark that strong normalization of well-typed terms for the relations→Γ and→β is not guaranteed.

2.5 Criteria for Product Compatibility and Well-typedness of Rewrite Rules

We now give effective criteria for checking product compatibility and well-typedness of rewrite rules.
The usual way to prove product compatibility is by showing the confluence of the rewrite system.

Theorem 2.3 (Product Compatibility from Confluence). Let Γ be a global context. If→βΓ is confluent
then product compatibility holds for Γ.

One could think that we can weaken the assumption of confluence requiring only confluence for
well-typed terms. This is not a viable option since, without product compatibility, we do not know if
reduction preserves typing (subject reduction) and if the set of well-typed terms is closed by reduction.
Therefore, it seems unlikely to be able to prove confluence only for well-typed terms before proving the
product compatibility property.

The confluence of→βΓ can be obtained from the confluence of→Γ.
Theorem 2.4 (Müller [12]). If→Γ is left-algebraic, left-linear and confluent, then→βΓ is confluent.

To show that a rewrite rule is well-typed, one can use the following result:
Theorem 2.5. Let Γ be a well-formed global context and (u ↪→ v) be a rewrite rule. If u is algebraic and
there exist ∆ and T such that Γ `ctx ∆, dom(∆) = FV (u), Γ;∆ ` u : T and Γ;∆ ` v : T then (u ↪→ v) is
permanently well-typed for Γ.
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2.6 Example

As an example, we define the map function on lists of integers. We first define the type of Peano integers
by the three successive global declarations:

Nat : Type.
0 : Nat.
S : Nat−→ Nat.

For readability, we will write n instead of

n times︷ ︸︸ ︷
S (S . . .(S 0)). We now define a type for lists:

List : Type.
Nil : List.
Cons : Nat −→ List −→ List.

and the function map on lists:

Map : (Nat −→ Nat) −→ List −→ List.
Map f Nil ↪→ Nil.
Map f (Cons hd tl) ↪→ Cons ( f hd) (Map f tl).

For instance, we can use this function to add some value to the elements of a list. First, we define addi-
tion:

plus : Nat−→ Nat−→ Nat.
plus 0 n ↪→ n.
plus (S n1) n2 ↪→ S (plus n1 n2).

Then, we have the following reduction:

Map (plus 3) (Cons 1 (Cons 2 (Cons 3 Nil)))→∗
Γ
Cons 4 (Cons 5 (Cons 6 Nil)).

This global context is well-formed. Indeed, one can check that each global declaration is well-
typed. Moreover, each time we add a rewrite rule, it verifies the hypotheses of Theorem 2.5 and it
preserves the confluence of the relation →βΓ. Therefore, the rewrite rules are permanently well-typed
and, by Theorem 2.3, product compatibility is always guaranteed.

3 A Naive Definition of Rewriting Modulo β

As already mentioned, our goal is to give a notion of rewriting modulo β in the setting of λΠ-calculus
Modulo. We first exhibit the issues arising from a naive definition of this notion.

In an untyped setting, we could define rewriting modulo β in this manner: t1 rewrites to t2 if, for some
rewrite rule (u ↪→ v) and substitution σ , σ(u) ≡β t1 and σ(v) ≡β t2. This definition is not satisfactory
for several reasons.

It breaks subject reduction. For the rewrite rule of Section 1, taking σ = { f 7→ λy : Ω.y} where Ω is
some ill-typed term, we have

D (λx : R.Exp x)−→ fMult (D (λx : R.(λy : Ω.y) x) (λx : R.Exp ((λy : Ω.y) x)))

and, even if D (λx : R.Exp x) is well-typed, its reduct is ill-typed since it contains an ill-typed subterm.
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It may introduce free variables. In the example above, Ω has no reason to be closed.

It does not provide confluence. If we consider the following variant of the rewrite rule

D (λx : R.Exp ( f x)) ↪→ fMult (D f ) (λx : R.Exp ( f x))

and take σ1 = { f 7→ λy : A1.y} and σ2 = { f 7→ λy : A2.y} where A1 and A2 are two non convertible types
then we have:

D (λx : R.Exp ((λy : R.y) x))

fMult (D (λy : A1.y)) (λx : R.(Exp ((λy : A1.y) x))) fMult (D (λy : A2.y)) (λx : R.(Exp ((λy : A2.y) x)))

Dσ1 Dσ2

and the peak is not joinable.
Therefore, we need to find a definition that takes care of these issues. We will achieve this using an

embedding of λΠ-calculus Modulo into Higher-Order Rewrite Systems.

4 Higher-Order Rewrite Systems

In 1991, Nipkow [14] introduced Higher-Order Rewrite Systems (HRS) in order to lift termination and
confluence results from first-order rewriting to rewriting over λ -terms. More generally, the goal was to
study rewriting over terms with bound variables such as programs, theorem and proofs.

Unlike the λΠ-calculus Modulo, in HRSs β -reduction and rewriting do not operate at the same
level. Rewriting is defined as a relation between the βη-equivalence classes of simply typed λ -terms:
the λ -calculus is used as a meta-language.

Higher-Order Rewrite Systems are based upon the (pre)terms of the simply-typed λ -calculus built
from a signature. A signature is a set of base types B and a set of typed constants. A simple type is
either a base type b ∈B or an arrow A−→ B where A and B are simple types.

Definition 4.1 (Preterm). A preterm of type A is

• either a variable x of type A (we assume given for each simple type A an infinite number of variables
of this type),

• or a constant f of type A,

• or an application t(u) where t is a preterm of type B−→ A and u is a preterm of type B,

• or, if A = B−→C, an abstraction λx.t where x is a variable of type B and t is a preterm of type C.

In order to distinguish the abstraction of HRSs from the abstraction of λΠ-calculus Modulo, we use
the underlined symbol λ instead of λ . Similarly, we write the application t(u) for HRSs (instead of tu).
We use the abbreviation t(u1, . . . ,un) for t(u1) . . .(un). If A is a simple type, we write A1 for A and An+1

for A−→ An.
Notice also that HRSs abstractions do not have type annotations because variables are typed.
β -reduction and η-expansion are defined as usual on preterms. We write lη

β
t for the long βη-normal

form of t.

Definition 4.2 (Term). A term is a preterm in long βη-normal form.
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Definition 4.3 (Pattern). A term t is a pattern if every free occurrence of a variable F is in a subterm of
t of the form F~u such that~u is η-equivalent to a list of distinct bound variables.

The crucial result about patterns (due to Miller [11]) is the decidability of higher-order unification
(unification modulo βη) of patterns. Moreover, if two patterns are unifiable then a most general unifier
exists and is computable.

The notion of rewrite rule for HRSs is the following:
Definition 4.4 (Rewrite Rules). A rewrite rule is a pair of terms (l ↪→ r) such that l is a pattern not
η-equivalent to a variable, FV (r)⊂ FV (l) and l and r have the same base type.

The restriction to patterns for the left-hand side ensures that matching is decidable but also that,
when it exists, the resulting substitution is unique. This way, the situation is very close to first-order (i.e.
syntactic) matching.
Definition 4.5 (Higher-Order Rewriting System (HRS)). A Higher-Order Rewriting System is a set R of
rewrite rules.

The rewrite relation→R is the smallest relation on terms closed by subterm rewriting such that, for
any (l ↪→ r) ∈ R and any well-typed substitution σ , lη

β
σ(l)→Rlη

β
σ(r).

The standard example of an HRS is the untyped λ -calculus. The signature involves a single base
type Term and two constants:

Lam : (Term−→ Term)−→ Term

App : Term−→ Term−→ Term

and a single rewrite rule for β -reduction:

(beta) App(Lam(λx.X(x)),Y ) ↪→ X(Y )

5 An Encoding of the λΠ-calculus Modulo into Higher-Order Rewrite
Systems

5.1 Encoding of Terms

We now mimic the encoding of the untyped λ -calculus as an HRS and encode the terms of the λΠ-
calculus Modulo. First we specify the signature.
Definition 5.1. The signature Sig(λΠ) is composed of a single base type Term, the constants Type and
Kind of atomic type Term, the constant App of type Term −→ Term −→ Term, the constants Lam and
Pi of type Term −→ (Term −→ Term) −→ Term and the constants c of type Term for every constant
c ∈ CO∪CT .

Then we define the encoding of λΠ-terms.
Definition 5.2 (Encoding of λΠ-term). The function ‖.‖ from λΠ-terms to HRS-terms in the signature
Sig(λΠ) is defined as follows:

‖Kind‖ := Kind ‖Type‖ := Type

‖x‖ := x (variable of type Term) ‖c‖ := c

‖uv‖ := App(‖u‖,‖v‖) ‖λx : A.t‖ := Lam(‖A‖,λx.‖t‖)
‖Πx : A.B‖ := Pi(‖A‖,λx.‖B‖)

Lemma 5.1. The function ‖.‖ is a bijection from the λΠ-terms to HRS-terms of type Term.
Note that this is a bijection between the untyped terms of the λΠ-calculus Modulo and well-typed

terms of the corresponding HRS.
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5.2 Higher-Order Rewrite Rules

We have faithfully encoded the terms. The next step is to encode the rewrite rules. The following rule
corresponds to β -reduction at the HRS level:

(beta) App(Lam(X ,λx.Y (x)),Z) ↪→ Y (Z)

We have the following correspondence:

Lemma 5.2.

• If t1→β t2 then ‖t1‖→(beta) ‖t2‖.
• If t1→(beta) t2 and t1, t2 have type Term then ‖t1‖−1→β ‖t2‖−1 (where ‖.‖−1 is the inverse of ‖.‖).
By encoding rewrite rules in the obvious way (translating (u ↪→ v) by (‖u‖ ↪→ ‖v‖)), we would get

a similar result for Γ-reduction. But, since we want to incorporate rewriting modulo β , we proceed
differently.

First, we introduce the notion of uniform terms. These are terms verifying an arity constraint on their
free variables.

Definition 5.3 (Uniform Terms). A term t is uniform for a set of variables V if all occurrences of a
variable free in t not in V is applied to the same number of arguments.

Now, we define an encoding for uniform terms.

Definition 5.4 (Encoding of uniform terms). Let V be a set of variables and t be a term uniform in V .
The HRS-term ‖u‖V of type Term is defined as follows:

‖Kind‖V := Kind

‖Type‖V := Type

‖x‖V := x if x ∈V (variable of type Term)
‖c‖V := c

‖λx : A.u‖V := Lam(‖A‖V , λx.‖u‖V∪{x})
‖Πx : A.B‖V := Pi(‖A‖V , λx.‖B‖V∪{x})
‖x~v‖V := x(‖~v‖V ) if x /∈V (x of type Termn+1 where n = |~v|)
‖uv‖V := App(‖u‖V ,‖v‖V ) if uv 6= x ~w for x /∈V

Now, we define an equivalent of patterns for the λΠ-calculus Modulo.

Definition 5.5 (λΠ-patterns). Let V0 be a set of variables, A be a function giving an arity to variables
and let V = (V0,A ). The subset PV of λΠ-terms is defined inductively as follows:

• if c is a constant, then c ∈PV ;

• if p,q ∈PV , then p q ∈PV ;

• if x ∈V0, then x ∈PV ;

• if p ∈PV , x /∈V0 and~y is a vector of pairwise distinct variables in V0 such that |~y|= A (x), then
p (x~y) ∈PV ;

• if p ∈PV , FV (A)⊂V0 and q ∈P(V0∪{x},A ), then p (λx : A.q) ∈PV ;

A term t is a λΠ-pattern if, for some arity function A , t ∈P( /0,A ).

Remark that the encoding of a λΠ-pattern as a uniform term is a pattern.
We now define the encoding of rewrite rules.
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Definition 5.6 (Encoding of Rewrite Rules). Let (u ↪→ v) be a rewrite rule such that
• u is a λΠ-pattern;

• FV (v)⊂ FV (u);

• all free occurrences of a variable in u and v are applied to the same number of arguments.
The encoding of (u ↪→ v) is ‖u ↪→ v‖= ‖u‖ /0 ↪→‖v‖ /0.

Remark that the first assumption ensures that the left-hand side is a pattern and the third assumption
ensures that the HRS-term is well-typed.
Definition 5.7 (HRS(Γ)). Let Γ a global context whose rewrite rules satisfy the condition of Defini-
tion 5.6. We write HRS(Γ) for the HRS {‖u ↪→ v‖ | (u ↪→ v) ∈ Γ} and HRS(βΓ) for HRS(Γ)∪{(beta)}.

6 Rewriting Modulo β

6.1 Definition

We are now able to properly define rewriting modulo β . As for usual rewriting, rewriting modulo β is
defined on all (untyped) terms.
Definition 6.1 (Rewriting Modulo β ). Let Γ be a global context. We say that t1 rewrites to t2 modulo β

(written t1 →Γb t2) if ‖t1‖ rewrites to ‖t2‖ in HRS(Γ). Similarly, we write t1 →βΓb t2 if ‖t1‖ rewrites to
‖t2‖ in HRS(βΓ).
Lemma 6.1.
• →βΓb=→Γb ∪→β .

• If t1→Γ t2 then t1→Γb t2.

6.2 Example

Let us look at the example from the introduction. Now we have :

D (λx : R.Exp x)→Γb fMult (D (λx : R.x)) (λx : R.Exp x)

Indeed, for σ = { f 7→ λy.y} we have

‖D (λx : R.Exp x)‖= App(D,Lam(R,λx.App(Exp,x))) =lη

β
σ(App(D,Lam(R,λx.App(Exp, f (x)))))

and
‖fMult (D (λx : R.x)) (λx : R.Exp x)‖ = App(fMult,App(D,Lam(R,λx.x)),Lam(R,λx.App(Exp,x)))

=lη

β
σ(App(fMult,App(D,Lam(R,λx. f (x))),Lam(R,λx.App(Exp, f (x)))))

Therefore, the peak is now joinable.
D (λx : R.Exp ((λy : R.y) x))

fMult (D (λx : R.(λy : R.y) x)) (λx : R.(Exp ((λy : R.y) x))) D (λx : R.Exp x)

fMult (D (λx : R.x)) (λx : R.Exp x)

D β

Dββ ∗
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In fact the rewriting relation can be shown confluent [15].

6.3 Properties

Rewriting modulo β also preserves typing.

Theorem 6.1 (Subject Reduction for →Γb). Let Γ a well-formed global context and ∆ a local context
well-formed for Γ. If Γ;∆ ` t1 : T and t1→Γb t2 then Γ;∆ ` t2 : T .

It directly follows from the following lemma:

Lemma 6.2. If t1 →Γb t2 then, for some t ′1 and t ′2, we have t1 ←∗β t ′1 →Γ t ′2 →∗β t2. Moreover, if t1 is
well-typed then we can choose t ′1 such that it is well-typed in the same context.

Proof. The idea is to lift the β -reductions that occur at the HRS level to the λΠ-calculus Modulo.
Suppose t1 →Γb t2. For some rewrite rule (u ↪→ v) and (HRS) substitution σ , we have lη

β
σ(u) = ‖t1‖

and lη

β
σ(v) = ‖t2‖. We define the (λΠ) substitution σ̂ as follows: σ̂(x) = ‖σ(x)‖−1 if σ(x) has type

Term; σ̂(x) = λ~x : ~A.‖u‖−1 if σ(x) = λ~x.u has type Termn −→ Term where the Ai are arbitrary types.
We have, at the λΠ level, σ̂(u)→Γ σ̂(v), σ̂(u)→∗

β
t1 and σ̂(v)→∗

β
t2. If t1 is well-typed then the Ai can

be chosen so that σ̂(u) is also well-typed.

Another consequence of this lemma is that the rewriting modulo β does not modify the congruence.

Theorem 6.2. The congruence generated by→βΓb is equal to ≡βΓ.

Proof. Follows from Lemma 6.1 and Lemma 6.2.

6.4 Generalized Criteria for Product Compatibility and Well-Typedness of Rewrite Rules

Using our new notion of rewriting modulo β , we can generalize the criteria of Section 2.5.

Theorem 6.3. Let Γ be a global context. If HRS(βΓ) is confluent, then product compatibility holds for Γ.

Proof. Assume that Πx : A1.B1 ≡βΓ Πx : A2.B2 then, by Theorem 6.2, Πx : A1.B1 ≡βΓb Πx : A2.B2. By
confluence, there exist A0 and B0 such that A1 →∗βΓb A0, A2 →∗βΓb A0, B1 →∗βΓb B0 and B2 →∗βΓb B0. It
follows, by Theorem 6.2, that A1 ≡βΓ A2 and B1 ≡βΓ B2.

To prove the confluence of a HRS, one can use van Oostrom’s development-closed theorem [15].
Theorem 2.5 can also be generalized to deal with λΠ-patterns.

Theorem 6.4. Let Γ be a well-formed global context and (u ↪→ v) be a rewrite rule. If u is a λΠ-pattern
and there exist ∆ and T such that Γ `ctx ∆, FV (u) = dom(∆), Γ;∆ ` u : T and Γ;∆ ` v : T then (u ↪→ v)
is permanently well-typed for Γ.

This theorem is a corollary of the following lemma.

Lemma 6.3. Let Γ ⊂ Γ2 be two well-formed global contexts. If t ∈Pdom(Σ), dom(σ) = dom(∆), for
all (x : A) ∈ Σ, σ(A) = A, Γ;∆Σ ` t : T and Γ2;∆2Σ ` σ(t) : T2 then T2 ≡βΓ2 σ(T ) and, for all x ∈
FV (t)∩dom(∆), Γ2;∆2 ` σ(x) : Tx for Tx ≡βΓ2 σ(∆(x)).

Proof. We proceed by induction on t ∈Pdom(Σ).

• if t = c is a constant, then FV (t) = /0 and, by inversion on Γ;∆Σ ` t : T , there exists a (closed term)
A such that (c : A) ∈ Γ⊂ Γ2, T ≡βΓ A and T2 ≡βΓ2 A. Since A = σ(A), we have σ(T )≡βΓ2 T2.
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• if t = x ∈ dom(Σ), then, by inversion, there exists A such that (x : A) ∈ Σ, T ≡βΓ A and T2 ≡βΓ2 A.
Since A = σ(A), we have σ(T )≡βΓ2 T2.

• if t = p q, then, by inversion, on the one hand, Γ;∆Σ ` p : Πx : A.B, Γ;∆Σ ` q : A and T ≡βΓ B[x/q].
On the other hand, Γ2;∆2Σ ` σ(p) : Πx : A2.B2, Γ2;∆2Σ ` σ(q) : A2 and T2 ≡βΓ2 B2[x/σ(q)].
By induction hypothesis on p, we have σ(Πx : A.B) ≡βΓ2 Πx : A2.B2 and for all x ∈ FV (p)∩
dom(∆), Γ2;∆2 ` σ(x) : Tx with Tx ≡βΓ2 σ(∆(x)).
By product-compatibility of Γ2, σ(A) ≡βΓ2 A2 and σ(B) ≡βΓ2 B2. It follows that σ(T ) ≡βΓ2

σ(B[x/q])≡βΓ2 B2[x/σ(q)]≡βΓ2 T2.
Now, we distinguish three sub-cases:

– either q ∈Pdom(Σ) and by induction hypothesis on q, for all x ∈ FV (q)∩ dom(∆), Γ2;∆2 `
σ(x) : Tx with Tx ≡βΓ2 σ(∆(x)).

– Or q = λx : A.q0 with FV (A) ∈ dom(Σ) and q0 ∈Pdom(Σ(x:A)) and by induction hypothesis
on q0, for all x ∈ FV (q0)∩dom(∆), Γ2;∆2 ` σ(x) : Tx with Tx ≡βΓ2 σ(∆(x)).

– Or q = x~y with x /∈ dom(Σ) and~y ⊂ dom(Σ). By inversion, on the one hand, ∆(x) ≡βΓ Π~y :
Σ(~y).C for C ≡βΓ A. On the other hand, Γ2;∆2 ` σ(x) : Π~y : Σ(~y).C2 for C2 ≡βΓ2 A2. Since
σ(A)≡βΓ2 A2, we have Π~y : Σ(~y).C2 ≡βΓ2 Π~y : Σ(~y).σ(C) = σ(∆(x)).

Proof of Theorem 6.4. Let Γ2 be a well-formed extension of Γ. Suppose that Γ2;∆2 ` σ(u) : T2.
By Lemma 6.3 and FV (u) = dom(∆), we have, for all x ∈ dom(∆), Γ2;∆2 ` σ(x) : Tx for Tx ≡βΓ2

σ(∆(x)) and T2 ≡βΓ2 σ(T ).
By induction on Γ;∆ ` v : T , we deduce Γ2;∆2 ` σ(v) : T3, for T3 ≡βΓ2 σ(T )≡βΓ2 T2. It follows, by

conversion, that Γ2;∆2 ` σ(v) : T2.

7 Applications

7.1 Parsing and Solving Equations

The context declarations and rewrite rules of Figure 6 define a function to expr which parses a function
of type Nat to Nat into an expression of the form a∗ x+b (represented by the term mk expr a b) where
a and b are constants. The left-hand sides of the rewrite rules on to expr are λΠ-patterns. This allows
defining to expr by pattern matching in a way which looks under the binders.

The function solve can then be used to solve the linear equation a∗ x+b = 0. The answer is either
None if there is no solution, or All if any x is a solution or One m n if −m/(n+1) is the only solution.

For instance, we have (writing One − 1
3 for One 1 2):

solve (to expr(λx : Nat.plus x (plus x (S x))))→∗
βΓ

One − 1
3
.

By Theorem 6.3 and Theorem 6.4 the global context of Figure 6 is well-formed.

7.2 Universe Reflection

In [1], Assaf defines a version of the calculus of construction with explicit universe subtyping thanks to
an extended notion of conversion generated by a set of rewrite rules. This work can easily be adapted to
fit in the framework of the λΠ-calculus Modulo. However, the confluence of the rewrite system holds
only for rewriting modulo β .
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expr : Type.
mk expr : Nat−→ Nat−→ expr.
expr S : expr−→ expr.
expr S (mk expr a b) ↪→ mk expr a (S b).
expr P : expr−→ expr−→ expr.
expr P (mk expr a1 b1) (mk expr a2 b2) ↪→ mk expr (plus a1 a2) (plus b1 b2).

to expr : (Nat−→ Nat)−→ expr.
to expr (λx : Nat.0) ↪→ mk expr 0 0.
to expr (λx : Nat.S ( f x)) ↪→ expr S (to expr (λx : Nat. f x)).
to expr (λx : Nat.x) ↪→ mk expr (S 0) 0.
to expr (λx : Nat.plus ( f x) (g x)) ↪→

expr P (to expr (λx : Nat. f x)) (to expr (λx : Nat.g x)).

Solution : Type.
All : Solution.
One : Nat−→ Nat−→ Solution.
None : Solution.
solve (mk expr 0 0) ↪→ All.
solve (mk expr 0 (S n)) ↪→ None.
solve (mk expr (S n) m) ↪→ One m n.

Figure 6: Parsing and solving linear equations

8 Conclusion

We have defined a notion of rewriting modulo β for the λΠ-calculus Modulo. We achieved this by en-
coding the λΠ-calculus Modulo into the framework of Higher-Order Rewrite Systems. As a consequence
we also made available for the λΠ-calculus Modulo the confluence criteria designed for the HRSs (see
for instance [14] or [15]). We proved that rewriting modulo β preserves typing. We generalized the
criterion for product compatibility, by replacing the assumption of confluence by the confluence of the
rewriting relation modulo β . We also generalized the criterion for well-typedness of rewrite rules to al-
low left-hand to be λΠ-patterns. These generalizations permit proving subject reduction and uniqueness
of types for more systems.

A natural extension of this work would be to consider rewriting modulo βη as in Higher-Order
Rewrite Systems. This requires extending the conversion with η-reduction. But, as remarked in [10]
(attributed to Nederpelt),→βη is not confluent on untyped terms as the following example shows:

λy : B.y←η λx : A.(λy : B.y)x→β λx : A.x

Therefore properties such as product compatibility need to be proved another way. We leave this line of
research for future work.

For the λΠ-calculus a notion of higher-order pattern matching has been proposed [16] based on
Contextual Type Theory (CTT) [13]. This notion is similar to our. However, it is defined using the
notion of meta-variable (which is native in CTT) instead of a translation into HRSs.

In [3], Blanqui studies the termination of the combination of β -reduction with a set of rewrite rules
with matching modulo βη in the polymorphic λ -calculus. His definition of rewriting modulo βη is
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direct and does not use any encoding. This leads to a slightly different notion a rewriting modulo β . For
instance, D(λ : R.Exp x) would reduce to fMult (D (λx : R.(λy : R.y) x)) (λx : R.Exp ((λy : R.y) x)) in-
stead of fMult (D (λx : R.x)) (λx : R.Exp x). It would be interesting to know whether the two definitions
are equivalent with respect to confluence.

We implemented rewriting modulo β in Dedukti [5], our type-checker for the λΠ-calculus Modulo.

Acknowledgments. The author thanks very much Ali Assaf, Olivier Hermant, Pierre Jouvelot and the
reviewers for their very careful reading and many suggestions.
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